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ABSTRACT. Mixed arithmetic and geometric means, with and without weights, are both consid-
ered. Related to mixed arithmetic and geometric means, the following three types of inequalities
and their generalizations, from three variables to a generaln variables, are studied. For arbitrary
x, y, z ≥ 0 we have[
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The main results include generalizations of J.C. Burkill’s inequalities (J.C. Burkill; The con-
cavity of discrepancies in inequalities of means and of Hölder,J. London Math. Soc.(2), 7
(1974), 617–626), and a positive solution for the conjecture considered by B.C. Carlson, R.K.
Meany and S.A. Nelson (B.C. Carlson, R.K. Meany, S.A. Nelson; Mixed arithmetic and geomet-
ric means,Pacific J. of Math., 38 (1971), 343–347).
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1. I NTRODUCTION

In this paper, our inequalities concern generally arbitrary numbers of variables, however, the
simplest most meaningful case for us is the case of three variables. Thus our motivation in this
paper can be illustrated with three variables. Letx, y, z be any three non-negative numbers.
By taking the arithmetic mean of two each ofx, y, z we have three numbersx+y

2
, y+z

2
and

z+x
2

. Taking the geometric mean of these three numbers, we have
(

x+y
2
· y+z

2
· z+x

2

) 1
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√
yz and
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zx, then we have1
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are called the mixed arithmetic and geometric means, or simply
the mixed means, ofx, y, z. Mixed arithmetic and geometric means appear in many branches
of mathematics. However in this paper our interest is stimulated by the following inequality
(C), which was proved by B.C. Carlson, R.K. Meany and S.A. Nelson, and simply referred to
as CMN, see [2] and [3],
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Besides inequality (C), our main concern in this paper is to study the following three types
of inequalities, which are all related to mixed arithmetic and geometric means:[
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Because of the convexity of the square function;x2, we have
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thus the inequality (D) is stronger than the inequality (C), that is, (D) implies (C).
Except for (C), among the three inequalities (A), (B) and (D) there is no such relationship that

one is stronger than another, namely they are independent of each other. One special relationship
between (A) and (D) should be mentioned here, (A) and (D) can be transformed into each other

through a transformation;(x, y, z) →
(

1
x,

1
y,

1
z

)
, x, y, z > 0. We add a few more remarks.

The inequalities (A) and (B) are special cases of more general known inequalities, which were
proved by J.C. Burkill [1]. Further generalizations of Burkill’s inequalities will be discussed
later. The inequality (C) above is also the simplest case of the more general inequality proved
by CMN [3], which will be mentioned later.

2. DEFINITIONS AND NOTATIONS

Our main results in this paper are generalizations of (A), (B) and (D) from three variables to
n variables. The first step toward generalization must be the formulation of mixed arithmetic
and geometric means forn variables in general. This formulation, for the case of no weights,
was given already in CMN [3].

Let x1, . . . , xn ≥ 0, n ≥ 3 be arbitrary non-negative numbers and denoteX = {x1, . . . , xn}.
For any non empty subsetY of X, denote|Y | as the cardinal number ofY , and denoteS(Y ) and
P (Y ) as the sum of all numbers ofY and the product of all numbers ofY respectively. Denote
further byA(Y ) andG(Y ) the arithmetic mean ofY and geometric mean ofY respectively.
Namely we have

A (Y ) =
1

|Y |
S (Y ) and G (Y ) = P (Y )

1
|Y | .
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M IXED ARITHMETIC AND GEOMETRIC MEANS 3

For anyk with 1 ≤ k ≤ n, we define thek-th mixed arithmetic and geometric mean of
{x1, . . . , xn} = X as follows, and we will use the notations

(G ◦ A)k (x1, . . . , xn) = (G ◦ A)k (X)

and
(A ◦G)k (x1, . . . , xn) = (A ◦G)k (X)

throughout the paper, where

(k-thG ◦ A mean) (G ◦ A)k (x1, . . . , xn) =

 ∏
Y ⊂X,|Y |=k

A(Y )

 1

(n
k )

and

(k-thA ◦G mean) (A ◦G)k (x1, . . . , xn) =
1(
n
k

) ∑
Y ⊂X,|Y |=k

G (Y )

In CMN [3], they prove the following inequality (C) ([3, Theorem 2]), which is identical to
the previous (C) ifn = 3 andk = l = 2,

(C) (A ◦G)l (x1, . . . , xn) ≤ (G ◦ A)k (x1, . . . , xn)

for anyx1, . . . , xn ≥ 0 and anyk andl satisfying1 ≤ k, l ≤ n andn + 1 ≤ k + l.
DenotePk (x1, . . . , xn) = Pk (X) the k-th elementary symmetric function ofx1, . . . , xn,

namely
Pk (x1, . . . , xn) =

∑
Y ⊂X,|Y |=k

P (Y ).

We define thek-thelementary symmetric mean of{x1, . . . , xn} = X, denoted byqk (x1, . . . , xn)
= qk (X), as

qk (x1, . . . , xn) =

[
1(
n
k

)Pk (x1 · · ·xn)

] 1
k

.

By employing these notations, our generalization of (A), (B) and (D) from 3 variables ton ≥ 3
variables are as follows:

A (x1, . . . , xn)
k−1
n−1 ·G (x1, . . . , xn)

n−k
n−1 ≤ (G ◦ A)k (x1, . . . , xn) ,(A)

(A ◦G)k (x1, . . . , xn) ≤ n− k

n− 1
A (x1, . . . , xn) +

k − 1

n− 1
G (x1, . . . , xn) ,(B)

ql (x1, . . . , xn) ≤ (G ◦ A)k (x1, . . . , xn)(D)

for anyk andl satisfying1 ≤ k, l ≤ n andn + 1 ≤ k + l.
Because of the convexity of the function;xl for x ≥ 0, we have

(A ◦G)l (x1, . . . , xn) ≤ ql (x1, . . . , xn) .

Hence our inequality (D) above is stronger than the inequality (C). Actually in CMN [3] the
inequality (D) is conjectured to be true.

The inequalities (A), (B) and (D) will be proved in separate sections. In Section 3, the mixed
arithmetic and geometric meanswith general weightsare considered. With respect to general
weights, our final formulation of the inequalities (A) and (B) are given and they are proven
in Theorems 3.1 and 3.2, which give generalizations of J.C. Burkill’s inequalities. In Section
4, the inequality (D) is proven in Theorem 4.1, and entire section consists of proving (D) and
checking the equality condition of (D). In Section 5, the inequality (C) with three variables and
general weights is formulated and proved in Theorem 5.1.
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4 TAKASHI ITO

3. I NEQUALITIES (A) AND (B) WITH WEIGHTS

All inequalities mentioned in our introduction are with equal weights, one can say without
weights or no weights. For inequalities with weights, the order of given variables is very sig-
nificant. Thus inequalities with weights do not have symmetry with respect to variables. Here
we define one type of mixed arithmetic and geometric mean with weights, and we lose the
symmetry between variables in our inequalities.

Let t1, . . . , tn be weights forn variables, that is,t1, . . . , tn are all positive numbers andt1 +
· · · + tn = 1. For any non negativen numbersx1, . . . , xn ≥ 0 we define the arithmetic mean
and the geometric mean of{x1, . . . , xn} = X with weights{t1, . . . , tn} as usual, denoted by
At (x1, . . . , xn) = At (X) andGt (x1, . . . , xn) = Gt (X),

At (x1, . . . , xn) =
n∑

i=1

tixi,

Gt (x1, . . . , xn) =
n∏

i=1

xti
i .

