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ABSTRACT. We study certain properties and conjuctures on the composition of the arithmetic
functionsσ, ϕ, ψ, whereσ is the sum of divisors function,ϕ is Euler’s totient, andψ is
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1. I NTRODUCTION

Let σ(n) denote the sum of divisors of the positive integern, i.e. σ(n) =
∑

d/n d, where by
conventionσ(1) = 1. It is well-known thatn is calledperfectif σ(n) = 2n. Euclid and Euler
([10], [21]) have determined all even perfect numbers, by showing that they are of the form
n = 2k(2k+1 − 1), where2k+1 − 1 is a prime (k ≥ 1). The primes of the form2k+1 − 1 are
the so-called Mersenne primes, and at this moment there are known exactly 41 such primes (for
the recent discovery of the41th Mersenne prime, see the sitewww.ams.org). It is possible that
there are infinitely many Mersenne primes, but the proof of this result seems unattackable at
present. On the other hand, no odd perfect number is known, and the existence of such numbers
is one of the most difficult open problems of Mathematics. D. Suryanarayana [23] defined the
notion of asuperperfectnumber, i.e. a numbern with the propertyσ(σ(n)) = 2n, and he and
H.J. Kanold [23], [11] have obtained the general form of even superperfect numbers. These
aren = 2k, where2k+1 − 1 is a prime. Numbersn with the propertyσ(n) = 2n − 1 have
been calledalmost perfect, while that ofσ(n) = 2n + 1, quasi-perfect. For many results and
conjectures on this topic, see [9], and the author’s book [21] (see Chapter 1).
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2 JÓZSEFSÁNDOR

For an arithmetic functionf , the numbern is calledf -perfect, if f(n) = 2n. Thus, the
superperfect numbers will be in fact theσ ◦ σ-perfect numbers where "◦" denotes composition.

The Euler totient function, resp. Dedekind’s arithmetic function are given by

(1.1) ϕ(n) = n
∏
p|n

(
1− 1

p

)
, ψ(n) = n

∏
p|n

(
1 +

1

p

)
,

wherep runs through the distinct prime divisors ofn. Following convention we let,ϕ(1) =
1, ψ(1) = 1. All these functions are multiplicative, i.e. they satisfy the functional equation
f(mn) = f(m)f(n) for (m,n) = 1. For results onψ ◦ ψ-perfect,ψ ◦ σ-perfect,σ ◦ ψ-perfect,
andψ ◦ ϕ-perfect numbers, see the first part of [18]. Letσ∗(n) be the sum of unitary divisors
of n, given by

(1.2) σ∗(n) =
∏
pα||n

(pα + 1),

wherepα||n means that for the prime powerpα one haspα|n, butpα+1 - n. By convention, let
σ∗(1) = 1. In [18] almost and quasiσ∗◦σ∗-perfect numbers (i.e. satisfyingσ∗(σ∗(n)) = 2n∓1)
are studied, where it is shown that forn > 3 there are no such numbers. This result has been
rediscovered by V. Sitaramaiah and M.V. Subbarao [22].

In 1964, A. Makowski and A. Schinzel [13] conjectured that

(1.3) σ(ϕ(n)) ≥ n

2
, for all n ≥ 1.

The first results after the Makowski and Schinzel paper were proved by J. Sándor [16], [17].
He proved that (1.3) holds if and only if

(1.4) σ(ϕ(m)) ≥ m, for all oddm ≥ 1

and obtained a class of numbers satisfying (1.3) and (1.4). But (1.4) holds iff is it true for
squarefreen, see [17], [18]. This has been rediscovered by G.L. Cohen and R. Gupta ([4]).
Many other partial results have been discovered by C. Pomerance [14], G.L. Cohen [4], A.
Grytczuk, F. Luca and M. Wojtowicz [7], [8], F. Luca and C. Pomerance [12], K. Ford [6]. See
also [2], [19], [20]. Kevin Ford proved that

(1.5) σ(ϕ(n)) ≥ n

39.4
, for all n.

In 1988 J. Sándor [15], [16] conjectured that

(1.6) ψ(ϕ(m)) ≥ m, for all oddm.

He showed that (1.6) is equivalent to

(1.7) ψ(ϕ(n)) ≥ n

2

for all n, and obtained a class of numbers satisfying these inequalities. In 1988 J. Sándor [15]
conjectured also that

(1.8) ϕ(ψ(n)) ≤ n, for anyn ≥ 2

and V. Vitek [24] of Praha verified this conjecture forn ≤ 104.
In 1990 P. Erd̋os [5] expressed his opinion that this new conjecture could be as difficult as

the Makowski-Schinzel conjecture (1.3). In 1992 K. Atanassov [3] believed that he obtained a
proof of (1.8), but his proof was valid only for certain special values ofn.

Nonetheless, as we will see, conjectures (1.6), (1.7) and (1.8) are not generally true, and it
will be interesting to study the classes of numbers for which this is valid.
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ON THE COMPOSITION OFSOME ARITHMETIC FUNCTIONS, II 3

The aim of this paper is to study this conjecture and certain new properties of the above – and
related – composite functions.

1.1. Basic symbols and notations.
• σ(n) = sum of divisors ofn,
• σ∗(n) = sum of unitary divisors ofn,
• ϕ(n) = Euler’s totient function,
• ψ(n) = Dedekind’s arithmetic function,
• [x] = integer part ofx,
• ω(n) = number of distinct divisors ofn,
• a|b = a dividesb,
• a - b = a does not divideb,
• pr{n} = set of distinct prime divisors ofn,
• f ◦ g = composition off andg.

