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Abstract

We consider the problem of numerical inversion of Fredholm integral equations
of the first kind via piecewise interpolation. One of the most important aspects
of this technique is the choice of grid and collocation points. Theoretical results
are developed which identify an optimal strategy for the distribution of colloca-
tion points for piecewise constant interpolation. The method, as outlined, can
be readily extended to higher order schemes.
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1. Introduction
In this paper we will consider the problem of inverting Fredholm integral equa-
tions of the first kind, viz

(1.1) g(y) =

∫
Γ

K(x − y)f(x ) dΓ(x ),

whereg represents some known data at the pointy ∈ Γ andK is some inte-
grable kernel.

The integral equation (1.1) is inherently ill-posed. That is, it can be shown
that a small perturbation ong can give rise to an arbitrarily large perturbation in
f . To explore this point, consider the singular integral

(1.2)
∫ 1

0

ln |x− y|nαeinx dx

= inα−1
(
ln y − ein ln(1− y)

)
− πnα−1einy + O

(
nα−2

)
.

For 0 < α < 1 andn large, then infinitely small changes for the integral cor-
respond to infinitely large changes in the integrand. For this reason, numerical
methods for solving such equations are often ill-fated and the simple illustra-
tion here shows this is often manifested in attempting to find the high frequency
terms in the unknown. For example, a spectral expansion method would en-
counter problems as shown in (1.2) and this has been explored in [14].

Consider the one dimensional symmetric integral equation

(1.3) g(y) =

∫ b

a

K|x− y|f(x) dx, a ≤ y ≤ b,
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where bothK > 0 andg are known andf is the unknown function we wish to
find. We assume thatg is bounded but not necessarily analytic. To begin, define
a grid

(1.4) a = x0 < x1 < · · · < xn−1 < xn = b,

and the interpolation scheme

(1.5) f(x) =

fi−1, x ∈ [xi−1, ξi)

fi, x ∈ [ξi, xi)
, ξi ∈ [xi−1, xi], i = 1, 2, . . . , n.

Thus, we may write (1.3) as

(1.6) g(y) = f0

∫ ξ1

x0

K|x− y| dx +
n−1∑
i=1

fj

∫ ξi+1

ξi

K|x− y| dx

+ fn

∫ xn

ξn

K|x− y| dx.

To obtain a solution we need to find then+1 unknownsf0, f1, f2, . . . , fn. Thus
we can formulate a linear system by evaluating (1.6) atn+1 collocation points.

To obtain a stable system, the distribution of collocation points must be con-
sidered as a function of both polynomial interpolation order and kernel singu-
larity. Much work has been done where a convergence theory for piecewise
constant and linear interpolants was developed [21, 12, 22, 17, 10, 18, 2, 9,
16, 19, 20, 8, 11]. For an excellent review see [1]. Convergence of the nu-
merical solution is guaranteed if one collocates evenly between the node points
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[1, 2, 9, 16, 19], though not necessarily to the solution [1, 4, pp. 260-262].
Recently, [6] extended this theory to include Hermite cubics.

In an effort to identify optimal collocation points, we will utilize a weighted
Peano kernel theory as developed in [7, 3, 15, 13] to approximate the integral
equation (1.3) and providea-priori error bounds. The bounds are then mini-
mized in order to produce an optimal grid as well as furnish the desired dis-
tribution of collocation points. The method is useful in that it can provide an
abundance of error results in terms of desirable properties off (monotonicity,
p-norm, total bounded variation, Lipschitzian etc.)
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2. Main Results
We will assumeK(·, y) : [a, b] → (0,∞) to be integrable and positive, that is
K(·, y) ∈ L1(a, b) andK(x, y) ≥ 0, ∀(x, y) ∈ [a, b] × [a, b]. In addition, we
assume thatf : [a, b] → R has bounded first derivative and we approximate it
using the constant functional

(2.1) f(x) ≈

f(a), a ≤ x ≤ ξ,

f(b), ξ < x ≤ b.

We seek to write down an explicit formula forf(a) andf(b) in terms ofg
andK. The following theorem will be utilized.

