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Abstract: Let Sp be the Schatten-von Neumann ideal of compact operators equipped with
the normNp(·). For anA ∈ Sp (1 < p < ∞), the inequality

[
∞∑

k=1

|Re λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

| Im λk(A)|p
] 1

p

≥ Np(AR)− bpNp(AI) (bp = const.> 0)

is derived, whereλj(A) (j = 1, 2, . . . ) are the eigenvalues ofA, AI = (A −
A∗)/2i andAR = (A + A∗)/2. The suggested approach is based on some
relations between the real and imaginary Hermitian components of quasinilpotent
operators.
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1. Statement of the Main Result

Let Sp (1 ≤ p < ∞) be the Schatten-von Neumann ideal of compact operators in a
separable Hilbert spaceH equipped with the norm

Np(A) := [Trace(A∗A)p/2]1/p < ∞ (A ∈ Sp),

cf. [4, 6]. Let λj(A) (j = 1, 2, . . . ) be the eigenvalues ofA ∈ Sp taken with their
multiplicities. In addition,σ(A) denotes the spectrum ofA, AI = (A− A∗)/2i and
AR = (A + A∗)/2 are the Hermitian components ofA.

Recall the classical inequalities

j∑
k=1

|λk(A)|p ≤
j∑

k=1

sp
k(A) (p ≥ 1, j = 1, 2, . . . )

cf. [6, Corollary II.3.1] and

j∑
k=1

| Im λk(A)| ≤
j∑

k=1

sk(AI) (j = 1, 2, . . . )

(see [6, Theorem II.6.1]). These results give us the upper bounds for sums of the
eigenvalues of compact operators. In the present paper we derive lower inequalities
for the eigenvalues. Our results supplement the very interesting recent investigations
of the Schatten-von Neumann operators, cf. [1, 2, 8, 9, 11, 12, 13, 14].

Let {cn}∞n=1 be a sequence of positive numbers defined by

(1.1) cn = cn−1 +
√

c2
n−1 + 1 (n = 2, 3, . . . ), c1 = 1.

To formulate our main result, for ap ∈ [2n, 2n+1] (n = 1, 2, . . . ), put

(1.2) bp = ct
nc

1−t
n+1 with t = 2− 2−np.
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For instance,b2 = c1 = 1, b3 =
√

c1c2 =
√

1 +
√

2 ≤ 1.554, b4 = c2 ≤ 2.415,

b5 = c
3/4
2 c

1/4
3 ≤ 2.900; b6 = (c2c3)

1/2 ≤ 3.485; b7 = c
1/4
2 c

1/4
3 ≤ 4.185

andb8 = c3 ≤ 5.027. In the case1 < p < 2, we use the relation

(1.3) bp = bp/(p−1)

proved below.
The aim of this paper is to prove the following

Theorem 1.1.LetA ∈ Sp (1 < p < ∞). Then

(1.4)

[
∞∑

k=1

|Re λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

| Im λk(A)|p
] 1

p

≥ Np(AR)− bpNp(AI).

The proof of this theorem is presented in the next section. Clearly, inequality
(1.4) is effective only if its right-hand part is positive.

Replacing in (1.4) A by iA we get

Corollary 1.2. LetA ∈ Sp (1 < p < ∞). Then[
∞∑

k=1

| Im λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

|Re λk(A)|p
] 1

p

≥ Np(AI)− bpNp(AR).

Note that ifA is self-adjoint, then inequality (1.4) is attained, since[
∞∑

k=1

|Re λk(A)|p
] 1

p

= Np(AR) = Np(A).
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Moreover, if A ∈ S2 is a quasinilpotent operator, then from Theorem1.1, it fol-
lows thatN2(AR) ≤ N2(AI). However, as it is well known,N2(AR) = N2(AI),
cf. [5, Lemma 6.5.1]. So in the case of a quasinilpotent Hilbert-Schmidt operator,
inequality (1.4) is also attained.

Let{ek} be an orthonormal basis inH, andF ∈ Sp with p ≥ 2. Then by Theorem
4.7 from [3, p. 82],

Np(F ) ≥

(
∞∑

k=1

‖Fek‖p

) 1
p

=

 ∞∑
k=1

[
∞∑

j=1

|fjk|2
] p

2

 1
p

.

Here‖ · ‖ is the norm inH andfjk are the entries ofF in {ek}. Moreover,

Np(F ) ≤

 ∞∑
j=1

(
∞∑

k=1

|fjk|p
′

) p
p′
 1

p

,
1

p
+

1

p′
= 1,

cf. [10, p. 298]. Letajk be the entries ofA in {ek}. Then the previous inequalities
yield the relations

Np(AR) ≥ mp(AR) :=

 ∞∑
k=1

(
∞∑

j=1

∣∣∣∣ajk + akj

2

∣∣∣∣2
) p

2

 1
p

and

Np(AI) ≤ Mp(AI) :=

 ∞∑
k=1

(
∞∑

j=1

∣∣∣∣ajk − akj

2

∣∣∣∣p′
) p

p′
 1

p

.