With respect to the weights{t1, . . . , tn}, similarly for any non-empty subsetY of {x1, . . . , xn} =
X, we define the arithmetic meanAt (Y ) and the geometric meanGt (Y ) as follows. LetY be
{xi1 , . . . , xik} for instance,

At (Y ) =
1

ti1 + · · ·+ tik
(ti1xi1 + · · ·+ tikxik) ,

Gt (Y ) =
(
x

ti1
i1

, . . . , x
tik
ik

) 1
ti1

+···+tik .

Next, the following numbertY can be regarded as a weight forY ,

tY =
1(

n−1
k−1

) (ti1 + · · ·+ tik) ,

because we havetY > 0 and
∑

Y ⊂X,|Y |=k

tY = 1.

Now we define thek-th mixed arithmetic and geometric means with weights{t1, . . . , tn} for
anyk of 1 ≤ k ≤ n, denoted by

(G ◦ A)k,t (x1, . . . , xn) = (G ◦ A)k,t (X)

and
(A ◦G)k,t (x1, . . . , xn) = (A ◦G)k,t (X) ,

as follows:

(k-thG ◦ A mean) (G ◦ A)k,t (x1, . . . , xn) =
∏

Y ⊂X,|Y |=k

At (Y )tY

(k-thA ◦G mean) (A ◦G)k,t (x1, . . . , xn) =
∑

Y ⊂X,|Y |=k

tY Gt (Y ) .

It is apparent that we have

(G ◦ A)1,t (X) = Gt (X) and (A ◦G)1,t (X) = At (X) for k = 1

and
(G ◦ A)n,t (X) = At (X) and (G ◦ A)n,t (X) = Gt (X) for k = n.
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M IXED ARITHMETIC AND GEOMETRIC MEANS 5

And it can be seen that(G ◦ A)k,t (X) is increasing with respect tok from Gt (X) to At (X) .

On the other hand,(A ◦G)k,t (X) is decreasing with respect tok from At (X) to Gt (X).
However, this property will not be used in the sequal, hence we omit the proof. The same

property is proved for the case of no weights, see CMN [3].
Now we can formulate our inequalities (A) and (B) with weights and give our proof for them.

We first prove (A).

Theorem 3.1. Supposek andn are positive integers and1 ≤ k ≤ n, and supposet1, . . . , tn
are weights. For any non-negative numbersx1, . . . , xn ≥ 0 we have

(A) At (x1, . . . , xn)
k−1
n−1 Gt (x1, . . . , xn)

n−k
n−1 ≤ (G ◦ A)k,t (x1, . . . , xn) .

For k = 1 or k = n, (A) is a trivial identity of eitherGt (x1, . . . , xn) = Gt (x1, . . . , xn) or
At (x1, . . . , xn) = At (x1, . . . , xn). For 2 ≤ k ≤ n − 1, the equality of (A) holds if and only if
x1 = · · · = xn or the number of zeros amongx1, . . . , xn is equal tok or larger thank.

Proof. There is nothing to prove ifk = 1 or k = n. Thus we assume2 ≤ k ≤ n − 1 and
3 ≤ n. We assume also that our all variablesx1, . . . , xn are positive until the last step of our
proof, because we want to avoid unnecessary confusion.

Let L (x1, . . . , xn) be the ratio of the right side versus the left side of (A), namely

L (x1, . . . .xn) =
(G ◦ A)k,t (x1, . . . , xn)

At (x1, . . . , xn)
k−1
n−1 Gt (x1, . . . , xn)

n−k
n−1

.

It suffices to proveL (x1, . . . , xn) ≥ 1 for all x1, . . . , xn > 0. Our proof is divided into two
steps of (i) and (ii), and step (i) is the main part of our proof.

(i) Choose arbitrary positive numbersa1, . . . , an > 0 which are not equal, and thesea1, . . . , an

are fixed throughout step (i). By changing the order of(ai, ti), 1 ≤ i ≤ n if it is necessary, we
can assume

a1 = min
1≤i≤n

ai < a2 = max
1≤i≤n

ai.

Setā = 1
t1+t2

(t1a1 + t2a2), then clearly we havea1 < ā < a2.
Definea1 (λ) anda2 (λ) for all λ of 0 ≤ λ ≤ 1 such that

a1 (λ) = (1− λ) a1 + λā and a2 (λ) = (1− λ) a2 + λā,

then we have for allλ of 0 ≤ λ ≤ 1 :

(1) a1 ≤ a1 (λ) ≤ ā ≤ a2 (λ) ≤ a2,
(2) t1a1 (λ) + t2a2 (λ) = t1a1 + t2a2,
(3) d

dλ
a1 (λ) = ā− a1 and d

dλ
a2 (λ) = ā− a2.

If we regard(a1 (λ) , a2 (λ) , a3, . . . , an) as a point inRn, we are considering here the line
segment joining two points(a1a2, . . . , an) and(ā, ā, a3, . . . , an) in Rn. Our main purpose of
part (i) is to prove the following claim:

L (a1 (λ) , a2 (λ) , a3, . . . , an) is strictly decreasing with respect toλ(*)

at a neighbour ofλ = 0.

SetXλ = {a1 (λ) , a2 (λ) , a3, . . . , an} for 0 ≤ λ ≤ 1, henceX0 = {a1, a2, . . . , an} for λ = 0.
We have

L (a1 (λ) , a2 (λ) , a3, . . . , an) =
∏

Y ⊂Xλ, |Y |=k

At (Y )tY

At (Xλ)
k−1
n−1 Gt (Xλ)

n−k
n−1

.

Note thatL (x1, . . . , xn) decreases if and only iflog L (x1, . . . , xn) decreases.
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6 TAKASHI ITO

Set
φ (λ) = log L (a1 (λ) , a2 (λ) , a3, . . . , an) for 0 ≤ λ ≤ 1.

Then we have

φ (λ) =
∑

Y ⊂Xλ, |Y |=k

tY log At (Y )− k − 1

n− 1
log At (Xλ)−

n− k

n− 1
log Gt (Xλ) .

Consider the derivative ofφ (λ), note hered
dλ

[tY log At (Y )] = 0 if either ofa1 (λ) anda2 (λ)
belongs toY or neither ofa1 (λ) anda2 (λ) belongs toY , and

d

dλ
[tY log At (Y )] =

t1 (ā− a1)(
n−1
k−1

)
At (Y )

or
t2 (ā− a2)(
n−1
k−1

)
At (Y )

if a1 (λ) belongs toY but a2 (λ) does not ora2 (λ) belongs toY but a1 (λ) does not. Thus,
denoteY by V if a1 (λ) ∈ Y buta2 (λ) /∈ Y, and byW if a1 (λ) /∈ Y buta2 (λ) ∈ Y . Then we
have

d

dλ
φ (λ) =

∑
V ⊂Xλ

t1 (ā− a1)(
n−1
k−1

)
At (V )

+
∑

W⊂Xλ

t2 (ā− a2)(
n−1
k−1

)
At (W )

−n− k

n− 1

[
t1 (ā− a1)

a1 (λ)
+

t2 (ā− a2)

a2 (λ)

]
,

since

t1 (ā− a1) + t2 (ā− a2) = 0

= t1 (ā− a1)

[ ∑
V ⊂Xλ

1(
n−1
k−1

)
At (V )

−
∑

W⊂Xλ

1(
n−1
k−1

)
At (W )

− n− k

n− 1

(
1

a1 (λ)
− 1

a2 (λ)

)]
.

Thus, we have

d

dλ
φ (λ)

∣∣∣∣
λ=0

= t1 (ā− a1)

[∑
V ⊂X0

1(
n−1
k−1

)
At (V )

−
∑

W⊂X0

1(
n−1
k−1

)
At (W )

− n− k

n− 1

(
1

a1

− 1

a2

)]
.

