

ON OPEN PROBLEMS OF F. QI

BENHARRAT BELAÏDI, ABDALLAH EL FARISSI AND ZINELAÂBIDINE LATREUCH

Department of Mathematics Laboratory of Pure and Applied Mathematics University of Mostaganem B. P. 227 Mostaganem, Algeria EMail: belaidi@univ-mosta.dz_elfarissi.abdallah@yahoo.fr_z.latreuch@gmail.com

Received:	07 May, 2008
Accepted:	28 September, 2009
Communicated by:	S.S. Dragomir
2000 AMS Sub. Class.:	26D15.
Key words:	Inequality, Sum of power, Exponential of sum, Nonnegative sequence, Integral Inequality.
Abstract:	In this paper, we give a complete answer to Problem 1 and a partial answer to Problem 2 posed by F. Qi in [2] and we propose an open problem.
Acknowledgements:	The authors would like to thank the referees for their helpful remarks and sug- gestions to improve the paper.

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and 7 Latreuch vol. 10, iss. 3, art. 90, 2009 **Title Page** Contents 44 ◀ ► Page 1 of 16 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

Contents

1	Introduction	3	
2	Lemmas	9	
3	Proofs of the Theorems	12	
4	Open Problem	15	

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009

Title Page		
Contents		
44	••	
•	•	
Page 2 of 16		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics

1. Introduction

Before, we state our results, for our own convenience, we introduce the following notations:

(1.1)
$$[0,\infty)^n \stackrel{\triangle}{=} \underbrace{[0,\infty) \times [0,\infty) \times \ldots \times [0,\infty)}_{n \text{ times}}$$

and

(1.2)
$$(0,\infty)^n \stackrel{\triangle}{=} \underbrace{(0,\infty) \times (0,\infty) \times \dots \times (0,\infty)}_{n \text{ times}}$$

for $n \in \mathbb{N}$, where \mathbb{N} denotes the set of all positive integers.

In [2], F. Qi proved the following:

Theorem A. For $(x_1, x_2, \ldots, x_n) \in [0, \infty)^n$ and $n \ge 2$, inequality

(1.3)
$$\frac{e^2}{4} \sum_{i=1}^n x_i^2 \leqslant \exp\left(\sum_{i=1}^n x_i\right)$$

is valid. Equality in (1.3) holds if $x_i = 2$ for some given $1 \le i \le n$ and $x_j = 0$ for all $1 \le j \le n$ with $j \ne i$. Thus, the constant $\frac{e^2}{4}$ in (1.3) is the best possible.

Theorem B. Let $\{x_i\}_{i=1}^{\infty}$ be a nonnegative sequence such that $\sum_{i=1}^{\infty} x_i < \infty$. Then

(1.4)
$$\frac{e^2}{4} \sum_{i=1}^{\infty} x_i^2 \leqslant \exp\left(\sum_{i=1}^{\infty} x_i\right).$$

Equality in (1.4) holds if $x_i = 2$ for some given $i \in \mathbb{N}$ and $x_j = 0$ for all $j \in \mathbb{N}$ with $j \neq i$. Thus, the constant $\frac{e^2}{4}$ in (1.4) is the best possible.

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009

journal of inequalities in pure and applied mathematics

In the same paper, F. Qi posed the following two open problems:

Problem 1.1. For $(x_1, x_2, ..., x_n) \in [0, \infty)^n$ and $n \ge 2$, determine the best possible constants $\alpha_n, \lambda_n \in \mathbb{R}$ and $\beta_n > 0, \mu_n < \infty$ such that

(1.5)
$$\beta_n \sum_{i=1}^n x_i^{\alpha_n} \leqslant \exp\left(\sum_{i=1}^n x_i\right) \le \mu_n \sum_{i=1}^n x_i^{\lambda_n}$$

Problem 1.2. What is the integral analogue of the double inequality (1.5)?

Recently, Huan-Nan Shi gave a partial answer in [3] to Problem 1.1. The main purpose of this paper is to give a complete answer to this problem. Also, we give a partial answer to Problem 1.2. The method used in this paper will be quite different from that in the proofs of Theorem 1.1 of [2] and Theorem 1 of [3]. For some related results, we refer the reader to [1]. We will prove the following results.