Now Theorem1.1 implies:
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Corollary 1.3. LetA ∈ Sp (2 ≤ p < ∞). Then[
∞∑

k=1

|Re λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

| Im λk(A)|p
] 1

p

≥ mp(AR)− bpMp(AI).

Furthermore, from (1.1) it follows thatcn+1 ≥ 2cn ≥ 2n. Therefore,

cn+1 ≤ cn

(
1 +

√
1 + 2−(n−1)2

)
.

Hence,

(1.5) cn ≤
n−1∏
k=1

(
1 +

√
1 + 4−(k−1)

)
(n = 2, 3, . . . ).

Since √
1 + x ≤ 1 +

x

2
, x ∈ (0, 1),

1 + x ≤ ex (x ≥ 0), and
∞∑

k=1

1

4k
=

1

3
,

from inequality (1.5) it follows that

cn+1 ≤ 2n

n∏
k=1

(1 + 4−k) ≤ 2n+1 e1/3

2
.

Hence it follows that

(1.6) bp ≤
pe1/3

2
(2 ≤ p < ∞).
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Indeed, by (1.2) for p = t2n + (1− t)2n+1 (n = 1, 2, . . . ; 0 ≤ t ≤ 1) we have

bp = ct
nc

1−t
n+1 ≤ 2nt2(1−t)(n+1) · e1/3

2
= 2n−t · e1/3

2
.

However,2n−t ≤ p = t2n + (1− t)2n+1 (0 ≤ t ≤ 1). So (1.6) is valid.
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2. Proof of Theorem1.1

First let us prove the following lemma.

Lemma 2.1. Let V be a quasinilpotent operator,VR = (V + V ∗)/2 and VI =
(V −V ∗)/2i its real and imaginary parts, respectively. Assume thatVI ∈ S2n for an
integern ≥ 2. ThenN2n(VR) ≤ cnN2n(VI).

Proof. To apply the mathematical induction method assume that forp = 2n there
is a constantdp, such thatNp(WR) ≤ dpNp(WI) for any quasinilpotent operator
W ∈ Sp. Then replacingW by Wi we haveNp(WI) ≤ dpNp(WR). Now let
V ∈ S2p. ThenV 2 ∈ Sp and therefore,

Np((V
2)R) ≤ dpNp((V

2)I).

Here

(V 2)R =
V 2 + (V 2)∗

2
, (V 2)I =

V 2 − (V 2)∗

2i
.

However,
(V 2)R = (VR)2 − (VI)

2, (V 2)I = VIVR + VRVI

and thus

Np(V
2
R − V 2

I ) ≤ dpNp(VRVI + VIVR) ≤ 2dpN2p(VR)N2p(VI).

Take into account that

Np((VR)2) = N2
2p(VR), Np((VI)

2) = N2
2p(VI).

So
N2

2p(VR)−N2
2p(VI)− 2dpN2p(VR)N2p(VI) ≤ 0.
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Solving this inequality with respect toN2p(VR), we get

N2p(VR) ≤ N2p(VI)
[
dp +

√
d2

p + 1
]

= N2p(VI)d2p

with
d2p = dp +

√
d2

p + 1.

In addition,d2 = 1 according to Lemma 6.5.1 from [5]. We thus have the required
result withcn = d2n.

We will say that a linear mappingT is a linear transformer if it is defined on
a set of linear operators and its values are linear operators. A linear transformer
T : Sp → Sr (1 ≤ p, r < ∞) is bounded if its norm

Np→r(T ) := sup
A∈Sp

Nr(TA)

Np(A)

is finite. Below we give some examples of transformers. To prove relation (1.3) we
need Theorem III.6.3 from [7]. To formulate that theorem we recall some notions
from [7, Section I.3]. A setπ of projections inH is called achain of projectionsif
for all P1, P2 ∈ π eitherP1 < P2 or P2 < P1. This means that eitherP1H ⊂ P2H
or P2H ⊂ P1H. A chain of projections iscontinuousif it does not have gaps. A
continuous chain of projectionsπ is called a complete one if the zero and the unit
operators belong toπ.

Let us introducethe integral with respect to a chain of projectionsπ, cf. [7,
Sections 1.4 and I.5]. To this end for a partition

0 = P0 < P1 < · · · < Pn = I, Pk ∈ π, k = 1, . . . , n

and an operatorR ∈ Sp put
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Tn =
n∑

k=1

PkR∆Pk (∆Pk = Pk − Pk−1).