2. BASIC L EMMAS

Lemma 2.1.

(2.1) ϕ(ab) ≤ aϕ(b), for anya, b ≥ 2

with equality only ifpr{a} ⊂ pr{b}, wherepr{a} denotes the set of distinct prime factors ofa.

Proof. We have
ab =

∏
p|a,p-b

pα ·
∏
q|a,q|b

qβ ·
∏
r|b,r-a

rγ,

so
ϕ(ab)

ab
=

∏(
1− 1

p

)
·
∏(

1− 1

q

)
·
∏(

1− 1

r

)
≤

∏(
1− 1

q

)
·
∏(

1− 1

r

)
=
ϕ(b)

b
,

soϕ(ab) ≤ aϕ(b), with equality if "p does not exist", i.e.p with the propertyp|a, p - b. Thus
for all p|a one has alsop|b. �

Lemma 2.2. If pr{a} 6⊂ pr{b}, then for anya, b ≥ 2 one has

(2.2) ϕ(ab) ≤ (a− 1)ϕ(b),

and

(2.3) ψ(ab) ≥ (a+ 1)ψ(b).

Proof. We give only the proof of (2.2).
Let a =

∏
pα ·

∏
qβ, b =

∏
rγ ·

∏
qβ

′
, where theq are the common prime factors, and the

p ∈ pr{a} are such thatp 6∈ pr{b}, i.e. suppose thatα ≥ 1. Clearlyβ, β′, γ ≥ 0. Then

ϕ(ab)

ϕ(b)
= a ·

∏(
1− 1

p

)
≤ a− 1

iff ∏(
1− 1

p

)
≤ 1− 1

a
= 1− 1∏

pα ·
∏
qβ
.

Now,

1− 1∏
pα ·

∏
qβ
≥ 1− 1∏

pα
≥ 1− 1∏

p
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4 JÓZSEFSÁNDOR

by α ≥ 1. The inequality

1− 1∏
p
≥

∏(
1− 1

p

)
is trivial, since by putting e.g.p− 1 = u, one gets∏

(u+ 1) ≥ 1 +
∏

u,

and this is clear, sinceu > 0. There is equality only when there is a singleu, i.e. if the set of
p such thatpr{a} 6⊂ pr{b} has a single element, at the first power, and allβ = 0, i.e. when
a = p - b. Indeed:

ϕ(pb) = ϕ(p)ϕ(b) = (p− 1)ϕ(b).

�

Lemma 2.3. For all a, b ≥ 1,

(2.4) σ(ab) ≥ aσ(b),

and

(2.5) ψ(ab) ≥ aψ(b).

Proof. (2.4) is well-known, see e.g. [16], [18]. There is equality here, only fora = 1.
For (2.5), letu|v. Then

ψ(u)

u
=

∏
p|u

(
1 +

1

p

)
≤

∏
p|v,p|u

(
1 +

1

p

)
·

∏
q|v,q-u

(
1 +

1

q

)
=
ψ(v)

v
,

with equality ifq does not exist withq|v, q - v. Putv = ab andu = b. Thenψ(u)
u
≤ ψ(v)

v
becomes

exactly (2.5). There is equality if for eachp|a one also hasp|b, i.e. pr{a} ⊂ pr{b}. �

Remark 2.4. Therefore, there is a similarity between the inequalities (2.1) and (2.5).

Lemma 2.5. If pr{a} 6⊂ pr{b}, then for anya, b ≥ 2 one has

(2.6) σ(ab) ≥ ψ(a) · σ(b).

Proof. This is given in [16]. �

3. M AIN RESULTS

Theorem 3.1.There are infinitely manyn such that

(3.1) ψ(ϕ(n)) < ϕ(ψ(n)) < n.

For infinitely manym one has

(3.2) ϕ(ψ(m)) < ψ(ϕ(m)) < m.

There are infinitely manyk such that

(3.3) ϕ(ψ(k)) =
1

2
ψ(ϕ(k)).

Proof. We prove that (3.1) is valid forn = 3·2a for anya ≥ 1. This follows fromϕ(3·2a) = 2a,
ψ(2a) = 3 · 2a−1, ψ(3 · 2a) = 3 · 2a+1, ϕ(3 · 2a+1) = 2a+1, so

3 · 2a > ϕ(ψ(3 · 2a)) > ψ(ϕ(3 · 2a)).
For the proof of (3.2), putm = 2a·5b (b ≥ 2). Then an easy computation shows thatψ(ϕ(m)) =
2a+1 · 32 · 5b−2, andϕ(ψ(m)) = 2a+2 · 3 · 5b−2 and the inequalities (3.2) will follow.
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ON THE COMPOSITION OFSOME ARITHMETIC FUNCTIONS, II 5

Forh = 3s remark thatϕ(ψ(h)) = 4
9
· h andψ(ϕ(h)) = 4

3
· h, so

(3.4) ϕ(ψ(h)) < h < ψ(ϕ(h)),

which complete (3.1) and (3.2), in a certain sense.
Finally, for k = 2a · 7b (b ≥ 2) one can deduceψ(ϕ(k)) = 48

49
· k, ϕ(ψ(k)) = 24

49
· k, so (3.3)

follows. We remark that since

(3.5) ψ(ϕ(k)) < k,

by (3.3) and (3.5) one can say that

(3.6) ϕ(ψ(k)) <
k

2
,

for the above values ofk. Remark also that forh in (3.4) one has

(3.7) ϕ(ψ(h)) =
1

3
ψ(ϕ(h)).

For the valuesm given by (3.2) one has

(3.8) ϕ(ψ(m)) =
2

3
ψ(ϕ(m)).