Theorem 1.1. Let $p \ge 1$ be a real number. For $(x_1, x_2, ..., x_n) \in [0, \infty)^n$ and $n \ge 2$, the inequality

(1.6)
$$\frac{e^p}{p^p} \sum_{i=1}^n x_i^p \leqslant \exp\left(\sum_{i=1}^n x_i\right)$$

is valid. Equality in (1.6) holds if $x_i = p$ for some given $1 \le i \le n$ and $x_j = 0$ for all $1 \le j \le n$ with $j \ne i$. Thus, the constant $\frac{e^p}{p^p}$ in (1.6) is the best possible.

Theorem 1.2. Let $0 be a real number. For <math>(x_1, x_2, ..., x_n) \in [0, \infty)^n$ and $n \geq 2$, the inequality

(1.7)
$$n^{p-1}\frac{e^p}{p^p}\sum_{i=1}^n x_i^p \leqslant \exp\left(\sum_{i=1}^n x_i\right)$$

is valid. Equality in (1.7) holds if $x_i = \frac{p}{n}$ for all $1 \le i \le n$. Thus, the constant $n^{p-1}\frac{e^p}{n^p}$ in (1.7) is the best possible.

Theorem 1.3. Let $\{x_i\}_{i=1}^{\infty}$ be a nonnegative sequence such that $\sum_{i=1}^{\infty} x_i < \infty$ and $p \ge 1$ be a real number. Then

(1.8)
$$\frac{e^p}{p^p} \sum_{i=1}^{\infty} x_i^p \leqslant \exp\left(\sum_{i=1}^{\infty} x_i\right).$$

Equality in (1.8) holds if $x_i = p$ for some given $i \in \mathbb{N}$ and $x_j = 0$ for all $j \in \mathbb{N}$ with $j \neq i$. Thus, the constant $\frac{e^p}{n^p}$ in (1.8) is the best possible.

Remark 1. In general, we cannot find $0 < \mu_n < \infty$ and $\lambda_n \in \mathbb{R}$ such that

$$\exp\left(\sum_{i=1}^n x_i\right) \leqslant \mu_n \sum_{i=1}^n x_i^{\lambda_n}$$

Proof. We suppose that there exists $0 < \mu_n < \infty$ and $\lambda_n \in \mathbb{R}$ such that

$$\exp\left(\sum_{i=1}^n x_i\right) \leqslant \mu_n \sum_{i=1}^n x_i^{\lambda_n}$$

Then for $(x_1, 1, ..., 1)$, we obtain as $x_1 \to +\infty$,

$$1 \leqslant e^{1-n} \mu_n \left(n - 1 + x_1^{\lambda_n} \right) e^{-x_1} \to 0.$$

This is a contradiction.

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009

Title Page		
Contents		
44	••	
•	►	
Page 5 of 16		
Go Back		
Full Screen		
Close		
urnal of inequalitie		

in pure and applied mathematics

issn: 1443-5756

Theorem 1.4. Let p > 0 be a real number, $(x_1, x_2, ..., x_n) \in [0, \infty)^n$ and $n \ge 2$ such that $0 < x_i \le p$ for all $1 \le i \le n$. Then the inequality

(1.9)
$$\exp\left(\sum_{i=1}^{n} x_i\right) \leqslant \frac{p^p}{n} e^{np} \sum_{i=1}^{n} x_i^{-p}$$

is valid. Equality in (1.9) holds if $x_i = p$ for all $1 \le i \le n$. Thus, the constant $\frac{p^p}{n}e^{np}$ is the best possible.