Theorem 2.1. [13, Theorem 7.21] Letf : [a, b] → R be a differentiable
mapping on(a, b) whose derivative is bounded on(a, b) and denote‖f ′‖∞ =
supt∈(a,b) |f ′ (t)| < ∞. Further, letw : (a, b) → [0,∞) be an integrable func-

tion so that
∫ b

a
w (t) dt < ∞. Then forx ∈ [a, b], the following inequality holds

(2.2)

∣∣∣∣∫ b

a

w (t) f (t) dt−
[
m (a, x) f (a) + m (x, b) f (b)

]∣∣∣∣ ≤ I(x) ‖f ′‖∞ ,

where

I(x) =

∫ b

a

p (x, t) w (t) dt,(2.3)

p (x, t) =

{
t− a, t ∈ [a, x]

b− t, t ∈ (x, b]
, and m(a, b) =

∫ b

a

w(t) dt.
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The boundI(x) is minimized at the midpointx = (a + b)/2.

Thus we can directly apply Theorem2.1 to the integral equation (1.3) to
establish that

(2.4) g(y) = m

(
a,

a + b

2
; y

)
f(a) + m

(
a + b

2
, b; y

)
f(b) + R(y),

where

(2.5) |R(y)| ≤ ‖f ′‖∞

(∫ (a+b)/2

a

(x− a)K|x− y| dx

+

∫ b

(a+b)/2

(b− x)K|x− y| dx

)
,

andm has been redefined to

(2.6) m(a, b; y) =

∫ b

a

K|x− y| dx.

Since (2.4) is linear inf(a) andf(b), we can collocate at the two pointsa ≤
y1 < y2 ≤ b to obtain

(2.7) f(a) =
1

m11m22 −m12m21

(
m22(g1 −R1)−m12(g2 −R2)

)
and

(2.8) f(b) =
1

m11m22 −m12m21

(
m11(g2 −R2)−m21(g1 −R1)

)
,
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where

mi1 = m

(
a,

a + b

2
; yi

)
, mi2 = m

(
a + b

2
, b; yi

)
,(2.9)

gi = g(yi), and Ri = R(yi), for i = 1, 2.

We can now write down an approximation for bothf(a) andf(b) and the
associated error bound in terms of‖f ′‖∞, y1 andy2. Optimal collocation points
can then be identified by minimizing the error. This is established in the follow-
ing theorem, where for simplicity we will assume thaty2 = a + b− y1.

Theorem 2.2.The integral equation (1.3) has an approximate solution (2.1) in
which ∣∣∣∣f(a)−

(
M1g1 −M2g2

M2
1 −M2

2

)∣∣∣∣ ≤ ‖f ′‖∞E(y) and(2.10) ∣∣∣∣f(b)−
(

M1g2 −M2g1

M2
1 −M2

2

)∣∣∣∣ ≤ ‖f ′‖∞E(y)

where

M1 = m11, M2 = m12 and(2.11)

E(y) =

[∫ a+b
2

a
(x− a)K|x− y|dx +

∫ b
a+b
2

(b− x)K|x− y|dx
]

∣∣∣∫ a+b
2

a
K|x− y|dx−

∫ b
a+b
2

K|x− y|dx
∣∣∣ ,

for y = y1 ∈ [a, (a + b)/2) andy2 = b + a− y1.
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Proof. With the conditiony2 = a + b− y1, it is a simple matter to show that

m11 = m22 and m12 = m21.

Furthermore, we can also establish that

|R(y1)| ≤ ‖f ′‖∞E(y) and |R(y2)| ≤ ‖f ′‖∞E(y).

Hence, rearranging (2.7) and (2.8), using the above simplifications and the tri-
angle inequality produces the result.

Equation (2.10) provides explicit error bounds for functionsf of bounded
first derivative in terms of a collocation pointy ∈ [a, a+b

2
). Minimizing E(y)

should produce an optimal collocation strategy for this class. This is explored
in the next section.
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3. Numerical Experiments
In this section we apply the results of the previous section to the numerical
solution of Symm’s integral equation

(3.1) g(y) =

∫ 1

0

ln

(
1

|x− y|

)
f(x) dx, 0 ≤ y ≤ 1.

We choose an exact solutionf(x) = x3/2+1, so thatf ′ is bounded, but all higher
derivatives are unbounded. All of the algebraic calculations of the previous
section have been performed using Maple.

In this case, we have

(3.2) g(y) =
4

15
y − ln (y) y − 7

5
ln (1− y) + ln (1− y) y

+
4

5
y2 +

29

25
− 4

5
y5/2 Re

(
arctanh y−1/2

)
.

