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Let D, P(z) denote the polar derivative of a polynomia(z) of degreen with
respect to real or complex number If P(z) does not vanish ife| < k, k > 1,
then it has been proved that fer] > 1 andp > 0,

|| + &
DoP| <[ HTF )Py .

An analogous result for the class of polynomials having no zefg i £,k < 1
is also obtained.
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1. Introduction and Statement of Results

Let P,(z) denote the space of all complex polynomi&lg:) of degreen. For P €

P,, define
1 o i0\ |P %
iPl= {5 [ PP} 1spes
and
IPll = max|P(2)].
If P € P,,then

(1.1) 1Pl < n Pl

and

(1.2) 1P [lp < nl| Pl

Inequality (L.1) is a well-known result of S. Bernstein (se&] or [15]), whereas
inequality (L.2) is due to Zygmund J6]. Arestov [1] proved that the inequality
(1.2) remains true fol) < p < 1 as well. Equality in {.1) and (L.2) holds for
P(z) =az",a # 0. Ifweletp — oo in (1.2), we get inequality {.1).

If we restrict ourselves to the class of polynomi&lsce P, having no zero in
|z| < 1, then both the inequalities (1) and (L.2) can be improved. In fact, iP € P,
andP(z) # 0for |z| < 1, then (L.1) and (L.2) can be, respectively, replaced by

n
(1.3) 1P| < 5 1Pl
and
(1.4) 1P " p>1.

<— P,
» = i, !l
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Inequality (L.3) was conjectured by P. Erdos and later verified by P. D. Lax

[10] whereas the inequalityl(4) was discovered by De Bruijrb]. Rahman and
Schmeisserl3] proved that the inequalityl(4) remains true fof < p < 1 as well.
Both the estimates are sharp and equalityliG)(and (L.4) holds forP(z) = az"+b,
ja = [b].

Malik [11] generalized inequalityl(3) by proving that if? € P, and P(z) does
not vanish inz| < k wherek > 1, then

n
< Pl .
e

Govil and Rahman{] extended inequalityl(.5) to the L,-norm by proving that
if P e P,andP(z) # 0 for |z| < k wherek > 1, then

(1.5) 1Pl

(1.6) 1P| Pl,. p>1

n
» S To |
1E+ 2],

It was shown by Gardner and WeenT$ &nd independently by Rathet4] that
the inequality {.6) remains true fof) < p < 1 as well.

Let D,P(z) denote the polar derivative of polynomi&l(z) of degreen with
respect to a real or complex numherThen

D,P(z) =nP(z) + (o — 2) P'(2).

Polynomial D, P(z) is of degree at most — 1. Furthermore, the polar derivative
D, P(z) generalizes the ordinary derivativé(z) in the sense that

P
lim —Da (Z)

a—00 6]

= P(2)

uniformly with respect ta for |z| < R, R > 0.
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A. Aziz [2] extended inequalitiesL(1) and (L.3) to the polar derivative of a poly-
nomial and proved that iP € P,, then for every complex numberwith |a| > 1,

(1.7) [1DaPllo < mlal 1Pl

and if P € P, andP(z) # 0 for |z| < 1, then for every complex number with
o] > 1,

n
(1.8) 1DaPllo = (ol + 1) 1Pl -

Both the inequalities1(7) and (L.8) are sharp. If we divide both sides af.{) and
(1.9) by || and letja| — oo, we get inequalities]( 1) and (L.3) respectively.

A. Aziz [2] also considered the class of polynomialsc P, having no zero in
|z| < k and proved that i’ € P, andP(z) # 0 for |z| < k wherek > 1, then for
every complex numbex with |a| > 1,

la] + k
1.9 D,P| < — | |P]|.. .
19) PPl <0 (S5 )1l
The result is best possible and equality Ingf holds for P(z) = (z + k)" wherea
is any real number with, > 1.
It is natural to seek ah,, - norm analog of the inequality.(7). In view of theL,
- norm extension(.2) of inequality (L.1), one would expect that i € P,, then

(1.10) [1DaPll, < nfel [P,

is the L,, - norm extension of1(.7) analogous to1(.2). Unfortunately, inequality
(1.10 is not, in general, true for every complex numberTo see this, we take in
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particularp = 2, P(z) = (1 —iz)" anda = i§ whered is any positive real number
such that

n++/2n(2n — 1)
3n —2 ’
then from (L.10), by using Parseval’s identity, we get, after simplication

(1.11) 1<6<

n(146)* < 2(2n — 1)6%

This inequality can be written as

(1.12) (5_n+ 2n(2n—1)> (5_n—\/2n(2n—1)> -

3n—2 3n—2
Sinced > 1, we have

(6— n—+/2n(2n — 1)) > (1 ~n—+/2n(2n - 1))

an —2 3n —2
2(n—1 2n(2n —1
_ (20 —1)+/2n(2n — 1) =0
3n — 2

and hence fromi(12), it follows that

(5_71—1- 2n(2n—1)> > 0.

