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ABSTRACT. We give a Bennett-type factorization of the spaceces(pn) for monotone nonin-
creasing sequence{pn}. If the sequence{pn} is nondecreasing and bounded then certain con-
verse assertion is proved.
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1. I NTRODUCTION

G. Bennett raised the interesting problem of the factorization of inequalities, and in his basic
work [1] he gave a systematic treatment of the factorization of several classic and latest inequal-
ities. In his essay we can also find the precise definition of factorization of inequalities and an
explanation of its benefits.

In some previous papers we also studied such problems (see e.g. [3] – [7]).
Now we recall only one sample result.
It is well known that the classical Hardy inequality, in its crudest form, asserts that

(1.1) lp ⊆ ces(p), p > 1,

where

lp :=

{
x :

∞∑
n=1

|xn|p < ∞

}
,

ces(p) :=

{
x :

∞∑
n=1

(
1

n

n∑
k=1

|xk|

)p

< ∞

}
,

andx := {xn} is a sequence of real numbers.
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2 L. LEINDLER

G. Bennett [1] gave the factorization of (1.1) as follows:

Theorem 1.1.Letp > 1. A sequencex belongs toces(p) if and only if it admits a factorization

(1.2) x = y · z (xn = yn · zn)

with

(1.3) y ∈ lp and
n∑

k=1

|zk|p
∗

= O(n), p∗ :=
p

p− 1
.

This theorem may be stated succinctly as:

ces(p) = lp · g(p∗) (p > 1),

if

g(p) :=

{
x :

n∑
k=1

|xk|p = O(n)

}
.

It is clear that Theorem 1.1 contains Hardy’s inequality, namely ifx ∈ lp, thenx may be
factorized as in (1.2) such thaty andz satisfy (1.3) by takingy = x andz = 1 = (1, 1, . . .);
and by Theorem 1.1 thenx ∈ ces(p).

In [7] we considered the problem of factorization of the set

λ(ϕ) :=

{
x :

∞∑
n=1

λnϕ

(
n∑

k=1

|xk|

)
< ∞

}
,

where{λn} is a sequence of nonnegative terms having infinitely many positive ones, andϕ
is a nonnegative function on[0,∞), ϕ(0) = 0, ϕ(x)x−p is nondecreasing. Ifϕ(x) = xp and
λn = n−p then, clearlyλ(ϕ) ≡ ces(p). In this theme several open problems still remain.

A great number of mathematicians have investigated the following generalizations of the
spaceslp andces(p):

l(pn) :=

{
x :

∞∑
n=1

|xn|pn < ∞

}
and

ces(pn) :=

{
x :

∞∑
n=1

(
1

n

n∑
k=1

|xk|

)pn

< ∞

}
,

wherep : = {pn} is a sequence of positive numbers.
A good survey and some new results of this type can be found in the paper [2] by P.D. Johnson

and R.N. Mohapatra.
The aim of the present paper is to find certain factorization of the spaceces(pn). Unfortu-

nately we can do this only if the sequencep := {pn} is monotone decreasing. In the case if
p is monotone increasing we can give sufficient conditions for the sequencesy andz such that
their product sequencex = y · z should belong toces(pn). Hence it is clear that ifpn = p for
all n, then we get a necessary and sufficient condition as in Theorem 1.1.

Naturally many similar problems can be raised (and solved if you have enough stoicism and
calculation ability) if you want to give the analogies of the results given in the special case
pn = p regarding all the factorizations of inequalities (see e.g. only [1], [6] and [7]).

To present our theorem easily we need one more definition:

g(pn) :=

{
x :

n∑
k=1

|xk|pk ≤ Kpn−1n

}
,
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FACTORIZATION OF INEQUALITIES 3

whereK = K( p) ≥ 1 is a constant depending only on the sequencep.

2. THE RESULTS

Our theorem reads as follows:

Theorem 2.1. (i) If p := {pn} is a nonincreasing sequence of numbers, allpn > 1; and
x ∈ ces(pn), thenx admits a factorization (1.2) with

(2.1) y ∈ l(pn) and z ∈ g(p∗n).

(ii) Conversely, ifp is a nondecreasing and bounded sequence of numbers,p0 > 1, further-
more (2.1) holds, then the product sequencex = y · z ∈ ces(pn).

Part (ii) of our theorem clearly implies that

l(pn) ⊆ ces(pn) (1 < p0 ≤ . . . ≤ pn),

since if x ∈ l(pn) thenx can be factorized as in (1.2) with (2.1) by takingy = x and z = 1 =
(1, 1, . . .), and thus we get thatx ∈ ces(pn).

In order to prove our theorem we require the following lemma.

Lemma 2.2. Letu, v, w be sequences with nonnegative terms and suppose thatwk decreases
with k. If

n∑
k=1

uk ≤
n∑

k=1

vk (n = 1, 2, . . .),

then
n∑

k=1

ukwk ≤
n∑

k=1

vkwk (n = 1, 2, . . .).

This result is well known, see e.g. Lemma 3.6 in [1].