Remark 2. Let p > 0 be a real number, $(x_1, x_2, \ldots, x_n) \in [0, \infty)^n$ and $n \ge 2$ such that $0 < x_i \le p$ for all $1 \le i \le n$. Then

(*i*) if 0 , we have

(1.10)
$$n^{p-1} \frac{e^p}{p^p} \sum_{i=1}^n x_i^p \leqslant \exp\left(\sum_{i=1}^n x_i\right) \leqslant \frac{p^p}{n} e^{np} \sum_{i=1}^n x_i^{-p};$$

(*ii*) if $p \ge 1$, we have

(1.11)
$$\frac{e^p}{p^p} \sum_{i=1}^n x_i^p \leqslant \exp\left(\sum_{i=1}^n x_i\right) \leqslant \frac{p^p}{n} e^{np} \sum_{i=1}^n x_i^{-p}$$

Remark 3. Taking p = 2 in Theorems 1.1 and 1.3 easily leads to Theorems A and B respectively.

Remark 4. Inequality (1.6) can be rewritten as either

(1.12)
$$\frac{e^p}{p^p} \sum_{i=1}^n x_i^p \leqslant \prod_{i=1}^n e^x$$

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009		
Title Page		
Contents		
44	••	
•	Þ	
Page 6 of 16		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics

or

(1.13)
$$\frac{e^p}{p^p} \|x\|_p^p \leqslant \exp \|x\|_1,$$

where $x = (x_1, x_2, ..., x_n)$ and $\|\cdot\|_p$ denotes the *p*-norm. *Remark* 5. Inequality (1.8) can be rewritten as

(1.14)
$$\frac{e^p}{p^p} \sum_{i=1}^{\infty} x_i^p \leqslant \prod_{i=1}^{\infty} e^{x_i}$$

which is equivalent to inequality (1.12) for $x = (x_1, x_2, ...) \in [0, \infty)^{\infty}$. Remark 6. Taking $x_i = \frac{1}{i}$ for $i \in \mathbb{N}$ in (1.6) and rearranging gives

(1.15)
$$p - p \ln p + \ln \left(\sum_{i=1}^{n} \frac{1}{i^p}\right) \leqslant \sum_{i=1}^{n} \frac{1}{i}.$$

Taking $x_i = \frac{1}{i^s}$ for $i \in \mathbb{N}$ and s > 1 in (1.8) and rearranging gives

(1.16)
$$p - p \ln p + \ln \left(\sum_{i=1}^{\infty} \frac{1}{i^{ps}}\right) = p - p \ln p + \ln \varsigma \left(ps\right) \leqslant \sum_{i=1}^{\infty} \frac{1}{i^s} = \varsigma \left(s\right),$$

where ς denotes the well-known Riemann Zêta function.

In the following, we give a partial answer to Problem 1.2.

Theorem 1.5. Let 0 be a real number, and let <math>f be a continuous function on [a, b]. Then the inequality

(1.17)
$$\frac{e^p}{p^p} (b-a)^{p-1} \int_a^b |f(x)|^p \, dx \le \exp\left(\int_a^b |f(x)| \, dx\right)$$

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009

journal of inequalities in pure and applied mathematics

is valid. Equality in (1.17) holds if $f(x) = \frac{p}{b-a}$. Thus, the constant $\frac{e^p}{p^p} (b-a)^{p-1}$ in (1.17) is the best possible.

Theorem 1.6. Let x > 0. Then

(1.18)
$$\Gamma(x) \leqslant \frac{2^{x+1}x^{x-1}}{e^x}$$

is valid, where Γ denotes the well-known Gamma function.

vol. 10, iss. 3, art. 90, 2009

Title Page Contents ◀◀ ►► Page 8 of 16 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

2. Lemmas

Lemma 2.1. For $x \in [0, \infty)$ and p > 0, the inequality

(2.1)
$$\frac{e^p}{p^p}x^p \leqslant e^x$$

is valid. Equality in (2.1) holds if x = p. Thus, the constant $\frac{e^p}{p^p}$ in (2.1) is the best possible.

Proof. Letting $f(x) = p \ln x - x$ on the set $(0, \infty)$, it is easy to obtain that the function f has a maximal point at x = p and the maximal value equals $f(p) = p \ln p - p$. Then, we obtain (2.1). It is clear that the inequality (2.1) also holds at x = 0.

Lemma 2.2. Let p > 0 be a real number. For $(x_1, x_2, ..., x_n) \in [0, \infty)^n$ and $n \ge 2$, we have:

(*i*) If $p \ge 1$, then the inequality

(2.2)
$$\sum_{i=1}^{n} x_i^p \leqslant \left(\sum_{i=1}^{n} x_i\right)^p$$

is valid.