3n—2

This gives
5> n+ 271(271—1)7
3n—2
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which clearly contradicts1(11). Hence inequality.10 is not, in general, true for
all polynomials of degree > 1.

While seeking the desired extension of inequalitys) to the L,-norm, recently
Govil et al. @] have made an incomplete attempt by claiming to have provedfthat
P € P, and P(z) does not vanish ife| < 1, then for every complex numberwith
lal > 1,andp > 1,

L, Inequalities for the

|Oé| +1 ) || H Polar Derivative

|| 1 H Nisar A. Rather

(1.13) IDoP|, < n (

vol. 9, iss. 4, art. 103, 2008

A. Aziz, N.A. Rather and Q. Aliya4] pointed out an error in the proof of in-
equality (L.13 given by Govil et al. §] and proved a more general result which
not only validated inequalityl(13 but also extended inequality () for the polar
derivative of a polynomiaP € P, . In fact, they proved thatiP € P, andP(z) # 0 Contents
for |z| < k wherek > 1, then for every complex numberwith |«| > 1 andp > 1,

Title Page

<« >
ol + k- < >
(1.14) [DaPll, <n Thral, 1P, -
Page 7 of 21
The main aim of this paper is to obtain certéininequalities for the polar deriva- Go Back
tive of a polynomial valid for0 < p < oo. We begin by proving the following
extension of inequalityl(?) to the polar derivatives. Full Screen
Theorem 1.1.If P € P,, then for every complex numberandp > 0, Close
11 D.Pl < niel journal of inequalities
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As an extension of inequalityl (6) to the polar derivative of a polynomial, we
next present the following result which includes inequalities. 9 and (L.14) for
eachp > 0 as a special cases.

Theorem 1.2.1f P € P, and P(z) does not vanish ifz| < k wherek > 1, then for
every complex numberwith |«| > 1 andp > 0,

la] + k
1.16 D.P|. <
(116) l m_nQ% 1)1l

In the limiting case, whep — oo, the above inequality is sharp and equality in
(1.16 holds forP(z) = (z + k)™ wherea is any real number withy > 1.
The following result immediately follows from Theoret? by takingk = 1.

Corollary 1.3. If P € P, and P(z) does not vanish inz| < 1, then for every
complex numbes with |a| > 1 andp > 0,

ol +1
(1.17) Ha£m§n<" )HH

11+ 2]

Remark2. Corollary 1.3 not only validates inequalityl(13 for p > 1 but also
extends it forl0 < p < 1 as well.

Remark3. If we letp — oo in (1.16), we get inequality 1.9). Moreover, inequality
(1.6) also follows from Theoremi.2 by dividing the two sides of inequalitylL(16
by |«| and then lettinga| — oc.

We also prove:
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Theorem 1.4.If P € P, and P(z) has all its zeros inz| < k wherek < 1 and
P(0) # 0, then for every complex numberwith |a| < 1 andp > 0,

la| + &
1.1 D Pl <
(118) na|u_an+“||n

In the limiting case, whep — oo, the above inequality is sharp and equality in
(1.19 holds forP(z) = (z + k)™ for any realx with 0 < o < 1.
The following result is an immediate consequence of Thearein

Corollary 1.5. If P € P, and P(z) has all its zeros ifz| < k wherek < 1, then
for every complex number with |« < 1,

\wam3n0“+k)nu

The result is best possible and equality in1(® holds forP(z) = (z + k)" for any
realawith0 < o < 1.

Finally, we prove the following result.

Theorem 1.6. If P € P, is self- inversive, then for every complex numbeand

p >0,
la] +1
<
namm_nQH ) 171

The above inequality extends a result due to Dewan and G6}ilof the polar
derivatives.
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2. Lemmas

For the proof of these theorems, we need the following lemmas.

Lemma 2.1 (2]). If P € P, and P(z) does not vanish ifz| < k wherek > 1, then
for every real or complex numberwith |v| > 1,

|D,YkP(z)|§k\D7/kQ(z)| for |z] =1

whereQ(z) = 2" P(1/Z).
Settinga = vk wherek > 1 in LemmaZ2.1, we immediately get:

Lemma 2.2.If P € P, and P(z) does not vanish ife| < k£ wherek > 1, then for
every real or complex numberwith |a| > 1,

|DoP(2)] < k|Daj2Q(z)] for |z =1

whereQ(z) = z"P(1/Z) .

