Journal of Inequalities in Pure and
Applied Mathematics

GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL
INEQUALITIES INVOLVING MAXIMAL n-MONOTONE MAPPINGS

MAO-MING JIN

Department of Mathematics
Fuling Teachers College
Fuling, Chongging 408003
People’s Republic of China.

EMail: mmj1898@163.com

(©2000Victoria University
ISSN (electronic): 1443-5756
144-04

volume 7, issue 3, article 114,
2006.

Received 27 July, 2004;
accepted 09 May, 2006.

Communicated by: S.S. Dragomir

Abstract
Contents
44
| 2
Home Page
Go Back
Close

Quit


Please quote this number (144-04) in correspondence regarding this paper with the Editorial Office.

mailto:sever@csm.vu.edu.au
http://jipam.vu.edu.au/
mailto:mmj1898@163.com
http://www.vu.edu.au/

Abstract

In this paper, we introduce and study a new class of generalized nonlinear
mixed quasi-variational inequalities involving maximal »-monotone mapping.
Using the resolvent operator technique for maximal n-monotone mapping, we
prove the existence of solution for this kind of generalized nonlinear multi-valued
mixed quasi-variational inequalities without compactness and the convergence
of iterative sequences generated by the new algorithm. We also discuss the
convergence and stability of the iterative sequence generated by the perturbed
iterative algorithm for solving a class of generalized nonlinear mixed quasi-
variational inequalities.
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In recent years, variational inequalities have been generalized and extended in
many different directions using novel and innovative techniques. These have
been used to study wider classes of unrelated problems arising in optimization
and control, economics and finance, transportation and electrical networks, op-
erations research and engineering sciences in a general and unified framework,
see [[] — [15], [1€] = [27] and the references therein. An important and use-
ful generalization of variational inequality is called the variational inclusion. . . .

. . ) . . Generalized Nonlinear Mixed
It is well known that one of the most important and interesting problems in  Quasi-variational Inequalities
the theory of variational inequalities is the development of an efficient and im-  'nvolving Mmg";'ngg"\"on"‘o”e
plementable algorithm for solving variational inequalities. For the past years,

many numerical methods have been developed for solving various classes of Mao-Ming Jin

variational inequalities, such as the projection method and its variant forms,

linear approximation, descent, and Newton’s methods. Title Page
Recently, Huang and Fang] introduced a new class of maximamonotone PE—

mappings and proved the Lipschitz continuity of the resolvent operator for max-

imal n-monotone mappings in Hilbert spaces. They also introduced and studied 44 >

anew class of generalized variational inclusions involving maxiprabnotone < >

mappings and constructed a new algorithm for solving this class of generalized

variational inclusions by using the resolvent operator technique for maximal Go Back

n-monotone mappings. Close
The main purpose of this paper is to introduce and study a new class of "

generalized nonlinear mixed quasi-variational inequalities involving maximal
n-monotone mappings. Using the resolvent operator technique for maximal Page 3 of 29
n-monotone mappings, we prove the existence of a solution for this kind of
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generalized nonlinear multivalued mixed quasi-variational inequalities without
compactness and the convergence of iterative sequences generated by the new
algorithm. We also discuss the convergence and stability of the iterative se-
guence generated by the perturbed iterative algorithm for solving a class of
generalized nonlinear mixed quasi-variational inequalities. The results shown
in this paper improve and extend the previously known results in this area.
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Let H be a real Hilbert space endowed with a ndfrit and an inner product
(-,-), respectively. Let” CB(H), andH(-,-) denote the family of all the
nonempty subsets df, the family of all the nonempty closed bounded subsets
of H, and the Hausdorff metric o6'B(H), respectively. Let), N : H X

H — H be two single-valued mappings with two variables gnd H — H

be a single-valued mapping. L8tT,G : H — CB(H) be three multivalued
mappings and/ : H x H — 2 be a multivalued mapping such that for each
t € H, M(-,t) is maximalp-monotone withRan(g) () Dom M-, t) # (. Now

we consider the following problem:

Generalized Nonlinear Mixed
Quasi-Variational Inequalities
Involving Maximal 7-Monotone