Using Maple, the approximation forf(a) in equation (2.10) is

(3.3) f ∗(a)

=

[(
− ln (y) y +

1

2
ln (2)− 1

2
ln (1− 2y)− y ln (2) + y ln (1− 2 y) +

1

2

)
(

4

15
y − ln (y) y − 7

5
ln (1− y) + ln (1− y) y +

4

5
y2 +

29

25

http://jipam.vu.edu.au/
mailto:
mailto:georgeh@csm.vu.edu.au
mailto:
mailto:John.Roumeliotis@vu.edu.au
mailto:
mailto:Adam.Kucera@integral.com.au
http://jipam.vu.edu.au/


Collocation and Fredholm
Integral Equations of the First

Kind

G. Hanna, J. Roumeliotis and
A. Kucera

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 17

J. Ineq. Pure and Appl. Math. 6(5) Art. 131, 2005

http://jipam.vu.edu.au

−4

5
y5/2 Re

(
arctanh y−1/2

))
−
(
− ln (1− y)+ln (1− y) y−1

2
ln (2)+y ln (2)

+
1

2
ln (1− 2 y)−y ln (1− 2 y)+

1

2

)(
107

75
− 4

15
y−ln (1− y) (1− y)−7

5
ln (y)

+ ln (y) (1− y) +
4

5
(1− y)2 − 4

5
(1− y)5/2 Re

(
arctanh (1− y)−1/2

))]
[(
− ln (y) y +

1

2
ln (2)− 1

2
ln (1− 2 y)− y ln (2) + y ln (1− 2 y) +

1

2

)2

−
(
− ln (1− y) + ln (1− y) y − 1

2
ln (2) + y ln (2)

+
1

2
ln (1− 2 y)− y ln (1− 2 y) +

1

2

)2
]−1

and from equation (2.11), the bound for the theoretical error is

(3.4) E(y) =

[
−1

2
ln (y) y2 − y2 ln (2) + ln (1− 2y)

(
y2 +

1

4

)
− 1

4
ln (2)

+
3

8
+ y ln (2)− y ln (1− 2y) + ln (1− y)

(
y − 1

2
− 1

2
y2

)]
/[

− ln (y) y + (1− 2y) ln (2)− (1− 2y) ln (1− 2y) + (1− y) ln (1− y)
]
.

In Figure1 we plot the theoretical error inf(a). That is, a plot ofE(y) as
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a function of collocation pointy. It is obvious that the error should increase as
y → 1/2 since at this pointy1 = y2 and the linear system becomes singular.

In contrast to other results for interpolation of this order, the theoretical result
shows that the optimal collocation point is not at the boundaryy = 0 as would
be expected but in the interior. For this particular kernel, the optimal point
occurs neary = 0.017.
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0.4

0 0.1 0.2 0.3 0.4 0.5

y

0 0.005 0.01 0.015 0.02 0.025 0.03

E
rr

or

Figure 1: Theoretical error given by equation (3.4) as a function of collocation
point y. The zoomed graph indicates an optimal collocation point neary =
0.017

In Figure2 we plot the numerical error inf(a). That is, a plot of|f(0) −
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f ∗(0)| as a function of collocation pointy. The optimal location of the colloca-
tion point is neary = 0.019. We can see that the theoretical error is qualitatively
similar to the numerical error and that the optimal collocation point is close to
that identified in the theoretical result.
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0.25
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0 0.1 0.2 0.3 0.4 0.5

y

E
rr
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0 0.005 0.01 0.015 0.02 0.025 0.03

Figure 2: Numerical error,|f(a)− f ∗(a)|, as a function of collocation pointy.
The zoomed graph indicates an optimal collocation point neary = 0.019

http://jipam.vu.edu.au/
mailto:
mailto:georgeh@csm.vu.edu.au
mailto:
mailto:John.Roumeliotis@vu.edu.au
mailto:
mailto:Adam.Kucera@integral.com.au
http://jipam.vu.edu.au/


Collocation and Fredholm
Integral Equations of the First

Kind

G. Hanna, J. Roumeliotis and
A. Kucera

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 17

J. Ineq. Pure and Appl. Math. 6(5) Art. 131, 2005

http://jipam.vu.edu.au

4. Conclusion
The application of Peano kernel theory to first kind integral equations is a pow-
erful technique. The theory can account for general properties ofg, K andf .
This contrasts with other methods where, for example,g is assumed analytic. In
addition, there are a number weighted Peano kernel derived multi-point quadra-
ture rules with error bounds in terms off ′, f ′′ andf (n) [13] as well as multiple
dimensions [5]. The application of these may prove to be a fruitful source of
results in the study of collocation points for integral equations.
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