Forn = 2a · 3b (b ≥ 2) one can remark thatϕ(ψ(n)) = ψ(ϕ(n)). �

More generally, one can prove:

Theorem 3.2.Let1 < n = pα1
1 p

α2
2 · · · pαr

r the prime factorization ofn and suppose that the odd
part ofn is squarefull, i.e.αi ≥ 2 for all i with pi ≥ 3.

Thenϕ(ψ(n)) = ψ(ϕ(n)) is true if and only if

pr{(p1 − 1) · · · (pr − 1)} ⊂ pr{p1, . . . , pr} and(3.9)

pr{(p1 + 1) · · · (pr + 1)} ⊂ pr{p1, . . . , pr}.
Proof. Since

ϕ(n) = pα1−1
1 · · · pαr−1

r · (p1 − 1) · · · (pr − 1)

and
ψ(n) = pα1−1

1 · · · pαr−1
r · (p1 + 1) · · · (pr + 1),

one can write

ψ(ϕ(n)) = pα1−1
1 · · · pαr−1

r · (p1 − 1) · · · (pr − 1) ·
∏

t|(pα1−1
1 ···pαr−1

r ·(p1−1)···(pr−1))

1 +
1

t

and

ϕ(ψ(n)) = pα1−1
1 · · · pαr−1

r · (p1 + 1) · · · (pr + 1) ·
∏

q|(pα1−1
1 ···pαr−1

r ·(p1+1)···(pr−1))

(
1− 1

q

)
.

Sinceαi − 1 ≥ 1 whenpi ≥ 3, the equalityψ(ϕ(n)) = ϕ(ψ(n)), by

(p1 − 1) · · · (pr − 1) ·
(

1 +
1

p1

)
· · ·

(
1 +

1

pr

)
= (p1 + 1) · · · (pr + 1) ·

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
,

can also be written as ∏
t|(p1−1)···(pr−1)

(
1 +

1

t

)
=

∏
q|(p1+1)···(pr+1)

(
1− 1

q

)
.
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6 JÓZSEFSÁNDOR

Since1 + 1
t
> 1 and1 − 1

q
< 1, this is impossible in general. It is possible only if all prime

factors of(p1 + 1) · · · (pr − 1) are amongp1, . . . , pr, and also the same for the prime factors of
(p1 + 1) · · · (pr + 1). �

Remark 3.3. For example,n = 2a · 3b · 5c with a ≥ 1, b ≥ 2, c ≥ 2 satisfy (3.9). Indeed

pr{(2− 1)(3− 1)(5− 1)} = {2}, pr{(2 + 1)(3 + 1)(5 + 1)} = {2, 3}.
Similar examples aren = 2a · 3b · 5c · 7d, n = 2a · 3b · 5c · 11d, n = 2a · 3b · 7c · 13d,
n = 2a · 3b · 5c · 7d · 11e · 13f , n = 2a · 3b · 17c, etc.

Theorem 3.4.Letn be squarefull. Then inequality (1.8) is true.

Proof. Let n = pα1
1 · · · pαr

r with αi ≥ 2 for all i = 1, r. Then

ϕ(ψ(n)) = ϕ(pα1−1
1 · · · pαr−1

r · (p1 + 1) · · · (pr + 1))

≤ (p1 + 1) · · · (pr + 1) · ϕ(pα1−1
1 · · · pαr−1

r ),

by Lemma 2.1. But

ϕ(pα1−1
1 · · · pαr−1

r ) = pα1−2
1 · · · pαr−2

r · (p1 − 1) · · · (pr − 1),

sinceα ≥ 2. Then

ϕ(ψ(n)) ≤ (p2
1 − 1) · · · (p2

r − 1) · pα1−2
1 · · · pαr−2

r

= pα1
1 · · · pαr

r ·
(

1− 1

p2
1

)
· · ·

(
1− 1

p2
r

)
,

so

(3.10) ϕ(ψ(n)) ≤ n ·
(

1− 1

p2
1

)
· · ·

(
1− 1

p2
r

)
.

There is equality in (3.10) if

pr{(p1 + 1) · · · (pr + 1)} ⊂ {p1, . . . , pr}.
Clearly, inequality (3.10) is best possible, and by(

1− 1

p2
1

)
· · ·

(
1− 1

p2
r

)
< 1,

it implies inequality (1.8). �

Theorem 3.5.For anyn ≥ 2 one has

(3.11) ϕ

(
n

[
ψ(n)

n

])
< n,

where[x] denotes the integer part ofx.

Proof. It is immediate that

ϕ(n)ψ(n)

n2
=

∏
p|n

(
1− 1

p2

)
< 1,

soϕ(n)ψ(n) < n2 for anyn ≥ 2. Now, by (2.1) one can write

ϕ

(
n

[
ψ(n)

n

])
≤

[
ψ(n)

n

]
ϕ(n) ≤ ψ(n)

n
· ϕ(n) < n,

by the relation proved above. �
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ON THE COMPOSITION OFSOME ARITHMETIC FUNCTIONS, II 7

Remark 3.6. If n|ψ(n), i.e., when
[
ψ(n)
n

]
= ψ(n)

n
, relation (3.11) gives inequality (1.8), i.e.

ϕ(ψ(n)) < n. For the study of an equation

(3.12) ψ(n) = k · n

we shall use a notion and a method of Ch. Wall [25]. We say thatn is ω-multiple ofm if m|n
andpr{m} = pr{n}.

We need a simple result, stated as:

Lemma 3.7. If m andn are squarefree, andψ(n)
n

= ψ(m)
m

, thenn = m.