(ii) If 0 , then inequality

(2.3)
$$n^{p-1} \sum_{i=1}^{n} x_i^p \leqslant \left(\sum_{i=1}^{n} x_i\right)^p$$

is valid.

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009 **Title Page** Contents 44 ◀ ► Page 9 of 16 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

Proof. (i) For the proof, we use mathematical induction. First, we prove (2.2) for n = 2. We have for any $(x_1, x_2) \neq (0, 0)$

(2.4)
$$\frac{x_1}{x_1 + x_2} \le 1$$
 and $\frac{x_2}{x_1 + x_2} \le 1$.

Then, by $p \ge 1$ we get

(2.5)
$$\left(\frac{x_1}{x_1+x_2}\right)^p \leqslant \frac{x_1}{x_1+x_2}$$
 and $\left(\frac{x_2}{x_1+x_2}\right)^p \leqslant \frac{x_2}{x_1+x_2}$.

By addition from (2.5), we obtain

$$\left(\frac{x_1}{x_1+x_2}\right)^p + \left(\frac{x_2}{x_1+x_2}\right)^p \leqslant \frac{x_1}{x_1+x_2} + \frac{x_2}{x_1+x_2}.$$

n

So,

(2.6)
$$x_1^p + x_2^p \leqslant (x_1 + x_2)^p$$
.

It is clear that inequality (2.6) holds also at the point (0,0).

Now we suppose that

(2.7)
$$\sum_{i=1}^{n} x_i^p \leqslant \left(\sum_{i=1}^{n} x_i\right)^p$$

and we prove that

(2.8)
$$\sum_{i=1}^{n+1} x_i^p \leqslant \left(\sum_{i=1}^{n+1} x_i\right)^p$$

journal of inequalities in pure and applied mathematics

We have by (2.6)

(2.9)
$$\left(\sum_{i=1}^{n+1} x_i\right)^p = \left(\sum_{i=1}^n x_i + x_{n+1}\right)^p \ge \left(\sum_{i=1}^n x_i\right)^p + x_{n+1}^p$$

and by (2.7) and (2.9), we obtain

(2.10)
$$\sum_{i=1}^{n+1} x_i^p = \sum_{i=1}^n x_i^p + x_{n+1}^p \leqslant \left(\sum_{i=1}^n x_i\right)^p + x_{n+1}^p \leqslant \left(\sum_{i=1}^{n+1} x_i\right)^p.$$

Then for all $n \ge 2$, (2.2) holds.

(ii) For $(x_1, x_2, \ldots, x_n) \in [0, \infty)^n$, $0 and <math>n \ge 2$, we have

(2.11)
$$\left(\sum_{i=1}^{n} x_i\right)^p = \left(\sum_{i=1}^{n} n \frac{x_i}{n}\right)^p.$$

By using the concavity of the function $x \mapsto x^p$ $(x \ge 0, 0 , we obtain from (2.11)$

(2.12)
$$\left(\sum_{i=1}^{n} x_i\right)^p = \left(\sum_{i=1}^{n} n \frac{x_i}{n}\right)^p \geqslant \sum_{i=1}^{n} \frac{n^p x_i^p}{n} = n^{p-1} \sum_{i=1}^{n} x_i^p.$$

Hence (2.3) holds.

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Proofs of the Theorems

We are now in a position to prove our theorems.

Proof of Theorem 1.1. For $(x_1, x_2, \ldots, x_n) \in [0, \infty)^n$ and $p \ge 1$, we put $x = \sum_{i=1}^n x_i$. Then by (2.1), we have

(3.1)
$$\frac{e^p}{p^p} \left(\sum_{i=1}^n x_i\right)^p \leqslant \exp\left(\sum_{i=1}^n x_i\right)$$

and by (2.2) we obtain (1.6).

Proof of Theorem 1.2. For $(x_1, x_2, \ldots, x_n) \in [0, \infty)^n$ and $0 , we put <math>x = \sum_{i=1}^n x_i$. Then by (2.1), we have

(3.2)
$$\frac{e^p}{p^p} \left(\sum_{i=1}^n x_i\right)^p \leqslant \exp\left(\sum_{i=1}^n x_i\right)$$

and by (2.3) we obtain (1.7).