Lemma 2.3.1f P € P, and P(z) # 01in |z| < k wherek > 1 andQ(z) =

2"P(1/z), then for|z| = 1,

kIP'(2)] < 1Q'(2)]-
Lemma2.3is due to Malik P].

Lemma 2.4.1f P € P, and P(z) # 0in |z| < k wherek > 1 andQ(z) =

2"P(1/z), then for every reab, 0 < [ < 2,
|K*P'(2) + Q' (2)| < k|P'(z) + €7Q'(2)| for |z =1.
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Proof of Lemm&.4. By hypothesis,P € P, and P(z) does not vanish ifz| < k

wherek > 1 andQ(z) = 2"P(1/z). Therefore, by Lemma.3, we have
FIPE)]<I1QE) for o =1.

Multiplying both sides of this inequality bgk? — 1) and rearranging the terms, we

get
1) KPP +1Q < IP () + K Q' (2)" for |2 =1.
Adding 2 Re (k?P'(z)Qf(z)ew) to the both sides ofX( 1), we obtain for|z| = 1,

|K*P'(z) + er’(z)‘2 <k |P'(2) + eiﬁQ/(z)}2 for |z| =1
and hence
|K*P'(2) + P Q' (2)| < k|P'(z) +€7Q'(2)| for |z =1.
This proves Lemma.4. O

Lemma 2.5.1f P € P, andQ(z) = z"P(1/Z), then for everyp > 0 and [ real,
0<p<2m,

2 2w o
/ / [P'(e") + Q! (e")|" dbdp < 2mn / |P(e)[" db.
0 0 ’

Lemma2.5is due to the authorll] (see alsoJ)).
Lemma 2.6.If P € P, and P(z) does not vanish inz| < k£ wherek > 1 and

Q(z) = 2"P(1/Z), then for every complex numbet j real, 0 < § < 2w, and
p>0,

2 2w o
/ / [DaP(e”) + K2 Dy 2 Q(e) [ dBdB < 2707 (o] + k)’ / [P(e")| do.
0 0 0
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Proof of Lemma&.6. We haveQ)(z) = 2" P(1/z), therefore,P(z) = 2"Q(1/z) and
it can be easily verified that for < 0 < 27,

nP(eiQ) . eiGP/(ezH) _ ei(nfl)QQ/(ew) and n@(eia) . ew@/(eie) — ei(nfl)ep/(eig)'
Also, sinceP € P, and P(z) does not vanish ifz| < k, k > 1, thereforeQ € P,.

Hence for every complex numbaer S real,0 < 3 < 27, we have

| Do P(e") + €°k? Do 32 Q")
(nP(e”) 4 (o — )P/ () + k2e™” (nQ(ew) + (% — ew> Q’(ei9)> ’
— |(TLP(619) o 6i9P/(6i9)) + k,2€iﬁ (nQ(ezG) . €i9Q1<€i9))

+a (P/(eie) + eiﬁQl(eiQ)) |
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Combining this with Lemma.5, we get
2 2 ) ) )
/ / |DoP(e”) + €Pk* D, jy2Q(e”)[" d0d3
0 0

27
< 2P (|a] + k)P / P db.
0

This completes the proof of Lemn2at. O
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3. Proofs of the Theorems

Proof of Theorem..1. Let Q(z) = z"P(1/Z), thenP(z) = 2"Q(1/Z) and (as be-
fore) for0 < 0 < 27, we have

np(eie)_eiepl(eie) _ ei(n—l)HQ/(eiQ) and nQ(eie)_eieQ/(ew) _ ei(”_l)eP’(ei9),
which implies for every complex numberandg real,0 < g < 2,

|DaP(ei9) + eiﬁ {nQ(ew) + (Oé . ei&)@/(eie)}‘

— |nP(ei6) + (Oé _ eiO)Pl(eie) + ez‘ﬁ {nQ(ezQ) _ eite(eiG) + OéQ/(Gw)} |

— | {nP<€z’9) . €i9P1<€z’9)} + ez’ﬁ {nQ(610> o eiGQ/(eiB)}

+a{P(e”)+ePQ ()} ]

_ |6i(n—1)ﬁm+ eiﬁei(n—l)ém_'_ o {P/(ew) + eiﬁQ/(eiG)} |

< [V eM) + P Ve | 4 fa [P() + 0@ (")

= (la| +1) [P'(e”) + eQ'(e")].

This gives with the help of Lemma5 for eachp > 0,
2 2w
/ / |DoP(e”) + € {nQ(e”) + (o — €*)Q' (") } " dbd)p
0 0
27 21
<(al+17 [ [P+ Qe asas
0 0

21
(3.1) < 2mn? (|al + 1)”/ |P(e)]" do.
0
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Now using the fact that for any > 0,
2w
/ o+ bei6|p df > 27 max (|a|”, |b"),
0

(see b, Inequality ¢.1)]), it follows from (3.1) that

{/02“ ‘DaP(eie)}pde}; < n(la] +1) {/027r \P(e"e)\pde};, p>0.