Proof. Without loss of generality we may suppose

(m,n) = 1; m,n > 1, m = q1 · · · qj (q1 < · · · < qj)

and
n = p1 · · · pk (p1 < · · · < pk).

Then the assumed equality has the form

n(1 + q1) · · · (1 + qj) = m(1 + p1) · · · (1 + pk).

Sincepk|n, the relation
pk|(1 + p1) · · · (1 + pk−1)(1 + pk)

impliespk|(1 + pk) for somei ∈ {1, 2, . . . , k}. Here

1 + p1 < · · · < 1 + pk−1 < 1 + pk,

so we must havepk|(1 + pk−1). This may happen only whenk = 2, p1 = 2, p2 = 3; j =
2, q1 = 2, q3 = 3 (since fork ≥ 3, pk − pk−1 ≥ 2, so pk - (1 + pk−1)). In this case
(n,m) = 6 > 1, a contradiction. Thusk = j andpk = qj. �

Theorem 3.8. Assume that the least solutionnk of (3.12) is a squarefree number. Then all
solutions of (3.12) are given by theω-multiples ofnk.

Proof. If n is ω-multiple ofnk, then clearly

ψ(n)

n
=
ψ(nk)

nk
= k,

by (1.1).Conversely, ifn is a solution, setm = greatest squarefree divisor ofn. Then

ψ(n)

n
=
ψ(m)

m
= k =

ψ(nk)

nk
.

By Lemma 3.7,m = nk, i.e.n is anω-multiple ofnk. �

Theorem 3.9. Let n ≥ 3, and suppose thatn is ψ-deficient, i.e.ψ(n) < 2n. Then inequality
(1.8) holds.

Proof. First remark that for anyn ≥ 3, ψ(n) is an even number. Indeed, ifn = 2a, then
ψ(n) = 2a−1 · 3, which is odd only fora = 1, i.e. n = 2. If n has at least one odd prime factor
p, then by (1.1),ψ(n) will be even.

Now, applying Lemma 2.1 forb = 2, one obtainsϕ(2a) ≤ a, i.e. ϕ(u) ≤ u
2

for u = 2a

(even). Here equality occurs only whenu = 2k (k ≥ 1). Now, ϕ(ψ(n)) ≤ ψ(n)
2
, ψ(n) being

even, and sincen is ψ-deficient, the theorem follows. �
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Remark 3.10. The inequality

(3.13) ϕ (ψ(n)) ≤ ψ(n)

2

is best possible, since we have equality forψ(n) = 2k. Letn = pα1
1 · · · pαr

r ; thenpα1−1
1 · · · pαr−1

r ·
(p1+1) · · · (pr+1) = 2k is possible only ifα1 = · · · = αr = 1, andp1+1 = 2a1, . . . , pr+1 = 2ar ;
i.e. whenp1 = 2a1 − 1, . . . , pr = 2ar − 1 are distinct Mersenne primes, andn = p1 · · · pr. So,
there is equality in (3.13) iffn is a product of distinct Mersenne primes. Since by Theorem
3.8 one hasψ(n) = 2n iff n = 2a · 3b (a, b ≥ 1), if one assumesψ(n) ≤ 2n, then by (3.13),
inequality (1.8) follows again. Therefore, in Theorem 3.9 one may assumeψ(n) ≤ 2n.

Let ω(n) denote the number of distinct prime factors ofn. Theorem 3.9 and the above
remark implies that whenn is even, andω(n) ≤ 2, (1.8) is true. Indeed,1 + 1

2
= 3

2
< 2, and(

1 + 1
2

) (
1 + 1

3

)
= 2. So e.g. whenn = pα1

1 · pα2
2 , then

ψ(n)

n
=

(
1 +

1

p1

)
·
(

1 +
1

p2

)
≤

(
1 +

1

2

) (
1 +

1

3

)
= 2.

On the other hand, ifn is odd, andω(n) ≤ 4, then (1.8) is valid. Indeed,(
1 +

1

3

) (
1 +

1

5

) (
1 +

1

7

) (
1 +

1

11

)
=

4

3
· 6

5
· 8

7
· 12

11
=

2304

1155
< 2.

Another remark is the following:
If 2 and 3 do not dividen, andn has at most six prime factors, thenϕ(ψ(n)) < n. If 2, 3 and

5 do not dividen, andn has at most 12 prime factors, then the same result holds true. If 2, 3, 5
and 7 do not dividen, andn has at most 21 prime factors, then the inequality is true.

If 2 and 3 do not dividen, we prove thatψ(n) < 2n, and by the presented method the results
will follow. E.g., whenn is not divisible by 2 and 3, then the least prime factor ofn could be 5,
so

ψ(n)

n
<

6

5
· 8

7
· 12

11
· 14

13
· 18

17
· 20

19
· 24

23
· 30

29
· 32

31
< 2,

and the first result follows. The other affirmations can be proved in a similar way.
In [16] it is proved that

(3.14) ψ(n) ≤
{

3ω(n) · ϕ(n), if n is even

2ω(n) · ϕ(n), if n is odd
.

Thus, as a corollary of (3.13) and (3.14) one can state that if3ω(n)·ϕ(n)
2

< n (or ≤ n), for n
even; and2ω(n)−1 · ϕ(n) (or≤ n) for n odd, then relation (1.8) is valid.

By (3.13), ifn is a product of distinct Mersenne primes, thenϕ(ψ(n)) = ψ(n)
2

. We will prove
thatψ(n) < 2n for suchn, thus obtaining:

Theorem 3.11.If n is a product of distinct Mersenne primes, then inequality (1.8) is valid.