Proof of Theorem 1.3. This can be concluded by letting $n \to +\infty$ in Theorem 1.1.

Proof of Theorem 1.4. By the condition of Theorem 1.4, we have $0 < x_i \leq p$ for all $1 \leq i \leq n$. Then, $x_i^{-p} \geq p^{-p}$ for all $1 \leq i \leq n$. It follows that $\sum_{i=1}^n x_i^{-p} \geq np^{-p}$. Then we obtain

(3.3)
$$\sum_{i=1}^{n} x_i - \ln\left(\sum_{i=1}^{n} x_i^{-p}\right) \leq np - \ln\left(np^{-p}\right) = np + \ln\frac{1}{n} + p\ln p.$$

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009			
Title Page			
Contents			
44	••		
•	•		
Page 12 of 16			
Go Back			
Full Screen			
Close			

journal of inequalities in pure and applied mathematics

It follows that

$$\exp\left(\sum_{i=1}^n x_i\right) \leqslant \frac{p^p}{n} e^{np} \sum_{i=1}^n x_i^{-p}.$$

The proof of Theorem 1.4 is completed.

Proof of Theorem 1.5. Let 0 . By Hölder's inequality, we have

(3.4)
$$\int_{a}^{b} |f(x)|^{p} dx \leq \left(\int_{a}^{b} |f(x)| dx\right)^{p} (b-a)^{1-p}.$$

It follows that

(3.5)
$$(b-a)^{p-1} \int_{a}^{b} |f(x)|^{p} dx \leq \left(\int_{a}^{b} |f(x)| dx \right)^{p}.$$

On the other hand, by Lemma 2.1, we have

(3.6)
$$\frac{e^p}{p^p} \left(\int_a^b |f(x)| \, dx \right)^p \le \exp\left(\int_a^b |f(x)| \, dx \right).$$

By (3.5) and (3.6), we get (1.17).

Proof of Theorem 1.6. Let x > 0 and t > 0. Then by Lemma 2.1, we have

$$e^t \ge \frac{e^x}{x^x} t^x.$$

So,

$$e^{-t} \ge \frac{e^x}{x^x} t^x e^{-2t}$$

 \square

 \square

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009 **Title Page** Contents 44 ◀ Page 13 of 16 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

It is clear that

(3.9)
$$1 \ge \frac{e^x}{x^x} \int_0^\infty t^x e^{-2t} dt = \frac{e^x}{2^{x+1}x^{x-1}} \Gamma(x).$$

The proof of Theorem 1.6 is completed.

journal of inequalities in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

4. Open Problem

Problem 4.1. For $p \ge 1$ a real number, determine the best possible constant $\alpha \in \mathbb{R}$ such that

$$\frac{e^p}{p^p} \alpha \int_a^b |f(x)|^p \, dx \le \exp\left(\int_a^b |f(x)| \, dx\right).$$

On Open Problems of F. Qi B. Belaïdi, A. El Farissi and Z. Latreuch vol. 10, iss. 3, art. 90, 2009 Title Page Contents 44 •• ◀ Page 15 of 16 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

References

- [1] Y. MIAO, L.-M. LIU AND F. QI, Refinements of inequalities between the sum of squares and the exponential of sum of a nonnegative sequence, *J. Inequal. Pure* and Appl. Math., 9(2) (2008), Art. 53. [ONLINE: http://jipam.vu.edu. au/article.php?sid=985].
- [2] F. QI, Inequalities between the sum of squares and the exponential of sum of a nonnegative sequence, J. Inequal. Pure Appl. Math., 8(3) (2007), Art. 78. [ON-LINE: http://jipam.vu.edu.au/article.php?sid=895].
- [3] H.N. SHI, Solution of an open problem proposed by Feng Qi, RGMIA Research Report Collection, 10(4) (2007), Art. 9. [ONLINE: http://www.staff. vu.edu.au/RGMIA/v10n4.asp].

journal of inequalities in pure and applied mathematics