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1. Introduction

Before, we state our results, for our own convenience, we introduce the following
notations:

(1.1) [0,∞)n 4= [0,∞)× [0,∞)× ...× [0,∞)︸ ︷︷ ︸
n times

and

(1.2) (0,∞)n 4= (0,∞)× (0,∞)× ...× (0,∞)︸ ︷︷ ︸
n times

for n ∈ N, whereN denotes the set of all positive integers.
In [2], F. Qi proved the following:

Theorem A. For (x1, x2, . . . , xn) ∈ [0,∞)n andn > 2, inequality

(1.3)
e2

4

n∑
i=1

x2
i 6 exp

(
n∑

i=1

xi

)
is valid. Equality in(1.3) holds if xi = 2 for some given1 6 i 6 n andxj = 0 for
all 1 6 j 6 n with j 6= i. Thus, the constante

2

4
in (1.3) is the best possible.

Theorem B. Let{xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞. Then

(1.4)
e2

4

∞∑
i=1

x2
i 6 exp

(
∞∑
i=1

xi

)
.

Equality in(1.4) holds ifxi = 2 for some giveni ∈ N andxj = 0 for all j ∈ N with
j 6= i. Thus, the constante

2

4
in (1.4) is the best possible.
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In the same paper, F. Qi posed the following two open problems:

Problem 1.1. For (x1, x2, ..., xn) ∈ [0,∞)n andn > 2, determine the best possible
constantsαn, λn ∈ R andβn > 0, µn < ∞ such that

(1.5) βn

n∑
i=1

xαn
i 6 exp

(
n∑

i=1

xi

)
≤ µn

n∑
i=1

xλn
i .

Problem 1.2. What is the integral analogue of the double inequality(1.5)?

Recently, Huan-Nan Shi gave a partial answer in [3] to Problem1.1. The main
purpose of this paper is to give a complete answer to this problem. Also, we give a
partial answer to Problem1.2. The method used in this paper will be quite different
from that in the proofs of Theorem 1.1 of [2] and Theorem 1 of [3]. For some related
results, we refer the reader to [1]. We will prove the following results.

Theorem 1.1. Let p > 1 be a real number. For(x1, x2, . . . , xn) ∈ [0,∞)n and
n > 2, the inequality

(1.6)
ep

pp

n∑
i=1

xp
i 6 exp

(
n∑

i=1

xi

)
is valid. Equality in(1.6) holds ifxi = p for some given1 6 i 6 n andxj = 0 for
all 1 6 j 6 n with j 6= i. Thus, the constante

p

pp in (1.6) is the best possible.

Theorem 1.2. Let 0 < p 6 1 be a real number. For(x1, x2, . . . , xn) ∈ [0,∞)n and
n > 2, the inequality

(1.7) np−1 ep

pp

n∑
i=1

xp
i 6 exp

(
n∑

i=1

xi

)
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is valid. Equality in(1.7) holds if xi = p
n

for all 1 6 i 6 n. Thus, the constant
np−1 ep

pp in (1.7) is the best possible.

Theorem 1.3. Let {xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞ and
p > 1 be a real number. Then

(1.8)
ep

pp

∞∑
i=1

xp
i 6 exp

(
∞∑
i=1

xi

)
.

Equality in(1.8) holds ifxi = p for some giveni ∈ N andxj = 0 for all j ∈ N with
j 6= i. Thus, the constante

p

pp in (1.8) is the best possible.

Remark1. In general, we cannot find0 < µn < ∞ andλn ∈ R such that

exp

(
n∑

i=1

xi

)
6 µn

n∑
i=1

xλn
i .

Proof. We suppose that there exists0 < µn < ∞ andλn ∈ R such that

exp

(
n∑

i=1

xi

)
6 µn

n∑
i=1

xλn
i .

Then for(x1, 1, ..., 1), we obtain asx1 → +∞,

1 6 e1−nµn

(
n− 1 + xλn

1

)
e−x1 → 0.

This is a contradiction.
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Theorem 1.4. Let p > 0 be a real number,(x1, x2, . . . , xn) ∈ [0,∞)n andn > 2
such that0 < xi 6 p for all 1 6 i 6 n. Then the inequality

(1.9) exp

(
n∑

i=1

xi

)
6

pp

n
enp

n∑
i=1

x−p
i

is valid. Equality in(1.9) holds ifxi = p for all 1 6 i 6 n. Thus, the constantp
p

n
enp

is the best possible.