Becausea1 = min
1≤i≤n

ai anda2 = max
1≤i≤n

ai, we havea1 ≤ At (V ) for all V ⊂ X0 andAt (W ) ≤
a2 for all W ⊂ X0, hence∑

V ⊂X0

1(
n−1
k−1

)
At (V )

≤
(

n−2
k−1

)(
n−1
k−1

)
a1

=
n− k

n− 1
· 1

a1

and ∑
W⊂X0

1(
n−1
k−1

)
At (W )

≥
(

n−2
k−1

)(
n−1
k−1

)
a2

=
n− k

n− 1
· 1

a2

.

However, note that at least one of the above two has a strict inequality, because one can
observe thatAt (V ) = a1 for all V ⊂ X0 is equivalent toa3 = · · · = an = a1 andAt (W ) = a2

for all W ⊂ X0 is equivalent toa3 = · · · = an = a2.
Thus we have

d

dλ
φ (λ)

∣∣∣∣
λ=0

< t (ā− a1)

[
n− k

n− 1

(
1

a1

− 1

a2

)
− n− k

n− 1

(
1

a1

− 1

a2

)]
= 0.
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M IXED ARITHMETIC AND GEOMETRIC MEANS 7

Henceφ (λ) is strictly decreasing at a neighbour ofλ = 0. This completes the proof of the
claim (*).

(ii) For anyε, 0 < ε < 1, consider a bounded closed regionDε =
[
ε, 1

ε

]n
of Rn

+ = (0,∞)n. It
is apparent that

⋃
0<ε<1 Dε = Rn

+. RegardingL (x1, . . . , xn) as a continuous function onRn
+,

L (x1, . . . , xn) attains the minimum value over the regionDε for everyε, 0 < ε < 1. We claim
the following (**) for this minimum value.

The minimum value ofL (x1, . . . , xn) overDε is 1 for everyε, 0 < ε < 1 and(**)

the minimum value is attained only at identical points ofx1 = x2 = · · · = xn.

Suppose(a1, a2, . . . , an) is any point ofDε which gives the minimum value ofL (x1, . . . , xn)
overDε. Suppose(a1, . . . , an) is not an identical point. Now, we can use the result proved in
part (i). Without loss of generality we assumea1 = min

1≤i≤n
ai anda2 = max

1≤i≤n
ai. It is clear that

the whole line segment(a1 (λ) , a2 (λ) , a3, . . . , an) for 0 ≤ λ ≤ 1, which is constructed in part
(i), belongs to the regionDε. Hence we have

L (a1, . . . , an) ≤ L (a1 (λ) , a2 (λ) , a3, . . . , an) for all λ, 0 ≤ λ ≤ 1.

On the other hand the claim (*) guarantees

L (a1 (λ) , a2 (λ) , a3, . . . , an) < L (a1, . . . , an)

for λ which is sufficiently close to0. Thus we have a contradiction. Hence we can conclude
that a1 = a2 = · · · = an and also the minimum value ofL (x1, . . . , xn) over Dε must be 1,
becauseL (a1, a2, . . . , an) = 1 if a1 = a2 = · · · = an. Thus the claim (**) is proved.

We have proved so far that among positive variablesx1, . . . , xn > 0 the inequality (A) holds
and the equality of (A) holds if and only ifx1 = x2 = · · · = xn > 0. By continuity, it is trivially
clear that our inequality (A) holds for any non-negative variablesx1, . . . , xn ≥ 0. The only point
remaining unproven is the equality condition of (A) for non-negative variablesx1, . . . , xn which
include 0. Suppose we have 0 amongx1, . . . , xn ≥ 0, then we have clearlyGt (x1, . . . , xn) = 0,
thus the left side of (A) is 0. On the other hand, it is easy to see that the right side of (A) is
0 if and only if we havek or more thank many zeros amongx1, . . . , xn ≥ 0. Finally we can
conclude that the equality of (A) forx1, . . . , xn ≥ 0 holds if and only ifx1 = x2 = · · · = xn ≥ 0
or we havek or more thank many zeros amongx1, . . . , xn ≥ 0. This completes the proof of
Theorem 3.1. �

Theorem 3.2.Supposek andn are positive integers and1 ≤ k ≤ n and supposet1, . . . , tn are
weights. For any non-negative numbersx1, . . . , xn ≥ 0 we have

(B) (A ◦G)k,t (x1, . . . , xn) ≤ n− k

n− 1
At (x1, . . . , xn) +

k − 1

n− 1
Gt (x1, . . . , xn) .

For k = 1 or k = n, (B) is actually a trivial identity,

At (x1, . . . , xn) = At (x1, . . . , xn) or Gt (x1, . . . , xn) = Gt (x1, . . . , xn) .

For 2 ≤ k ≤ n − 1, the equality of (B) holds if and only ifx1 = · · · = xn or one ofx1, . . . , xn

is zero and the others are equal.

There is a certain similarity between our inequalities (A) and (B), although it may not be
clear what the essence of this similarity is. Thus, it is not a surprise that our proof of (B) is
similar to the proof of (A).

Proof. There is nothing to prove ifk = 1 or k = n. Thus we assume2 ≤ k ≤ n− 1 and3 ≤ n.
We assume also that all variablesx1, . . . , xn are positive until indicated otherwise.
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Let L (x1, . . . , xn) be the difference of the right side and the left side of (B), namely

L (x1, . . . , xn) =
n− k

n− 1
At (x1, . . . , xn)

+
k − 1

n− 1
Gt (x1, . . . , xn)− (A ◦G)k,t (x1, . . . , xn) .

It suffices to proveL (x1, . . . , xn) ≥ 0 for all x1, . . . , xn > 0. Our proof is divided into the three
parts of (i), (ii) and (iii). The equality condition of (B) is discussed in (iii).

(i) Choose arbitrary positive numbersa1, . . . , an > 0 which are not equal, and thesea1, . . . , an

are fixed through part (i). By changing the order of(ai, ti), 1 ≤ i ≤ n if it is necessary, we can
assumea1 = min

1≤i≤n
ai < a2 = max

1≤i≤n
ai.

Setâ =
(
at1

1 at2
2

) 1
t1+t2 , then we have clearlya1 < â < a2.

Definea1 (λ) anda2 (λ) for all λ, 0 ≤ λ ≤ 1 such thata1 (λ) = a1−λ
1 âλ anda2 (λ) = a1−λ

2 âλ,
then we have for allλ, 0 ≤ λ ≤ 1 :

(1) a1 ≤ a1 (λ) ≤ â ≤ a2 (λ) ≤ a2,
(2) a1 (λ)t1 a2 (λ)t2 = at1

1 at2
2 ,

(3) d
dλ

a1 (λ) = log
(

â
a1

)
a1 (λ) and d

dλ
a2 (λ) = log

(
â
a2

)
a2 (λ).

If we regard(a1 (λ) , a2 (λ) , a3, . . . , an) as a point inRn, we are considering a curve joining
two points of(a1, a2, . . . , an) and(â1â2, a3, . . . , an) in Rn. The main purpose of part (i) is to
prove the following claim.

L (a1 (λ) , a2 (λ) , a3, . . . , an) is strictly decreasing with respect toλ(*)

at a neighbour ofλ = 0.

SetXλ = {a1 (λ) , a2 (λ) , a3, . . . , an} for 0 ≤ λ ≤ 1, thusX0 = {a1, . . . , an} for λ = 0. We
have

L (a1 (λ) , a2 (λ) , a3, . . . , an) =
n− k

n− 1
At (Xλ) +

k − 1

n− 1
Gt (Xλ)−

∑
Y ⊂Xλ,|Y |=k

tY Gt (Y ).