Proof. Let n = M1 · · ·Ms, whereMi = 2pi − 1 (pi primes, i = 1, 2, . . . , s) are distinct
Mersenne primes. We have to prove that(2p1 − 1) · · · (2ps − 1) > 2p1+···+ps−1, or equiva-
lently,

(
1− 1

2p1

)
· · ·

(
1− 1

2ps

)
> 1

2
. Clearlyp1 ≥ 2, p2 ≥ 3, . . . , ps ≥ s + 1, so it is sufficient

to prove that

(3.15)

(
1− 1

22

)
· · ·

(
1− 1

2s+1

)
>

1

2
.
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In the proof of (3.15) we will use the classical Weierstrass inequality

(3.16)
s∏

k=1

(1− ak) > 1−
s∑

k=1

ak,

whereak ∈ (0, 1) (see e.g. D.S. Mitrinović: Analytic inequalities, Springer-Verlag, 1970).
Putak = 1

2k+1 in (3.16). Since

s∑
k=1

1

2k+1
=

1

4
·
(

1 +
1

2
+ · · ·+ 1

2k−1

)
=

1

4
·
(

1− 1
2k

1− 1
2

)
=

2k − 1

2k + 1
,

(3.15) becomes equivalent to1 − 2k−1
2k+1

> 1
2
, or 1

2
> 2k−1

2k+1
, i.e. 2k > 2k − 1, which is true.

Therefore, (3.15) follows, and the theorem is proved. �

Remark 3.12. By Theorem 3.23 (see relation (3.29)), ifn = Ma1
1 · · ·M ss

s (with arbitraryai ≥
1), the inequality (1.8) holds true.

Related to the above theorems is the following result:

Theorem 3.13.Letn be even, and suppose that the greatest odd partm ofn isψ-deficient, and
that3 - ψ(m). Then (1.8) is true.

Proof. Let n = 2k ·m, when

ϕ(ψ(n)) = ϕ(2k−1 · 3ψ(m)) = 2 · ϕ(2k−1 · ψ(m))

since(3, 2k−1 · ψ(m)) = 1. But

ϕ(2k−1 · ψ(m)) ≤ 2k−2 · ψ(m) < 2k−1 ·m,

soϕ(ψ(n)) < 2k ·m = n. �

Remark 3.14. In [18] it is proved that for alln ≥ 2 even, one has

(3.17) ϕ(σ(n)) ≥ 2n,

with equality only ifn = 2k, where2k+1−1 = prime. The proof is based on Lemma 2.3. Since
σ(m) ≥ ψ(m), clearly this implies

(3.18) σ(σ(n)) ≥ 2n,

with the above equalities. So, the Surayanarayana-Kanved theorem is reobtained, in an im-
proved form.

In [18] it is proved also that for alln ≥ 2 even, one has

(3.19) σ(ψ(n)) ≥ 2n,

with equality only forn = 2. What are the odd solutions ofσ(ψ(n)) = 2n?

We now prove:

Theorem 3.15.Letn = 2k ·m be even (k ≥ 1,m > 1 odd), and suppose thatm is not a product
of distinct Fermat primes, and thatm satisfies (1.6). Then

(3.20) σ(ϕ(n)) ≥ n−m ≥ n

2
.
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Proof. First remark that ifm is not a product of distinct Fermat primes, thenϕ(m) is not a
power of 2. Indeed, ifm = pa1

1 · · · par
r , then

ϕ(m) = pa1−1
1 · · · par−1

r (p1 − 1) · · · (pr − 1) = 2s

iff (sincepi ≥ 3),

a1 − 1 = · · · = ar − 1 = 0

and

p1 − 1 = 2s1 , . . . , pr − 1 = 2sr ,

i.e.

p1 = 2s1 + 1, . . . , pr = 2sr + 1

are distinct Fermat primes. Thus there exists at least an odd prime divisor ofϕ(m). Now, by
Lemma 2.5,

σ(ϕ(2k ·m)) = σ(2k−1 · ϕ(m)) ≥ ψ(ϕ(m)) · σ(2k−1) ≥ m · (2k − 1) = n−m,

by relation (1.6). The last inequality of (3.20) is trivial, sincem ≤ n
2

= 2k−1 · m, where
k − 1 ≥ 0. �

Remark 3.16. Relation (3.17) gives an improvement of (1.3) for certain values ofn.

Theorem 3.17.Letp be an odd prime. Then

(3.21) ϕ(ψ(p)) ≤ p+ 1

2
,

with equality only ifp is a Mersenne prime, andψ(ϕ(p)) ≥ 3
2
· (p − 1), with equality only ifp

is a Fermat prime.

Proof. ψ(p) = p + 1 andp + 1 being even,ϕ(p + 1) ≤ p+1
2

, with equality only ifp + 1 = 2k,
i.e. whenp = 2k − 1 = Mersenne prime. Since3

2
· (p − 1) ≥ p, this inequality is better than

(1.6) forn = p. Similarly, ϕ(p) = p − 1 = even, soψ(p − 1) ≥ 3
2
· (p − 1), on base of the

following: �

Lemma 3.18. If n ≥ 2 is even, then

(3.22) ψ(n) ≥ 3

2
· n,

with equality only ifn = 2a (power of 2).

Proof. If n = 2a ·N , withN odd,

ψ(n) = ψ(2a) · ψ(N) = 2a−1 · 3 · ψ(N) ≥ 2a−1 · 3 ·N =
3

2
· n.

Equality occurs only, whenN = 1, i.e. whenn = 2a. �

Sincep − 1 = 2a impliesp = 2a + 1 = Fermat prime, (3.21) is completely proved. Since
3
2
· (p− 1) ≥ p, this inequality is better than (1.6) forn = p.