Remark2. Let p > 0 be a real number,(x1, x2, . . . , xn) ∈ [0,∞)n andn > 2 such
that0 < xi 6 p for all 1 6 i 6 n. Then

(i) if 0 < p ≤ 1, we have

(1.10) np−1 ep

pp

n∑
i=1

xp
i 6 exp

(
n∑

i=1

xi

)
6

pp

n
enp

n∑
i=1

x−p
i ;

(ii) if p ≥ 1, we have

(1.11)
ep

pp

n∑
i=1

xp
i 6 exp

(
n∑

i=1

xi

)
6

pp

n
enp

n∑
i=1

x−p
i .

Remark3. Takingp = 2 in Theorems1.1and1.3easily leads to TheoremsA andB
respectively.

Remark4. Inequality(1.6) can be rewritten as either

(1.12)
ep

pp

n∑
i=1

xp
i 6

n∏
i=1

exi
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or

(1.13)
ep

pp
‖x‖p

p 6 exp ‖x‖1 ,

wherex = (x1, x2, ..., xn) and‖·‖p denotes thep-norm.

Remark5. Inequality(1.8) can be rewritten as

(1.14)
ep

pp

∞∑
i=1

xp
i 6

∞∏
i=1

exi

which is equivalent to inequality(1.12) for x = (x1, x2, ...) ∈ [0,∞)∞ .

Remark6. Takingxi = 1
i

for i ∈ N in (1.6) and rearranging gives

(1.15) p− p ln p + ln

(
n∑

i=1

1

ip

)
6

n∑
i=1

1

i
.

Takingxi = 1
is

for i ∈ N ands > 1 in (1.8) and rearranging gives

(1.16) p− p ln p + ln

(
∞∑
i=1

1

ips

)
= p− p ln p + ln ς (ps) 6

∞∑
i=1

1

is
= ς (s) ,

whereς denotes the well-known Riemann Zêta function.

In the following, we give a partial answer to Problem1.2.

Theorem 1.5. Let 0 < p 6 1 be a real number, and letf be a continuous function
on [a, b] . Then the inequality

(1.17)
ep

pp
(b− a)p−1

∫ b

a

|f(x)|p dx ≤ exp

(∫ b

a

|f(x)| dx

)
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is valid. Equality in(1.17) holds iff(x) = p
b−a

. Thus, the constante
p

pp (b− a)p−1 in
(1.17) is the best possible.

Theorem 1.6.Letx > 0. Then

(1.18) Γ(x) 6
2x+1xx−1

ex

is valid, whereΓ denotes the well-known Gamma function.
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2. Lemmas

Lemma 2.1. For x ∈ [0,∞) andp > 0, the inequality

(2.1)
ep

pp
xp 6 ex

is valid. Equality in (2.1) holds ifx = p. Thus, the constante
p

pp in (2.1) is the best
possible.

Proof. Letting f (x) = p ln x − x on the set(0,∞) , it is easy to obtain that the
function f has a maximal point atx = p and the maximal value equalsf (p) =
p ln p − p. Then, we obtain(2.1). It is clear that the inequality(2.1) also holds at
x = 0.

Lemma 2.2. Letp > 0 be a real number. For(x1, x2, . . . , xn) ∈ [0,∞)n andn > 2,
we have:

(i) If p > 1, then the inequality

(2.2)
n∑

i=1

xp
i 6

(
n∑

i=1

xi

)p

is valid.

(ii) If 0 < p 6 1, then inequality

(2.3) np−1

n∑
i=1

xp
i 6

(
n∑

i=1

xi

)p

is valid.
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Proof. (i) For the proof, we use mathematical induction. First, we prove(2.2) for
n = 2. We have for any(x1, x2) 6= (0, 0)

(2.4)
x1

x1 + x2

≤ 1 and
x2

x1 + x2

≤ 1.

Then, byp > 1 we get

(2.5)

(
x1

x1 + x2

)p

6
x1

x1 + x2

and

(
x2

x1 + x2

)p

6
x2

x1 + x2

.

By addition from(2.5), we obtain(
x1

x1 + x2

)p

+

(
x2

x1 + x2

)p

6
x1

x1 + x2

+
x2

x1 + x2

.

So,

(2.6) xp
1 + xp

2 6 (x1 + x2)
p .