Denote simplyL (a1 (λ) , a2 (λ) , a3, . . . , an) by φ (λ) and consider the derivative ofφ (λ). Note
here

d

dλ
At (Xλ) = t1 log

(
â

a1

)
a1 (λ) + t2 log

(
â

a2

)
a2 (λ) ,

d

dλ
Gt (Xλ) = 0 and

d

dλ
tY Gt (Y ) = 0

if either ofa1 (λ) anda2 (λ) belongs toY or neither of them belongs toY ;

d

dλ
tY Gt (Y ) =

1(
n−1
k−1

)t1 log

(
â

a1

)
Gt (Y ) or

1(
n−1
k−1

)t2 log

(
â

a2

)
Gt (Y )

if a1 (λ) belongs toY buta2 (λ) does not ora2 (λ) belongs toY buta1 (λ) does not.
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Thus, denoteY by V if a1 (λ) ∈ Y but a2 (λ) /∈ Y and byW if a1 (λ) /∈ Y but a2 (λ) ∈ Y .
Then we have

d

dλ
φ (λ) =

n− k

n− 1

[
t1 log

(
â

a1

)
a1 (λ) + t2 log

(
â

a2

)
a2 (λ)

]
− 1(

n−1
k−1

) [ ∑
V ⊂Xλ

t1 log

(
â

a1

)
Gt (V ) +

∑
W⊂Xλ

t2 log

(
â

a2

)
Gt (W )

]
.

Thus, we have

d

dλ
φ (λ)

∣∣∣∣
λ=0

=
n− k

n− 1

[
t1 log

(
â

a1

)
a1 + t2 log

(
â

a2

)
a2

]
− 1(

n−1
k−1

) [ ∑
V ⊂X0

t1 log

(
â

a1

)
Gt (V ) +

∑
W⊂X0

t2 log

(
â

a2

)
Gt (W )

]
,

and sincet1 log
(

â
a1

)
+ t2 log

(
â
a2

)
= 0,

d

dλ
φ (λ)

∣∣∣∣
λ=0

= t1 log

(
â

a1

){
n− k

n− 1
(a1 − t2)−

1(
n−1
k−1

) [ ∑
V ⊂X0

Gt (V )−
∑

W⊂X0

Gt (W )

]}
.

Sincea1 = min
1≤i≤n

ai anda2 = max
1≤i≤n

ai, we havea1 ≤ Gt (V ) for all V ⊂ X0 anda2 ≥ Gt (W )

for all W ⊂ X0, hence

1(
n−1
k−1

) ∑
V ⊂X0

Gt (V ) ≥
(

n−2
k−1

)(
n−1
k−1

)a1 =
n− k

n− 1
a1,

1(
n−1
k−1

) ∑
W⊂X0

Gt (W ) ≤
(

n−2
k−1

)(
n−1
k−1

)a2 =
n− k

n− 1
a2.

However, note that at least one of the above two has a strict inequality, because one can observe
Gt (V ) = a1 for all V ⊂ X0 is equivalent toa3 = · · · = an = a1 andGt (W ) = a2 for all
W ⊂ X0 is equivalent toa3 = · · · = an = a2. Thus we have

d

dλ
φ (λ)

∣∣∣∣
λ=0

< t1 log

(
â

a1

)[
n− k

n− 1
(a1 − a2)−

n− k

n− 1
a1 +

n− k

n− 1
a2

]
= 0.

Henceφ (λ) is strictly decreasing at a neighbour ofλ = 0. This completes the proof of the
claim (*).

(ii) Based upon the claim (*) and exactly by the same arguments employed in part (ii) of our
proof of Theorem 3.1, one can see that the following (**) is true. We omit its details.

The minimum value ofL (x1, . . . , xn) overRn
t = (0,∞)n is 0 and the minimum(**)

value is attained only at identical points ofx1 = x2 = · · · = xn > 0.

Now we have proved that among positive variablesx1, . . . , xn > 0 the inequality (B) holds
and the equality of (B) holds if and only ifx1 = · · · = xn > 0. By continuity, it is trivially
obvious that the inequality (B) holds for any non-negative variablesx1, . . . , xn ≥ 0. The only
point left unproven is when the equality of (B) happens for non-negative variables which include
0. This is checked in the next step.
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(iii) Supposex1, . . . , xn ≥ 0 are given and at least one of them is 0, and suppose the number
of positivexi is l. Then we have1 ≤ l ≤ n − 1. Without loss of generality we can assume
x1, . . . , xl > 0 andxl+1 = · · · = xn = 0.

Then the right side of(B)

=
n− k

n− 1
At (x1, . . . , xn) =

n− k

n− 1
(t1x1 + · · ·+ tlxl) > 0.

On the other hand, ifl < k, then we have the left side of(B) = 0, thus we have a strict
inequality of (B) for this case. Ifl ≥ k, let Y0 be{x1, . . . , xl}, then the left side of(B)

=
∑

Y ⊂Y0,|Y |=k

tY Gt (Y ) ≤
∑

Y ⊂Y0,|Y |=k

tY At (Y ) =
∑

Y ⊂Y0,|Y |=k

1(
n−1
k−1

)St (Y )

=

(
l−1
k−1

)(
n−1
k−1

) (t1x1 + · · ·+ tlxl) ≤
(

n−2
k−1

)(
n−1
k−1

) (t1x1 + · · ·+ tlxl)

=
n− k

n− 1
(t1x1 + · · ·+ tlxl) .

In the above,St (Y ) means the sum of all numbers ofY with respect to weights{t1, . . . , tn}, for
Y = {xi1 , . . . , xik} ⊂ Y0 = {x1, . . . , xl} , for instance, we haveSt (Y ) = ti1xi1 + · · ·+ tikxik .

Thus, from the above, the left side of (B) = the right side of (B) if and only ifGt (Y ) = At (Y )
for all Y ⊂ Y0 with |Y | = k and

(
n−2
k−1

)
=
(

l−1
k−1

)
, and this is equivalent tox1 = · · · = xl and

l = n− 1. Now we have proved that the equality of (B) forx1, . . . , xn ≥ 0 including 0 happens
if and only if only one ofxi is 0 and the others are equal. This completes the proof of Theorem
3.2. �

Inequalities (A) and (B) with weights can be considered as natural generalizations of J.C.
Burkill’s inequalities [1], namely (A) and (B) forn = 3 andk = 2 are identical to Burkill’s
inequalities.

By employing the same notations as in [1], we state Burkill’s inequalities as a corollary of
(A) and (B).

Corollary 3.3 (Burkill) . Leta, b, c > 0 anda + b + c = 1. For any non-negative three numbers
x, y, z ≥ 0 we have:

(A) (ax + by + cz) xaybzc ≤
(

ax + by

a + b

)a+b

·
(

by + cz

b + c

)b+c

·
(

cz + ax

c + a

)c+a

,

(B) (a + b)
(
xayb

) 1
a+b + (b + c)

(
ybzc

) 1
b+c + (c + a) (zcxa)

1
c+a ≤ ax + by + cz + xaybzc.

The equality of (A) holds if and only ifx = y = z or two ofx, y, z are 0. The equality of (B)
holds if and only ifx = y = z or one ofx, y, z is 0 and the other two are equal.

4. I NEQUALITIES (D) AND (C)

Before we start our proof of (D), our method of proof may be explained in a few lines.
Elementary symmetric meansql (x1, . . . , xn) are decreasing with respect tol for 1 ≤ l ≤ n;

ql−1 (x1, . . . , xn) ≥ ql (x1, . . . , xn) , 2 ≤ l ≤ n.

This inequality is due to C. Maclaurin. Hardy, Littlewood and Pólya [4] give two kinds of proof
for the Maclaurin inequality. The second proof, which is given on page 53 of [4], suggests that
the inequality can be proven by examining the minimum value ofql−1 (x1, . . . , xn) over certain
regions on whichql (x1, . . . , xn) stays constant. We employ this method here. In our case,
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ql−1 (x1, . . . , xn) is replaced by(G ◦ A)k (x1, . . . , xn) and we examine the minimum value of
(G ◦ A)k (x1, . . . , xn) over certain regions on whichql (x1, . . . , xn) stays unchanged. Another
small remark should be added here. Since the Maclaurin inequality is available, it is sufficient
for us to prove the inequality (D) for the case ofk + l = n + 1 only. However our proof will be
done without the help of the Maclaurin inequality.