Remark 3.19. Forp ≥ 5 one hasp+1
2
< p < 3

2
· (p− 1), so (3.21) implies, as a corollary that

(3.23) ϕ(ψ(p)) < p < ψ(ϕ(p)),

for p ≥ 5, prime.
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This is related to relation (3.4). Ifn is even, andn 6= 2a (power of 2), then sinceψ(N) ≥
N + 1, with equality only whenN is a prime, (3.22) can be improved to

(3.24) ψ(n) ≥ 3

2
·
(
n+

n

N

)
,

with equality only forn = 2a ·N , whereN = prime.

Theorem 3.20.Leta, b ≥ 1 and suppose thata|b. Thenϕ(ψ(a))|ϕ(ψ(b)) andψ(ϕ(a))|ψ(ϕ(b)).
In particular, if a|b, then

(3.25) ϕ(ψ(a)) ≤ ϕ(ψ(b)); ψ(ϕ(a)) ≤ ψ(ϕ(b)).

Proof. The proof follows at once from the following:

Lemma 3.21. If a|b, then

(3.26) ϕ(a)|ϕ(b),

and

(3.27) ψ(a)|ψ(b),

�

Proof. This follows by (1.1), see e.g. [16], [18]. �

Now, if a|b, thenψ(a)|ψ(b) by (3.27), so by (3.26),ϕ(ψ(a))|ϕ(ψ(b)). Similarly, a|b im-
pliesϕ(a)|ϕ(b) by (3.26), so by (3.27),ψ(ϕ(a))|ψ(ϕ(b)). The inequalities in (3.22) are trivial
consequences.

Remark 3.22. Let a = p be a prime such thatp - k, and putb = kp−1 − 1.
By Fermat’s little theorem one hasa|b, so all results of (3.25) are correct in this case. For

example,ψ(ϕ(a)) ≤ ψ(ϕ(b)) gives, in the case of (3.25), and Theorem 3.15:

(3.28) ψ(ϕ(kp−1 − 1)) ≥ ψ(ϕ(p)) ≥ 3

2
· (p− 1),

for any primep - k, and any positive integerk > 1.

Let (n, k) = 1. Then by Euler’s divisibility theorem, one has similarly:

(3.29) ψ(ϕ(kϕ(n) − 1)) ≥ ψ(ϕ(n)),

for any positive integersn, k > 1 such that(n, k) = 1.
Let n > 1 be a positive integer, having as distinct prime factorsp1, . . . , pr. Then, using (1.1)

it is immediate that

(3.30) ϕ(n)|ψ(n)

iff (p1− 1) · · · (pr− 1)|(p1 +1) · · · (pr +1). For example, (3.30) is true forn = 2m, n = 2m · 5s
(m, s ≥ 1), etc. Now assuming (3.30), by (3.26) one can write the following inequalities:

(3.31) ϕ(ψ(ϕ(n))) ≤ ϕ(ψ(ψ(n))) andψ(ϕ(ϕ(n))) ≤ ψ(ϕ(ψ(n))).

By studying the first 100 values ofn with the property (3.30), the following interesting exam-
ple may be remarked:ϕ(15) = ϕ(16) = 8, ψ(15) = ψ(16) = 24 andϕ(15)|ψ(15). Similarly
ϕ(70) = ϕ(72) = 24, ψ(70) = ψ(72) = 144, with ϕ(70)|ψ(70).

Are there infinitely many such examples? Are there infinitely manyn such thatϕ(n) =
ϕ(n+ 1) andψ(n) = ψ(n+ 1)? Orϕ(n) = ϕ(n+ 2) andψ(n) = ψ(n+ 2)?

Let a = 8, b = σ(8k− 1). Thena|b (see e.g. [18] for such relations), and sinceψ(ϕ(8)) = 6,
ϕ(ψ(8)) = 12, by (3.25) we obtain the divisibility relations

(3.32) 6|ψ(ϕ(σ(8k − 1))) and12|ϕ(ψ(σ(8k − 1)))
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for k ≥ 1.
The second relation implies e.g. that ifϕ(ψ(σ(n))) = 2n, thenn 6≡ −1 (mod 8) and if

ϕ(ψ(σ(n))) = 4n, thenn 6≡ −1 (mod 24).

Theorem 3.23.Inequality (1.8) is true for ann ≥ 2 if it is true for the squarefree part ofn ≥ 2.
Inequality (1.6) is true for an oddm ≥ 3 if it is true for the squarefree part ofm ≥ 3.

Proof. As we have stated in the Introduction, such results were first proved by the author. We
give here the proof for the sake of completeness.

Let n′ be the squarefree part ofn, i.e. if n = pa1
1 · · · par

r , thenn′ = p1 · · · pr. Then

ϕ(ψ(n)) = ϕ(pa1−1
1 · · · par−1

r · (p1 + 1) · · · (pr + 1))

≤ pa1−1
1 · · · par−1

r · ϕ((p1 + 1) · · · (pr + 1))

=
n

n′
· ϕ(ψ(n′)))

by inequality (2.1).
Thus

(3.33)
ϕ(ψ(n))

n
≤ ϕ(ψ(n′))

n′
.