3. PROOF OF THEOREM 2.1

(i) We assume thatx 6= 0 := (0, 0, . . .), otherwise the statement is trivial.
If x ∈ ces(pn), we set

(3.1) bn :=
∞∑

k=n

k−pk

(
k∑

i=1

|xi|

)pk−1

,

and we note thatbn monotonically tends to zero. Indeed, using the well-known inequal-
ity

ab ≤ ap

p
+

bp∗

p∗
, p > 1,

we have that

bn =
∞∑

k=n

1

k

(
1

k

k∑
i=1

|xi|

)pk−1

≤
∞∑

k=n

1

pkkpk
+

∞∑
k=n

1

p∗k

(
1

k

k∑
i=1

|xi|

)pk

,(3.2)
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4 L. LEINDLER

where the second sum clearly tends to zero becausex ∈ ces(pn) andpk > 1. The first
sums also tends to zero, namely if

∑∞
i=1 |xi| ≤ 1, then, bypk ≤ p0, the inequality

∞∑
k=1

(
1

k

k∑
i=1

|xi|

)pk

≥
∞∑

k=1

1

kpk

(
k∑

i=1

|xi|

)p0

and x 6= 0 imply this assertion.
Now we factorizex as follows

x = y · z (xn = ynzn),

where

(3.3) yn := (|xn|bn)1/pnsign(xn)

and

(3.4) zn := |xn|1/p∗nb−1/pn
n (≥ 0).

Thus, by (3.1) and (3.3), we have

∞∑
n=1

|yn|pn =
∞∑

n=1

|xn|
∞∑

k=n

k−pk

(
k∑

i=1

|xi|

)pk−1

=
∞∑

k=1

k−pk

(
k∑

i=1

|xi|

)pk−1 k∑
n=1

|xn|

=
∞∑

k=1

k−pk

(
k∑

i=1

|xi|

)pk

,

thus the conditionx ∈ ces(pn) impliesy ∈ l(pn).
On the other hand, by Hölder’s inequality,(

m∑
k=1

z
p∗k
k

)pm

=

(
m∑

k=1

|xk|
1

p∗m
+ 1

pm b
−p∗k/pk

k

)pm

≤

(
m∑

k=1

|xk|

) pm
p∗m
(

m∑
k=1

|xk|b
− pmp∗k

pk
k

)
.(3.5)

Consequently, form = 1, 2, . . ., we have by (3.1), (3.4) and (3.5),

∞∑
n=m

(
1

n

m∑
k=1

z
p∗k
k

)pm

≤
∞∑

n=m

n−pm

(
m∑

k=1

|xk|

)pm−1 m∑
k=1

|xk|b
− pmp∗k

pk
k

=
m∑

k=1

|xk|b
− pmp∗k

pk
k

∞∑
n=m

n−pm

(
m∑

k=1

|xk|

)pm−1

.(3.6)

Since x ∈ ces(pn) implies that

1

n

n∑
k=1

|xk| ≤ K1(p)
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FACTORIZATION OF INEQUALITIES 5

holds for alln; where and later onKi(p) is written instead ofKi( p), thus, by (3.2),

∞∑
n=m

n−pm

(
m∑

k=1

|xk|

)pm−1

=
∞∑

n=m

n−pm

(
m∑

k=1

|xk|

)pn−1

npn−pm

(
m∑

k=1

|xk|

)pm−pn

≤ K2(p)
∞∑

n=m

n−pn

(
n∑

k=1

|xk|

)pn−1

= K2(p)bm.(3.7)

By (3.2) we also have that the sequence{bk} is bounded, whence

b
pk−pm
pk−1

k ≤ K3(p)

also hold for anyk andm ≥ k. Hence we get that
m∑

k=1

|xk|b
− pmp∗k

pk
k ≡

m∑
k=1

|xk|b
− p∗k

pk
k b

pk−pm
pk−1

−1

≤ K3(p)b−1
m

m∑
k=1

z
p∗k
k .(3.8)

Collecting the estimations (3.6), (3.7) and (3.8) we have that

∞∑
n=m

n−pm

(
m∑

k=1

z
p∗k
k

)pm−1

≤ K4(p).

Hence an easy computation gives that
m∑

k=1

z
p∗k
k ≤ K(p)

1
pm−1 m = K(p)p∗m−1m;

and herewith we have proved thatz ∈ g(p∗n).
This completes the proof of part (i).

(ii) The assumptionz ∈ g(p∗n) yields that
n∑

k=1

|zk|p
∗
k ≤ K(p)

1
pn−1

n∑
k=1

1.

This and Lemma 2.2 withwk := k−1/2 imply

(3.9)
n∑

k=1

|zk|p
∗
kk−1/2 ≤ K(p)

1
pn−1

n∑
k=1

k−1/2.

On the other hand, ifx = y · z, applying Hölder’s inequality, we have(
n∑

k=1

|xk|

)pn

=

(
n∑

k=1

|yk|k1/2p∗nk−1/2p∗n|zk|

)pn

≤

(
n∑

k=1

|yk|pnk
pn−1

2

)(
n∑

k=1

k−1/2|zk|p
∗
n

)pn−1

.
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6 L. LEINDLER

This and (3.9) exhibit that
∞∑

n=1

(
1

n

n∑
k=1

|xk|

)pn

≤ K5(p)
∞∑

n=1

n−pn

n∑
k=1

|yk|pnk
pn−1

2 n
pn−1

2(3.10)

= K5(p)
∞∑

k=1

|yk|pn

∞∑
n=k

(
k

n

) pn−1
2 1

n
=: S1, say.

Since y ∈ l(pn), the termsyn are bounded, using this, furthermore the boundedness
and the monotonicity of the sequencep, we know that

S1 ≤ K6(p)
∞∑

k=1

|yk|pk

∞∑
n=k

(
k

n

) pk−1

2 1

n

≤ K6(p)
∞∑

k=1

|yk|pkk
pk−1

2

∞∑
n=k

n−1− 1
2
(pk−1)

≤ K7(p)
∞∑

k=1

|yk|pk .(3.11)

The assumptiony ∈ l(pn), (3.10) and (3.11) plainly prove thatx ∈ ces(pn), as
stated.

Herewith we have completed the proof of the theorem.
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