Theorem 4.1.Supposek, l andn are positive integers such that1 ≤ k, l ≤ n andn+1 ≤ k+l.
For any non-negative numbersx1, . . . , xn ≥ 0 we have

(D) ql (x1, . . . , xn) ≤ (G ◦ A)k (x1, . . . , xn) .

For (k, l) = (n, 1) or (1, n), (D) is a trivial identity,

A (x1, . . . , xn) = A (x1, . . . , xn) or G (x1, . . . , xn) = G (x1, . . . , xn) .

For (k, l) 6= (n, 1) and(1, n), the equality condition of (D) is as follows,
(1) ql (x1, . . . , xn) = (G ◦ A)k (x1, . . . , xn) > 0 if and only ifx1 = · · · = xn > 0,
(2) ql (x1, . . . , xn) = (G ◦ A)k (x1, . . . , xn) = 0 if and only ifk or more thank manyxi are

zero.

Proof. Our proof is divided into three parts. A preliminary lemma is given in part (i), part (ii)
contains the main arguments of our proof, and the equality condition of (D) is examined in part
(iii).

(i) The assumption ofn + 1 ≤ k + l in our inequality (D) is very crucial, namely (D) does
not hold without this assumption. The condition ofn + 1 ≤ k + l is needed only in the
following situation. SupposeX is a set of cardinalityn, then for any subsetsU andV of X,
whose cardinality arek and l respectively, we have a non empty intersectionU ∩ V 6= φ if
k + l ≥ n + 1. Throughout our proof of (D), the following preliminary lemma is the only place
where the condition ofn + 1 ≤ k + l is used.

Supposex1, . . . , xn are positive numbers and setX = {x1, . . . , xn}. As defined in the intro-
duction,Pl (X) stands for thel-th elementary symmetric function ofx1, . . . , xn, S(V ) stands
for the sum of all numbers belonging toV ⊂ X andPl−1 (X) = P0 (X) for l = 1 is defined as
the constant 1.

Lemma 4.2. Suppose1 ≤ k, l ≤ n andn + 1 ≤ k + l. For any subsetV of X with |V | = k,
we haveS (V ) Pl−1 (X) ≥ Pl (X). The equality holds if and only ifk = n andl = 1.

Proof of Lemma 4.2.Supposel = 1, then we havek = n because of our assumptionk + l ≥
n+1. Thus we haveP1 (X) = S (X), V = X andP0 (X) = 1, henceS (V ) Pl−1 (X) = S (X).
We have the equality ofS (V ) Pl−1 (X) = Pl (X). Supposel ≥ 2 andV ⊂ X with |V | = k is
given. One can assumeV = {x1, . . . , xk} without loss of generality. Then we have

(4.1) S (V ) Pl−1 (X) =
k∑

i=1

∑
W⊂X,|W |=l−1

xiP (W )

and

(4.2) Pl (X) =
∑

V ⊂X,|V |=l

P (V )

SinceU ∩ V 6= φ for all U ⊂ X with |U | = l, let xiu be the member ofU ∩ V = U ∩
{x1, . . . , xk}which has the smallest suffix and letWu be the subsetU\ {xiu}. Then it is obvious
that the correspondence:U → (xiu , Wu) is one to one and we haveP (U) = xiuP (Wu) for
all U ⊂ X with |U | = l. Compare the two summations of (4.1) and (4.2) above, and cancel
off equal terms which correspond to each other. Every termP (U) of (4.2) can be cancelled by
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the corresponding termxiuP (Wu) of (4.1) and every termxiP (W ) satisfyingxi ∈ W of (4.1)
is not cancelled and left as it is. Hence we can conclude thatS (V ) Pl−1 (X) > Pl (X). This
completes the proof of Lemma 4.2. �

(ii) There is nothing to prove if(k, l) = (1, n) or (n, 1). Because of our assumptionn+1 ≤ k+l,
if k = 1 thenl = n, thus we have

ql (X) = qn (X) = G (X) and (G ◦ A)k (X) = (G ◦ A)1 (X) = G (X) ,

hence our inequality (D) turns into an identity ofG (X) = G (X). Similarly (D) turns into
A (X) = A (X) if l = 1. If n = 2 and k = l = 2, then (D) turns into the inequality
G (X) ≤ A (X), which holds. Thus we consider only the case of2 ≤ k, l ≤ n, 3 ≤ n and
n + 1 ≤ k + l.

We suppose also that all variablesx1, . . . , xn are positive throughout part (ii).
Choose fixed arbitrary variablesa1, . . . , an > 0 in what follows. Ifa1, . . . , an are equal,a1 =

· · · = an = a, then our inequality (D) holds trivially asql (a1, . . . , an) = a = (G ◦ A)k (a1,
. . . , an). Thus we assumea1, . . . , an are not identical. The following (*) is what we have to
prove.

(*) ql (a1, . . . , an) < (G ◦ A)k (a1, . . . , an) .

Depending on(a1, . . . , an), consider a bounded closed regionDa of Rn
+ = (0,∞)n as follows,

Da =

{
(x1, . . . , xn) | ql (x1, . . . , xn) = ql (a1, . . . , an) ,

min
1≤i≤n

ai ≤ xi ≤ max
1≤i≤n

ai for all 1 ≤ i ≤ n

}
.

Clearly the point(a1, . . . , an) belongs toDa.
Our second claim is as follows,

The minimum value of(G ◦ A)k (x1, . . . , xn) over the regionDa is equal to(**)

ql (a1, . . . , an) and the minimum value is attained only at an identical point ofDa.

Since an identical point which belongs toDa is only one point of(x1, . . . , xn) with xi =
ql (a1, . . . , an) for all 1 ≤ i ≤ n, the second half of (**) implies the first half of (**). It is
also clear that the claim (*) follows from the claim (**). Thus we can concentrate on proving
the second half of (**). Now we employ the method of contradiction: reductio ad absurdum.
Suppose the minimum value of(G ◦ A)k (x1, . . . , xn) over the regionDa is attained at a non-
identical point(b1, . . . , bn) of Da. We assume, without loss of generality,min

1≤i≤n
bi = b1 <

b2= max
1≤i≤n

bi.

Next, we are going to choose a suitable continuous curve(x, ϕ (x) , b3, . . . , bn) with b1 ≤ x ≤
b2 within our regionDa. For this purpose the recurrence formulas on elementary symmetric
functions are useful.

The following recurrence formula is easily seen.

Pl = (x1, . . . , xn)

= P
(n−2)
l (x3, . . . , xn) + (x1 + x2) P

(n−2)
l−1 (x3, . . . , xn) + x1x2P

(n−2)
l−2 (x3, . . . , xn) ,

whereP
(n−2)
l (x3, . . . , xn) denotes thel-th elementary symmetric function of(n− 2) variables

x3 · · ·xn. More precisely, ifl = n then the first and second terms of the right side of the formula
disappear, and ifl = n− 1 then the first term disappears. Thus, in the following arguments we
have to change our expressions a little bit for the case ofl = n or l = n − 1. However, since
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we are not losing generality, we will keep the recurrence formula above and omit details for the
case ofl = n or n− 1.

For anyx andy we have

Pl = (x, y, b3, . . . , bn)

= P
(n−2)
l (b3, . . . , bn) + (x + y) P

(n−2)
l−1 (b3, . . . , bn) + xyP

(n−2)
l−2 (b3, . . . , bn) .

We simplify our notations by settingQl, Ql−1 andQl−2 as

Ql = P
(n−2)
l (b3, . . . , bn) , Ql−1 = P

(n−2)
l−1 (b3, . . . , bn)

and Ql−2 = P
(n−2)
l−2 (b3, . . . , bn) .