If there is a limitTn → T asn →∞ in the operator norm, we write

T =

∫
π

PRdP.

This limit is called the integral ofR with respect to a chain of projectionsπ. By
Theorem III.4.1 from [7], this integral converges for anyR ∈ Sp, 1 < p < ∞. Due
to Theorem I.6.1 [7], any Volterra operatorV with VI ∈ Sp can be represented as

V = 2i

∫
π

PVIdP.

Hence,
VR = Fπ(iVI),

where

(2.1) Fπ(R) :=

∫
π

PRdP +

(∫
π

PRdP

)∗
(R ∈ Sp, 1 < p < ∞).

A transformer of this form is called a transformer of the triangular truncation with
respect toπ.

Theorem III.6.3 from [7] asserts the following:Let π be a complete continuous
chain of projections inH. Let Fπ(R) be a transformer of the triangular truncation
with respect toπ defined by (2.1). Then the normNp→p(Fπ) is logarithmically
convex. Moreover, the relation

(2.2) Np→p(Fπ) = Nq→q(Fπ) with
1

p
+

1

q
= 1 (p ≥ 2)

is valid.
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Lemma 2.2. Let V be a quasinilpotent operator, and for ap ∈ [2n, 2n+1], n =
1, 2, . . . , let VI ∈ Sp. Then

(2.3) Np(VR) ≤ bpNp(VI).

Proof. By Lemma2.1, we have

N2n→2n(Fπ) ≤ cn = b2n .

Put
p = t2n + (1− t)2n+1 (0 ≤ t ≤ 1).

Since the norm ofFπ is logarithmically convex andFπ(iVI) = VR, we can write

Np→p(Fπ) ≤ bt
2nb1−t

2n+1 (t = 2− 2−np).

So
Np(VR)

Np(VI)
≤ bp.

This proves the lemma.

Furthermore, taking in (2.1) R = iVI , by the previous lemma and the equalities
(2.2) andFπ(iVI) = VR, we get

Nq(VR) ≤ bqNq(VI) (q ∈ (1, 2))

with bq = bp, q = p/(p− 1). So we arrive at

Corollary 2.3. LetV ∈ Sp be a quasinilpotent operator withp ∈ (1, 2). Then (2.3)
holds with (1.3) taken into account.

Proof of Theorem1.1. As it is well known, cf. [6] for any compact operatorA, there
are a normal operatorD and a quasinilpotent operatorV , such that

(2.4) A = D + V andσ(D) = σ(A).
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Relation (2.4) is called the triangular representation ofA; V andD are called the
nilpotent part and diagonal one ofA, respectively. Clearly, by the triangular inequal-
ity,

Np(VR) = Np(AR −DR) ≥ Np(AR)−Np(DR)

andNp(AI −DI) ≤ Np(AI) + Np(DI). This and the previous lemma imply that

Np(AR)−Np(DR) ≤ bpNp(AI −DI) ≤ bp(Np(AI) + Np(DI)).

Hence,Np(AR)− bpNp(AI) ≤ bpNp(DI) + Np(DR). By (2.4),

Np
p (DR) =

∞∑
k=1

|Re λk(A)|p andNp
p (DI) =

∞∑
k=1

| Im λk(A)|p.

So relation (1.4) is proved, as claimed.
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3. Additional Bounds

By Lemma 6.5.2 [5], for anA ∈ S2 we have

(3.1) N2
2 (A)−

∞∑
k=1

|λk(A)|2 = 2N2
2 (AI)− 2

∞∑
k=1

(Im λk(A))2.

Hence,

N2
2 (A)−

∞∑
k=1

|λk(A)|2 = 2N2
2 (AR)− 2

∞∑
k=1

(Re λk(A))2

and therefore,

N2
2 (AI)−

∞∑
k=1

(Im λk(A))2 = N2
2 (AR)−

∞∑
k=1

(Re λk(A))2.

Or
∞∑

k=1

(Re λk(A))2 −
∞∑

k=1

(Im λk(A))2 = N2
2 (AR)−N2

2 (AI) (A ∈ S2).

This equality improves Theorem1.1 in the casep = 2. Moreover, from (3.1) it
directly follows that

2
∞∑

k=1

(Im λk(A))2 = 2N2
2 (AI)−N2

2 (A) +
∞∑

k=1

|λk(A)|2

≥ 2N2
2 (AI)−N2

2 (A) + Trace A2.

Now replacingA by Ap we arrive at
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Theorem 3.1.LetA ∈ S2p (1 ≤ p < ∞). Then

2
∞∑

k=1

(Im(λp
k(A)))2 ≥ 2N2

2 ((Ap)I)−N2p
2p (A) + Trace A2p.
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