This completes the proof of Theoreml. O

Proof of Theoreni..2. SinceP € P, and P(z) does not vanish ifz| < k& where
k > 1, by LemmaZ2.2, we have for every real or complex numhewith |a| > 1,

(3.2) |DoP(2)| < k|Da2Q()] for |z| =1,

whereQ(z) = z"P(1/Z). Also, by Lemma2.6, for every real or complex number
a, p> 0andgreal,

27 27
(3.3) / { / | Do P(e") +eiﬁk2Da/k2Q(ei9)|pdﬂ} do
0 0 .
< 2mn? (Ja] + k:)p/ |P(e”)|" db.
0

Now for every real3,0 < § < 2r andR > r > 1, we have
‘R+ew‘ > ‘r+ei5|,

which implies

2 2w
/ |R+e’ﬂ\pd62/ PP ds,  p>o0.
0 0
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If D,P(e) # 0, we takeR = k? | Dy p2Q(

(3.2, R >r >1,and we get

)|/ |DaP(e")| andr = k, then by

2
/ Do P (") + €Pk* Dy jy2Q () Pd3
0

2
— ‘DaP(ew)‘p/
0
2T
_ \Dap(e”)\p/
0
27
— ’DQP(ew)‘p/
0

k2Da/k2Q(€i9) % P
— e 1
DaP(el") e’ + dg
kQDa/k2Q(€i0> i3 P
— et 1| d
' Do) |© T A
K DapeQ(e?)| ol
_ Wl od
' Do P () ‘“ ?

27
2 [DoP() [ it as

For D, P(e?) = 0, this inequality is trivially true. Using this in3(3), we conclude
that for every real or complex numberwith |«| > 1 andp > 0,

2 2 2
/ |k +e|” B / | Do P(e?)[" d6 < 27n” (|a] + k)P / |[P(e”)[" b,
0 0 0

which immediately leads tol.(16) and this completes the proof of Theorém. [

Proof of Theorenmi .4. By hypothesis, all the zeros of polynomigl z) of degreen

lie in |z| < k wherek < 1andP(0) # 0. Therefore, ifQ(z) = 2"P(1/Z) , then
Q(z) is a polynomial of degree which does not vanish ife| < (1/k), where
(1/k) > 1. Applying Theoreml.2 to the polynomial)(z), we get for every real or
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complex numbep with |5] > 1 andp > 0,

o ([ el s () eors)

Now since ’ ’
}Q(610)| — ’P(QMM 7 0<60<2rm L,, Inequalities for the
Polar Derivative
and 1 Nisar A. Rather
_ — _ k vol. 9, iss. 4, art. 103, 2008
25| = F e+l
it follows that (3.4) is equivalent to Title Page
: o (kg1 [ g
" o + " i P Contents
= Rl 0 « >
Also, we have for every with |3| > 1 and0 < 6 < 2, < >
‘DﬁQ(ew | = ’nQ () + (B —eQ ’(ele)’ Page 17 of 21
mGP(ezB) + B 610) (nez n— 1)9P ez@ i(nf2)0P,(ei9>> ‘ Go Back
Full S
‘5 <nP(626) — P/ 619)) + P'(e?)) ‘ ult screen
_ Close
‘ﬁ (np(ew) zGPI ez@)) —|—Pl 19)‘
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Using this in 8.5), we get for|3| > 1,
27 ) p %
@o) { [ l[oyren| s
0

RIB ALY [ 7 o i )
§”<w+km>{é Pl s} o

Replacingl /3 by « so thatla| < 1, we obtain from .6)

([ s oL s

for |a| < 1andp > 0. This proves Theorer.4. O

Proof of Theoreni..6. SinceP(z) is a self inversive polynomial of degree P(z) =

Q(z) for all z € C whereQ(z) = 2" P(1/Z). This gives for every complex number
O(,

|D.P(2)| = |DaQ(2)|, z€C
so that

(3.7) |DoQ(e”)/DoP(e”)| =1, 0<6<2m.
Also, since)(z) is a polynomial of degree, then

(3.8) DaQ(e”) = nQ(e") — Q' (e”) + aQ'(e”).
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Combining @.1) and @3.9), it follows that for every complex numberandp > 0,

27 2T
(3.9) /0/0\Dap(e”)JrDaQ(ei@)\pdedﬁ

2
<2mn? (Jof + 1)p/ |P(e)]" db.
0

L, Inequalities for the

Using 3.7) in (3.9 and proceeding similarly as in the proof of Theorér, we Polar Derivative

immediately get the conclusion of Theorénd.
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