It is clear that inequality(2.6) holds also at the point(0, 0) .
Now we suppose that

(2.7)
n∑

i=1

xp
i 6

(
n∑

i=1

xi

)p

and we prove that

(2.8)
n+1∑
i=1

xp
i 6

(
n+1∑
i=1

xi

)p

.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


On Open Problems of F. Qi
B. Belaïdi, A. El Farissi and

Z. Latreuch

vol. 10, iss. 3, art. 90, 2009

Title Page

Contents

JJ II

J I

Page 11 of 16

Go Back

Full Screen

Close

We have by(2.6)

(2.9)

(
n+1∑
i=1

xi

)p

=

(
n∑

i=1

xi + xn+1

)p

>

(
n∑

i=1

xi

)p

+ xp
n+1

and by(2.7) and(2.9), we obtain

(2.10)
n+1∑
i=1

xp
i =

n∑
i=1

xp
i + xp

n+1 6

(
n∑

i=1

xi

)p

+ xp
n+1 6

(
n+1∑
i=1

xi

)p

.

Then for alln > 2, (2.2) holds.

(ii) For (x1, x2, . . . , xn) ∈ [0,∞)n, 0 < p 6 1 andn > 2, we have

(2.11)

(
n∑

i=1

xi

)p

=

(
n∑

i=1

n
xi

n

)p

.

By using the concavity of the functionx 7→ xp (x > 0, 0 < p 6 1) , we obtain from
(2.11)

(2.12)

(
n∑

i=1

xi

)p

=

(
n∑

i=1

n
xi

n

)p

>
n∑

i=1

npxp
i

n
= np−1

n∑
i=1

xp
i .

Hence(2.3) holds.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


On Open Problems of F. Qi
B. Belaïdi, A. El Farissi and

Z. Latreuch

vol. 10, iss. 3, art. 90, 2009

Title Page

Contents

JJ II

J I

Page 12 of 16

Go Back

Full Screen

Close

3. Proofs of the Theorems

We are now in a position to prove our theorems.

Proof of Theorem1.1. For (x1, x2, . . . , xn) ∈ [0,∞)n and p > 1, we put x =∑n
i=1 xi. Then by(2.1), we have

(3.1)
ep

pp

(
n∑

i=1

xi

)p

6 exp

(
n∑

i=1

xi

)
and by(2.2) we obtain(1.6).

Proof of Theorem1.2. For (x1, x2, . . . , xn) ∈ [0,∞)n and0 < p 6 1, we putx =∑n
i=1 xi. Then by(2.1), we have

(3.2)
ep

pp

(
n∑

i=1

xi

)p

6 exp

(
n∑

i=1

xi

)
and by(2.3) we obtain(1.7).

Proof of Theorem1.3. This can be concluded by lettingn → +∞ in Theorem1.1.

Proof of Theorem1.4. By the condition of Theorem1.4, we have0 < xi 6 p for all
1 6 i 6 n. Then,x−p

i > p−p for all 1 6 i 6 n. It follows that
∑n

i=1 x−p
i > np−p.

Then we obtain

(3.3)
n∑

i=1

xi − ln

(
n∑

i=1

x−p
i

)
6 np− ln

(
np−p

)
= np + ln

1

n
+ p ln p.
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It follows that

exp

(
n∑

i=1

xi

)
6

pp

n
enp

n∑
i=1

x−p
i .

The proof of Theorem1.4 is completed.

Proof of Theorem1.5. Let 0 < p 6 1. By Hölder’s inequality, we have

(3.4)
∫ b

a

|f(x)|p dx 6

(∫ b

a

|f(x)| dx

)p

(b− a)1−p .

It follows that

(3.5) (b− a)p−1

∫ b

a

|f(x)|p dx 6

(∫ b

a

|f(x)| dx

)p

.

On the other hand, by Lemma2.1, we have

(3.6)
ep

pp

(∫ b

a

|f(x)| dx

)p

≤ exp

(∫ b

a

|f(x)| dx

)
.

By (3.5) and(3.6), we get(1.17).

Proof of Theorem1.6. Let x > 0 andt > 0. Then by Lemma2.1, we have

(3.7) et >
ex

xx
tx.

So,

(3.8) e−t >
ex

xx
txe−2t.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


On Open Problems of F. Qi
B. Belaïdi, A. El Farissi and

Z. Latreuch

vol. 10, iss. 3, art. 90, 2009

Title Page

Contents

JJ II

J I

Page 14 of 16

Go Back

Full Screen

Close

It is clear that

(3.9) 1 >
ex

xx

∫ ∞

0

txe−2tdt =
ex

2x+1xx−1
Γ(x).

The proof of Theorem1.6 is completed.
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4. Open Problem

Problem 4.1. For p ≥ 1 a real number, determine the best possible constantα ∈ R
such that

ep

pp
α

∫ b

a

|f(x)|p dx ≤ exp

(∫ b

a

|f(x)| dx

)
.
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