Therefore, ifϕ(ψ(n′))
n′

< 1, thenϕ(ψ(n))
n

< 1. Similarly one can prove that

(3.34)
ψ(ϕ(m))

m
≥ ψ(ϕ(m′))

m′ ,

so if (1.6) is true for the squarefree partm′ of m, then (1.6) is true also form.
As a consequence, (1.8) is true for alln if and only if it is true for all squarefreen.
As we have stated in the introduction, (1.6) is not generally true for allm. Let e.g.m = 3 ·F ,

whereF > 3 is a Fermat prime. Indeed, putF = 2k + 1. Thenϕ(m) = 2k+1, so

ψ(ϕ(m)) = 2k · 3 < 3 · (2k + 1) = 3 · F = m,

contradicting (1.6). However, ifm has the formm = 5 · F , whereF > 5 is again a Fermat
prime, then (1.6) is valid, since in this case

ψ(ϕ(m)) = 6 · 2k > 5 · (2k + 1) = m.

�

More generally, we will prove now:

Theorem 3.24.Let 5 ≤ F1 < · · · < Fs be Fermat primes. Then inequality (1.6) is valid (with
strict inequality) form = F a1

1 · · ·F as
s , with arbitrary ai ≥ 1 (i = 1, s).

Proof. Let Fi = 1 + 22bi (i ≥ 1) be Fermat primes, whereb1 ≥ 1. Sinceb1 < b2 < · · · < bs,
clearly bi ≥ i for any i = 1, 2, . . . , s. By (3.34) it is sufficient to prove the result form′ =
F1 · · ·Fs, when (1.6) becomes, after some elementary computations:

(3.35)

(
1 +

1

22b1

)
· · ·

(
1 +

1

22bs

)
≤ 3

2
.

We will prove that (3.35) holds with strict inequality. By the classical Weierstrass inequalities
one has

s∏
k=1

(1 + ak) <
1

1−
∑s

k=1 ak
,

whereak ∈ (0, 1).
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Sincebi ≥ 1, it is sufficient to prove that

(3.36)

(
1 +

1

22

)
· · ·

(
1 +

1

22s

)
≤ 3

2
.

Putak = 22k
(k ≥ 1), so by the above inequality, it is sufficient to prove that

(3.37)
∑

=
1

221 +
1

222 + · · ·+ 1

22s <
1

3
.

Clearly (3.37) is true fors = 1, 2, since 1
4
< 1

3
, 1

4
+ 1

16
= 5

16
< 1

3
. Let s ≥ 3. Then, since

2s ≥ s+ 5 for s ≥ 3, we can write∑
≤ 1

4
+

1

16
+

1

28
·
(

1 +
1

2
+ · · ·+ 1

2s−3

)
=

5

16
+

1

128
·
(

1− 1

2s−2

)
<

5

16
+

1

128
=

41

128
<

1

3
,

and the assertion is proved. �

Remark 3.25. By Lemma 2.2, relation (2.2) one can write successively

(3.38)

ϕ((p1 + 1)(p2 + 1)) ≤ p2ϕ(p1 + 1) < p1p2, if pr{p2 + 1} 6⊂ pr{p1 + 1}
ϕ((p1 + 1)(p2 + 1)(p3 + 1)) ≤ p3ϕ(p1 + 1)(p2 + 1) < p1p2p3,

if in additionpr{p3 + 1} 6⊂ pr{(p1 + 1)(p2 + 1)}
· · ·

ϕ((p1 + 1) · · · (pr−1 + 1)(pr + 1)) ≤ prϕ((p1 + 1) · · · (pr−1 + 1)) < p1 · · · pr,
if pr{pr + 1} 6⊂ pr{(p1 + 1) · · · (pr−1 + 1)}

is satisfied, then by Theorem 3.23, inequality (1.8) is valid.
Similarly, by using Lemma 2.2, (2.3), and Theorem 3.23, we can state that if

(3.39)

pr{p2 − 1} 6⊂ pr{q1 − 1},
pr{q3 − 1} 6⊂ pr{(p1 − 1)(p2 − 1)},

· · · ,
pr{qr − 1} 6⊂ pr{(p1 − 1) · · · (qr−1 − 1)},

then inequality (1.6) is valid. (Hereq1, q2, . . . , qr are the prime divisors of the odd number
m ≥ 3.)

Remark 3.26. Inequality (1.8) is not generally true. Indeed, forn = 39270, n = 82110, or
n = 2·3·5·7·17·23·M , whereM is a Mersenne prime, greater or equal than31, then (1.8) is not
true. This has been communicated to the author by Professor L. Tóth. Prof. Kovács Lehel István
found recently the counterexamples: 53130, 71610, 78540, 106260, 108570, 117810, 122430,
143220, 157080, 159390, 164010, 164220, 212520, 214830, 217140, 235620, 244860, 246330,
247170, 286440, 293370, 314160, 318780, 325710, 328440, 353430 and 367290.

Now by using a method of L. Alaoglu and P. Erdős [1], we will prove that:

Theorem 3.27.For anyδ > 0, the inequality

(3.40) ϕ(ψ(n)) < δ · n
is valid, excepting perhapsn ∈ S, whereS has asymptotic density zero.
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Proof. We prove first that for any given primep, the set ofn such thatp|ψ(n), has density 1.
This is similar to the proof given in [1].

On the other hand, since
∑

n≤x ψ(n) ≈ 15
2π2 · x2 asx → ∞ (see e.g. [16]), we can say that

excepting at most a number ofε · x integersn < x, one hasψ(n) < c(ε) · n, wherec(ε) > 0.
Let nowp be a prime such that ∏

q≤p

(
1− 1

q

)
<

δ

c(ε)

(this is possible, since
∏

q≤p

(
1− 1

q

)
→ 0 asp→∞).

Then, ifx is large, then for alln < x, excepting perhaps a number ofη ·x+ ε ·x integers one
hasψ(n) < c(ε). n andψ(n) ≡ 0(mod q) for anyq ≤ p, (η > 0).