Then we have

(4.3) Pl (b1, b2, . . . , bn) = Ql + (b1 + b2) Ql−1 + b1b2Ql−2,

(4.4) Pl (x, y, b3, . . . , bn) = Ql + (x + y) Ql−1 + xyQl−2.

Now we can solve the equation

Pl (b1, b2, . . . , bn) = Pl (x, y, b3, . . . , bn) ,

by solving (4.3) and (4.4) above simultaneously. For any givenx > 0 there is ay uniquely
denoted byϕ (x), such that

(4.5) y = ϕ (x) =
(b1 + b2 − x) Ql−1 + b1b2Ql−2

Ql−1 + x Ql−2

,

(4.6) Pl (b1, b2, . . . , bn) = Pl (x, ϕ (x) , b3, . . . , bn) .

From expression (4.5), it follows thatϕ (b1) = b2, ϕ (b2) = b1 andϕ (x) decreases fromb2

to b1 if x increases fromb1 to b2. Thus, for allx with b1 ≤ x ≤ b2 we have

min
1≤i≤n

ai ≤ b1 ≤ x, ϕ (x) ≤ b2 ≤ max
1≤i≤n

ai.

From (4.6), we have also

ql (a1, a2, . . . , an) = ql (b1, . . . , bn)

=

[
1(
n
l

)Pl (b1, b2, . . . , bn)

] 1
l

=

[
1(
n
l

)Pl (x, ϕ (x) , b3, . . . , bn)

] 1
l

= ql (x, ϕ (x) , b3, . . . , bn) .

Hence, our continuous curve(x, ϕ (x) , b3, . . . , bn) for b1 ≤ x ≤ b2 is located within our re-
gionDa. Since the minimum value of(G ◦ A)k (x1, . . . , xn) overDa is attained at(b1, b2, . . . , bn),
we have for allx of b1 ≤ x ≤ b2 :

(4.7) (G ◦ A)k (x, ϕ (x) , b3, . . . , bn) ≥ (G ◦ A)k (b1, b2, . . . , bn)

Next, we will see that(G ◦ A)k (x, ϕ (x) , b3, . . . , bn) is strictly decreasing at a neighbour of
x = b1.

Denote
φ (x) = log [(G ◦ A)k (x, ϕ (x) , b3, . . . , bn)]
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and calculate the derivatived
dx

φ (x) = φ′ (x). SettingB = {b3, . . . , bn},

φ′ (x) =
d

dx

 1(
n
k

) ∑
Y ⊂{x,ϕ(x),b3,...,bn},|Y |=k

log A (Y )


=

1(
n
k

) ∑
V ⊂B,|V |=k−1

[
1

S (V ) + x
+

ϕ′ (x)

S (V ) + ϕ (x)

]

+
1(
n
k

) ∑
W⊂B,|W |=k−2

1 + ϕ′ (x)

S (W ) + x + ϕ (x)
.

Hence we have

φ′ (b1) =
1(
n
k

) ∑
V ⊂B,|V |=k−1

[
1

S (V ) + b1

+
ϕ′ (b1)

S (V ) + b2

]

+
1(
n
k

) ∑
W⊂B,|W |=k−2

1 + ϕ′ (b1)

S (W ) + b1 + b2

.

Let L be the first summation and letM be the second summation in the above, namely,

L =
1(
n
k

) ∑
V ⊂B,|V |=k−1

[
1

S (V ) + b1

+
ϕ′ (b1)

S (V ) + b2

]
,

M =
1(
n
k

) ∑
W⊂B,|W |=k−2

1 + ϕ′ (b1)

S (W ) + b1 + b2

.

Using the expression (4.5) ofϕ (x), we get

(4.8) ϕ′ (b1) = −Ql−1 + b2Ql−2

Ql−1 + b1Ql−2

< −1.

Thus, we have
1

S (V ) + b1

+
ϕ′ (b1)

S (V ) + b2

=
1

S (V ) + b1

− Ql−1 + b2Ql−2

[S (V ) + b2] [Ql−1 + b1Ql−2]

= − (b2 − b1) [S (V ) Ql−2 −Ql−1]

[S (V ) + b1] [S (V ) + b2] [Ql−1 + b1Ql−2]
,

hence

L =
1(
n
k

) ∑
V ⊂B,|V |=k−1

− (b2 − b1) [S (V ) Ql−2 −Ql−1]

[S (V ) + b1] [S (V ) + b2] [Ql−1 + b1Ql−2]
.

We apply our lemma toS (V ) Ql−2 −Ql−1,

S (V ) Ql−2 −Ql−1 = S (V ) P
(n−2)
l−2 (b3, . . . , bn)− P

(n−2)
l−1 (b3, . . . , bn) ,

V ⊂ B = {b3, . . . , bn} , |V | = k − 1.
Since(k − 1) + (l − 1) ≥ (n− 2) + 1, by Lemma 4.2 in part (i), we can conclude that

S (V ) Ql−2−Ql−1 ≥ 0 for all V ⊂ B with |V | = k− 1, henceL ≤ 0. On the other hand, from
(4.8) we have1 + ϕ′ (b1) < 0, henceM < 0. Finally, we haveϕ′ (b1) = L + M < 0. This
means thatlog [(G ◦ A)k (x, ϕ (x) , b3, . . . , bn)] is strictly decreasing at a neighbour ofb1. Now
we have for allx > b1, sufficiently close tob1 :

(4.9) (G ◦ A)k (x, ϕ (x) , b3, . . . , bn) < (G ◦ A)k (b1, b2, . . . , bn) .

Clearly (4.9) contradicts (4.7). Thus we complete the proof of our claim (**).
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What we have proved so far is the following: With respect to positive variables, inequality (D)
holds for everyx1, . . . , xn > 0 and the equality of (D) holds if and only ifx1 = · · · = xn > 0.

By continuity, it is obvious that the inequality (D) holds for all non-negative variablesx1, . . . ,
xn ≥ 0. The only remaining unproven point is when the equality of (D) happens for non-
negative variables which include 0.

(iii) As mentioned at the beginning of part (ii), (D) is actually an identity if(k, l) = (1, n) or
(n, 1). Hence the equality condition of (D) should be examined for the case of2 ≤ k, l ≤ n and
n + 1 ≤ k + l.

Supposex1, . . . , xn ≥ 0, which include 0, are given and suppose the number of positivexi is
m, then we have1 ≤ m ≤ n − 1. Without loss of generality we can assumex1, . . . , xm > 0
andxm+1 = · · · = xn = 0.

SetX = {x1, . . . , xn} andX+ = {x1, . . . , xm}. First, the following is easy to observe.

If n−m ≥ k, thenql (X) = 0 = (G ◦ A)k (X) ,(4.10)

hence we have an equality for(D).

As there is a subsetY ⊂ X with |Y | = k such thatY consists ofk many0, henceA (Y ) = 0
and we have(G ◦ A)k (X) = 0.

On the other hand, sincel ≥ n + 1− k ≥ m + 1, every subsetZ ⊂ Xwith |Z| = l contains
0, henceP (Z) = 0, thus we haveql (X) = 0.

In our remaining arguments, we will show that (4.10) above is the only case for which the
equality of (D) holds. Namely we claim the following:

(***) If n−m < k, then we haveql (X) < (G ◦ A)k (X) .

Our proof of (***) is completed as follows. Firstly, ifn−m < k andm < l, then we have

ql (X) = 0 < (G ◦ A)k (X) .

Sincen − m < k, every subsetY ⊂ X with |Y | = k contains a positive number, hence
A (Y ) > 0, thus we have(G ◦ A)k (X) > 0. On the other hand, because ofm < l, every subset
Z ⊂ X with |Z| = l contains 0, henceP (Z) = 0, and we haveql (X) = 0.