But for these exceptions one hasϕ(ψ(n)) < δ · n, and this finishes the proof;η, ε > 0 being
arbitrary. �

Remark 3.28. It can be proved similarly that

(3.41) ψ(ϕ(n)) > δ · n,
excepting perhaps a set of density zero.

Theorem 3.27 implies thatlim inf
n→∞

ϕ(ψ(n))
n

= 0, and so, one haslim sup
n→∞

ψ(ϕ(n))
n

= +∞. For

other proof of these results, see [16]. We cannot determine the following values:lim inf
n→∞

ψ(ϕ(n))
n

=

?, lim sup
n→∞

ϕ(ψ(n))
n

=?

However, we can prove that:

Theorem 3.29.

(3.42) lim inf
n→∞

ψ(ϕ(n))

n
≤ inf

{
ψ(ϕ(k))

k
: k is a multiple of4

}
<

1

2
.

Proof. Let k be a multiple of 4, andp > k
2
. Then

ϕ

(
1

2
kp

)
= ϕ

(
k

2

)
ϕ(p) = 2ϕ(

k

2
) · p− 1

2
= ϕ(k) · p− 1

2
,

since2|k
2
. Now byψ(ab) ≤ ψ(a)ψ(b) one can write

ψ

(
ϕ

(
1

2
kp

))
≤ ψ(ϕ(k))ψ

(
p− 1

2

)
.

Sinceψ
(
p−1
2

)
≤ σ

(
p−1
2

)
, and by the known result of Makowski and Schinzel:lim inf

σ( p−1
2 )

p−1
2

=

1, from the above one can write:

lim inf
p→∞

ψ
(
ϕ

(
1
2
kp

))
1
2
kp

≤ ψ(ϕ(k))

k
· lim inf

p→∞

ψ
(
p−1
2

)
p−1
2

≤ ψ(ϕ(k))

k
,

and now relation (3.42) follows, by takinginf afterk.
Since

232 − 1 = F0 · F1 · F2 · F3 · F4,

whereFk = 22k
+ 1, and allFi (0 ≤ i ≤ 4) are primes, it follows, that

ϕ(232 − 1) = 21 · 22 · 24 · 28 · 216 = 231.
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Thusϕ(4(232 − 1)) = 232, by ϕ(4) = 2. Sinceψ(232) = 231 · 3, by letting in (3.42)k =

4 · (232 − 1), we get theinf ≤ 231·3
4·(232−1)

< 1
2·( 4

3
−θ) , whereθ > 1

3·230 . In any case we get in (3.42)

that lim inf < 1
2
, and fact a value slightly greater than1

2· 4
3

= 3
8
. �

In [16] it is asked the value oflim inf ψ(σ(n))
n

≤ 1. We now prove that this value is 1:

Theorem 3.30.

(3.43) lim inf
ψ(σ(n))

n
= 1.

Proof. Sinceψ(σ(n))
n

≥ σ(n)
n

≥ 1, clearly this limit is≥ 1. By the above inequality, the result
follows. However, we give here a new proof of this fact. We remark that, sinceϕ(N) ≤
ψ(N) ≤ σ(N), and by the known result

lim
p→∞

ϕ(N(a, p))

N(a, p)
= lim

p→∞

σ(N(a, p))

N(a, p)
= 1,

whereN(a, p) = ap−1
p−1

, (a > 1, p prime) we easily get

(3.44) lim
p→∞

ϕ(N(a, p))

N(a, p)
= 1.

Now let a = q an arbitrary prime in (3.44). We remark thatN(q, p) = qp−1
q−1

= σ(qp−1). Now,
by

σ(qp−1)

qp−1
=

qp − 1

(q − 1) · qp−1
→ q

q − 1
,

asp→∞, from (3.44) we can write:

(3.45) lim
p→∞

ψ(σ(qp−1))

qp−1
=

q

q − 1
< 1 + ε,

for q ≥ q(ε), ε > 0. Now by (3.45), (3.43) follows. �

Remark 3.31. In [16] it is proved, by assuming the infinitude of Mersenne primes, that

(3.46) lim inf
n→∞

ψ(ψ(n))

n
=

3

2
.

Can we prove (3.46) without any assumption?

We have conjectured in [16] that the following limit is true, but in the proof we have used
the fact that there are infinitely many Mersenne primes. Now we prove this result without any
assumptions:

Theorem 3.32.We have

(3.47) lim inf
ψ(ψ(n))

n
=

3

2
.

Proof. Sinceψ(n) ≥ 3
2
n for all evenn, andψ(n) ≥ n for all n, clearlyψ(ψ(n)) ≥ 3

2
· n for

all n, therefore it will be sufficient to find a sequence with limit3
2
. By using deep theorems on

primes in arithmetical progressions, it can be proved, as in Makowski-Schinzel [13] that

lim sup
ϕ(a)

a
= lim inf

σ(a)

a
= 1

asp tends to infinity, wherea = (p+1)
2

, andp ≡ 1 (mod 4).
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Since(p+1)
2

is odd, we get

σ(p+ 1) = σ

(
2 · (p+ 1)

2

)
= 3 · σ

(
(p+ 1)

2

)
,

implying thatlim inf (σ(p+1))
p

= 3
2
. Sinceψ(n) ≤ σ(n), we can write thatlim inf (ψ(p+1))

p
≤ 3

2
.

By (ψ(p+1))
p

> 3
2
, this yieldslim inf (ψ(p+1))

p
= 3

2
, completing the proof of the theorem. �
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