In order to prove (***), we limit ourselves ton−m < k andn− k + 1 ≤ l ≤ m.
First we have

(4.11) ql (X) =

[(
m
l

)(
n
l

) ] 1
l

ql (X+) ,

since,

ql (X) =

 1(
n
l

) ∑
Z⊂X,|Z|=l

P (Z)

 1
l

=

 1(
n
l

) ∑
Z⊂X+,|Z|=l

P (Z)

 1
l

=

[(
m
l

)(
n
l

) ] 1
l

 1(
m
l

) ∑
Z⊂X+,|Z|=l

P (Z)

 1
l

=

[(
m
l

)(
n
l

) ] 1
l

ql (X+) .
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16 TAKASHI ITO

Next we examine a relationship between(G ◦ A)k (X) and(G ◦ A)k (X+). For any subsetY ⊂
X with |Y | = k, the cardinality ofY ∩X+ is possibly betweenk − (n−m) andmin {k,m},
namely

k − (n−m) ≤ |Y ∩X+| ≤ min {k,m} .

Denotek0 = k − (n−m) andk1= min {k, m}, thenk0 < k1 ≤ k.
Now we have

(4.12) (G ◦ A)k (X) =
∏

k0≤p≤k1

(p

k

)(m
p )(n−m

k−p )/(n
k) ·

∏
k0≤p≤k1

(G ◦ A)p (X+)(
m
p )(n−m

k−p )/(n
k),

since,

(G ◦ A)k (X)(
n
k) =

∏
Y ⊂X,|Y |=k

A (Y )

=
∏

k0≤p≤k1

(p

k

)(m
p )(n−m

k−p ) ∏
W⊂X+,|W |=p

A (W )(
n−m
k−p )


=

∏
k0≤p≤k1

[(p

k

)(m
p )(n−m

k−p )
· (G ◦ A)p (X+)(

m
p )(n−m

k−p )
]

=
∏

k0≤p≤k1

(p

k

)(m
p )(n−m

k−p )
·
∏

k0≤p≤k1

(G ◦ A)p (X+)(
m
p )(n−m

k−p ).

In (4.11) and (4.12), by settingx1 = · · · = xm = 1 we have

ql (1, . . . , 1, 0, . . . , 0) =

[
(m
l )

(n
l )

] 1
l

and(4.13)

(G ◦ A)k (1, . . . , 1, 0, . . . , 0) =
∏

k0≤p≤k1

(p

k

)(m
p )(n−m

k−p )/(n
k)

.

Thus, (4.11) and (4.12) can be expressed as

(4.14) ql (X) = ql (1, . . . , 1, 0, . . . , 0) ql (X+) ,

(4.15) (G ◦ A)k (X) = (G ◦ A)k (1, . . . , 1, 0, . . . , 0)

·
∏

k0≤p≤k1

(G ◦ A)p (X+)(
m
p )(n−m

k−p )/(n
k) .

For anyp of k0 ≤ p ≤ k1, we have

p + l ≥ k0 + l = k − (n−m) + l = k + l − n + m ≥ 1 + m,

namelyp + l ≥ m + 1. Thus inequality (D) forX+, which was already proven in (ii), yields

(G ◦ A)p (X+) ≥ ql (X+) for all p, k0 ≤ p ≤ k1.

And, since ∑
k0≤p≤k1

(
m
p

)(
n−m
k−p

)
(

n
k

) = 1,

we have from (4.15)

(G ◦ A)k (X) ≥ (G ◦ A)k (1, . . . , 1, 0, . . . , 0) ql (X+) .
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From (4.14) we have

(4.16) (G ◦ A)k (X) ≥ (G ◦ A)k (1, . . . , 1, 0, . . . , 0)

ql (1, . . . , 1, 0, . . . , 0)
ql (X) .

From (4.16), it is obvious that

(G ◦ A)k (1, . . . , 1, 0, . . . , 0) > ql (1, . . . , 1, 0, . . . , 0)

yields
(G ◦ A)k (X) > ql (X) .

Thus our claim (***) is reduced to proving

(G ◦ A)k (1, . . . , 1, 0, . . . , 0) > ql (1, . . . , 1, 0, . . . , 0) .

Note that this is a very special case of (***).

(4.17) (G ◦ A)k (1, . . . , 1, 0, . . . , 0) > ql (1, . . . , 1, 0, . . . , 0) .

Proof of (4.17).In (4.17), we replace 0 by non-negative variablex ≥ 0, denote

L (x) = (G ◦ A)k (1, . . . , 1, x, . . . ,x) and M (x) = ql (1, . . . , 1, x, . . . ,x) .

Then, from the inequality (D) we haveL (x)/M (x) ≥ 1 for all x ≥ 0. Thus, if we know that
L (x)/M (x) is strictly decreasing atx = 0, we can concludeL (0)/M (0) > 1, which is the
same as (4.17). Setf (x) = log [L (x) /M (x)] and calculate the derivative off (x) at x = 0.
According to the definitions of(G ◦ A)k (X) andql (X), we have

L (x) = (G ◦ A)k (1, . . . , 1, x, ...,x)

=
∏

k0≤p≤k1

[
p + (k − p) x

k

](m
p )(n−m

k−p )/(n
k)

and

M (x) = ql (1, . . . , 1, x, ...,x) =

[∑
0≤r≤l

(
n−m

r

) (
m

l−r

)(
n
r

) xr

] 1
l

.

Now, we can calculated
dx

[log L (x)− log M (x)]|x=0 = f ′ (0),

f ′ (0) =
∑

k0≤p≤k1

(
m
p

)(
n−m
k−p

)
(

n
k

) k − p

p
− 1

l

(
n−m

1

) (
m

l−1

)/ (
n
l

)(
m
l

)/ (
n
l

)
=

∑
k0≤p≤k1

(
m
p

)(
n−m
k−p

)
(

n
k

) k − p

p
− n−m

m− l + 1
.

Note
∑

k0≤p≤k1

(
m
p

) (
n−m
k−p

)/(
n
k

)
= 1 and k−p

p
< k−k0

k0
= n−m

k0
for all p of k0 < p ≤ k1.

The above expression off ′ (0) yields

f ′ (0) <
n−m

k0

− n−m

m− l + 1
= (n−m)

n + 1− (k + l)

k0 (m− l + 1)
≤ 0.

This completes the proof of (4.17). �

Together with what we proved in (ii), we have completed the proof of the equality condition
of (D) stated in Theorem 4.1, namelyql (x1, . . . , xn) = (G ◦ A)k (x1, . . . , xn) > 0 if and only
if x1 = · · · = xn > 0 andql (x1, . . . , xn) = (G ◦ A)k (x1, . . . , xn) = 0 if and only if k or more
thank manyxi are zero. This completes the proof of Theorem 4.1. �

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 65, 21 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


18 TAKASHI ITO

As mentioned in the introduction, the inequality (C) can be regarded as corollary of Theorem
4.1. And it is easy to see that the equality condition of (C) is the same as the equality condition
of (D).

Corollary 4.3 (Carlson, Meany and Nelson). Supposek, l andn are positive integers such that
1 ≤ k, l ≤ n andn + 1 ≤ k + l. For any non-negative numbersx1, . . . , xn ≥ 0 we have

(C) (A ◦G)l (x1, . . . , xn) ≤ (G ◦ A)k (x1, . . . , xn) .

The equality condition of (C) is the same as the equality condition of (D).

5. I NEQUALITY (C) WITH WEIGHTS (THREE VARIABLES )

The process of making the mixed means involves two stages. We can consider weights dif-
ferently at each stage, that is, our weights at the second stage may be unrelated to the weights at
the first stage. Supposet1, . . . , tn > 0 are weights for variablesx1, . . . , xn ≥ 0 and1 ≤ k ≤ n.
For any subsetY ⊂ X = {x1, . . . , xn} with |Y |=k, At (Y ) andGt (Y ) are defined as before.
At the second stage, letsY be weights forY with |Y |=k, namely we havesY > 0 for all Y
with |Y |=k and

∑
Y ⊂X,|Y |=k

sY = 1. Here this second weight{sY } can be chosen independently

of the first weight{ti}. Now, consider∑
Y ⊂X,|Y |=k

sY Gt (Y ) and
∏

Y ⊂X,|Y |=k

At (Y )sY .

These two numbers, denoted by(A ◦G)k,t,s (X) and(G ◦ A)k,t,s (X), can be regarded as the
k-thmixed arithmetic and geometric means with weights in the most general sense.

In relation to (C), one can ask the following question. Suppose the first weight{ti} and
2 ≤ k, l ≤ n with n+1 ≤ k+l are given. Do there exist second weights{sY } (Y ⊂ X, |Y |=k)
and{sZ} (Z ⊂ X, Z =l) such that

(A ◦G)l,t,s (x1, . . . , xn) ≤ (G ◦ A)k,t,s (x1, . . . , xn)

holds for allx1, . . . , xn ≥ 0? If the answer is yes, it means that we can have the inequality (C)
with weights. The author does not have the answer in general. However, there is one positive
answer for the simplest case ofn = 3 (three variables) andk = l = 2.

Our notation goes back to the three variables case. Supposex.y, z ≥ 0 are non-negative three
variables anda, b, c > 0 with a + b + c = 1 are the first weights. If we choose the second
weightssY as

ab

ab + bc + ca
,

bc

ab + bc + ca
and

ca

ab + bc + ca

for Y = {x, y} , {y, z} and{z, x} respectively, then we can generalize our inequality (C) of
three variables from without weights to with weights.

Theorem 5.1. Supposea, b, c are positive numbers witha + b + c = 1. For any non-negative
numbersx, y, z ≥ 0, we have, denoted by∆ = ab + bc + ca,

(5.1)
ab

∆

(
xayb

) 1
a+b +

bc

∆

(
ybzc

) 1
b+c +

ca

∆
(zcxa)

1
c+a

≤
(

ax + by

a + b

)ab
∆

·
(

by + cz

b + c

) bc
∆

·
(

cz + ax

c + a

) ca
∆

.

The equality holds if and only ifx = y = z ≥ 0 or two ofx, y, z are0.
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Proof. Our proof can be done using an idea which is almost the same, but slightly general, as the
idea used in CMN [3]. We assume all variablesx, y, z are positive until the equality condition
of (5.1) is discussed. With respect to our first weightsa, b, c > 0, the arithmetic mean and the
geometric mean of any subsetY ⊂ X = {x, y, z}, Y 6= φ, are simply denoted byA (Y ) and

G (Y ), for instance,A (Y ) = ax+by
a+b

andG (Y ) =
(
xayb

) 1
a+b for Y = {x, y}. To make sure,

our second weightssY are ab
∆

, bc
∆

and ca
∆

for Y = {x, y} , {y, z} and{z, x} respectively. Using
these notations, our inequality (5.1) above is expressed equivalently as

(C’)
∑

Y ⊂X,|Y |=2

sY G (Y ) ≤
∑

Y ⊂X,|Y |=2

A (Y )sY .

We will use this expression of (5.1).
First, as in CMN [3], a variational form of Hölder’s inequality will be used. Supposeai,j,

1 ≤ i ≤ n and1 ≤ j ≤ m, aren ×m many positive numbers and supposeti, 1 ≤ i ≤ n and
sj, 1 ≤ j ≤ m aren + m many positve numbers satisfyingt1 + · · ·+ tn = 1.

Then we have

(H)
m∑

j=1

sj

(
n∏

i=1

ati
i,j

)
≤

n∏
i=1

(
m∑

j=1

sjai,j

)ti

The equality holds if and only ifai,j = bicj for all 1 ≤ i ≤ n and1 ≤ j ≤ m for somebi > 0,
1 ≤ i ≤ n andcj > 0, 1 ≤ j ≤ m. (We will not need this equality condition here).

A proof of (H) can be given simply by applying the inequality between the arithmetic means
and the geometric means to the ratio of the left side divided by the right side of (H).

Next, we have the following identities 1) and 2).
For all1 ≤ j ≤ m with |Y | = 2 we have
1) A (Y ) =

∑
Z⊂X,|Z|=2

sZA (Y ∩ Z),

2) G (Y ) =
∏

Z⊂X,|Z|=2

G (Y ∩ Z)sZ .

Proof of 1). SupposeY = {x, y} ,, then

∑
Z⊂X,|Z|=2

sY A (Y ∩ Z) = s{x,y}A ({x, y}) + s{y,z}A ({y}) + s{x,z}A ({x})

=
ab

∆
· ax + by

a + b
+

bc

∆
y +

ca

∆
x

=
ab

∆

ax + by

a + b
+

c

∆
(by + ax)

=
ax + by

∆

(
ab

a + b
+ c

)
=

ax + by

a + b
= A (Y ) .

�

Proof of 2). This can be done exactly the same as 1) above. �
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Now, our proof of (C’) goes as follows, note that our notations
1)
= and

(H)

≤ mean the equality
= follows from 1) and the inequality≤ follows from (H).∑

Y ⊂X,|Y |=2

sY G (Y )
2)
=

∑
Y ⊂X,|Y |=2

sY

∏
Z⊂X,|Z|=2

G (Y ∩ Z)sZ

(H)

≤
∏

Z⊂X,|Z|=2

 ∑
Y ⊂X,|Y |=2

sY G (Y ∩ Z)

sZ

≤
∏

Z⊂X,|Z|=2

 ∑
Y ⊂X,|Y |=2

sY A (Y ∩ Z)

sZ

1)
=

∏
Z⊂X,|Z|=2

A (Z)sZ

.

Thus, we have proved (C’) for positivex, y, z > 0. And one can see that the equality of (C’)
holds if and only if we have the equality of (H) andG (Y ∩ Z) = A (Y ∩ Z) for all Y andZ
with |Y |=2 and |Z|=2. However, the latter is equivalent tox = y = z and the latter yields
the equality of (H). Hence we can conclude that the equality of (C’) forx, y, z > 0 holds if and
only if x = y = z> 0.

By continuity again, it is obvious that the inequality (C’) holds for any non-negativex, y, z ≥
0. The only point we have to check is the equality condition forx, y, z ≥ 0 which include 0. If
two of x, y, z ≥ 0 are0, it is clear that both sides of (C’) are0. Suppose only one ofx, y, z ≥ 0
is 0, then forall Z with |Z|=2 we have

0 <
∑

Y ⊂X,|Y |=2

sY G (Y ∩ Z) ≤
∑

Y ⊂X,|Y |=2

sY A (Y ∩ Z)

and forsomeZ with |Z|=2 we have∑
Y ⊂X,|Y |=2

sY G (Y ∩ Z) <
∑

Y ⊂X,|Y |=2

sY A (Y ∩ Z) .

Thus, we have

0 <
∏

Z⊂X,|Z|=2

 ∑
Y ⊂X,|Y |=2

sY G (Y ∩ Z)

sZ

<
∏

Z⊂X,|Z|=2

 ∑
Y ⊂X,|Y |=2

sY A (Y ∩ Z)

sZ

.

This means that the last inequality of the previous arguments proving (C’) is strict. Hence we
have a strict inequality of (C’). This completes the proof of Theorem 5.1. �

Finally a question is left open. It is verified easily that the inequalities (A) and (D) of three

variables are transformed into each other by the transformation:(x, y, z) →
(

1
x
, 1

y
, 1

z

)
. It seems

natural to ask whether there is a reasonable relationship between (A) and (D) of generaln
variables, which extends the relationship for three variables.
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