S
Findu € H,x € Su,y € Tu, andz € Gu such thay(u) € Dom(M(-, 2)) PP
and Mao-Ming Jin
(2.1) 0 € N(x,y) + M(g(u),2)). Title Page
Problem 2.1) is called a generalized nonlinear multivalued mixed quasi-variational Contents
inequality.
Some special cases of the problemily: 14 dd
< >
() If n(x,y) = = —y forall z,y in H andG is the identity mapping, then
problem @.1) reduces to finding: € H, x € Su, y € Twu such that Go Back
g(u) € Dom(M(-,u)) and Close
(2.2) 0€ N(z,y)+ M(g(u),u). Quit
Page 5 of 29

Problem £.2) is called the multivalued quasi-variational inclusion, which
was studied by Noorl[F] — [27].
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(In

D)

(V)

If S,T are single-valued mappings addis the identity mapping, then
problem @.1) is equivalent to finding € H such thay(u) € Dom(M(-,u))
and

(2.3) 0€ N(Su,Tu) + M(g(u),u)).

Problem 2.3) is called a generalized nonlinear mixed quasi-variational
inequality.

If M(-,t) = dp(-,t), wherep : H x H — R|J{+o0} is a functional
such that for each fixed in H, ¢(-,t) : H — R|J{+oo} is lower
semicontinuous ang-subdifferentiable ond, and d¢(-,t) denotes the
n-subdifferential ofy(-,¢), then problem Z.1) reduces to the following
problem:

Findu € H,x € Su andy € Twu such that

(2.4) (N(2,y),n(v,9(u))) = ¢(g(u), z) — ¢(v, 2)

for all v in H, which which appears to be a new one. Furthermore, if
N(z,y) =x —yforallz,yin H, S,T are single-valued mappings atd

is the identity mapping, then probleri.{) reduces to the general quasi-
variational-like inclusion considered by Ding and Lud. [

If S, T : H — H are single-valued mappingg,is an identity mapping,
N(z,y) =z —yforallz,yin H,andM(-,t) = 0p for all t in H, where

Jdp denotes the-subdifferential of a proper convex lower semicontinuous
functiony : H — R|J{+o0}, then problemZ.1) reduces to the following
problem:

Generalized Nonlinear Mixed

Quasi-Variational Inequalities
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Finduw € H such that

(2.5) (Su —Tu,n(v,u)) > o(u) — ¢(v)

forall v in H, which is called the strongly nonlinear variational-like inclu-
sion problem considered by Lee et dl-].

(V) If G is an identity mapping;(x,y) = x—y andM (-, t) = dp for eacht €
H,wherep : H — R|J{+o0} is a proper convex lower semicontinuous
function onH andg(H) (| Dom(d¢(-,t)) # 0 for eacht € H anddy(-, )

Generalized Nonlinear Mixed

denotes the subdifferential of functigri-, ¢), then problemZ.1) reduces Quasi-Variational Inequalities
to findingu € H,z € Su andy € Twu such thaty(u) € Dom(dp(-,1)) [l Mmg“;'ngg-'\"onotone
and
Mao-Ming Jin
(2.6) (N(z,y),v—g(u)) = p(g(u)) — ¢(v)
for all v in H. Furthermore, ifN(z,y) = « — y for all z,y in H, and Title Page
g is an identity mapping, then the proble ) is equivalent to the set-
. . L . . . Contents
valued nonlinear generalized variational inclusion considered by Huang
[6] and, in turn, includes the variational inclusions studied by Hassouni 4« >
and Moudafi ] and Kazmi [L4] as special cases. p >
For a suitable choice aV,n, M, S, T, G, g, and for the spacé/, one can Go Back
obtain a number of known and new classes of variational inclusions, varia-
tional inequalities, and corresponding optimization problems from the general Close
set-valued variational inclusion probleri.{). Furthermore, these types of Quit
variational inclusions enable us to study many important problems arising in Page 7 of 29

the mathematical, physical, and engineering sciences in a general and unified
framework.
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Definition 2.1. Let T" be a selfmap of{, zy € H and letx, ., = f(T,x,)
define an iteration procedure which yields a sequence of pini$:° , in H.
Suppose thafx € H : Tz = z} # () and{z,}>°, converges to a fixed point
x*of T. Let{y,} C H and lete,, = ||yn+1 — f(T,yn)||. If lim ¢, = 0 implies
that lim y, = z*, then the iteration procedure defined by, = f(T, z,) is
said to beT-stable or stable with respect 6.

Lemma 2.1 ([L€]). Let{a,},{b.}, and{c,} be three sequences of nonnegative

numbers satisfying the following conditions: there exigtsuch that Generalized Nonlinear Mixed

Quasi-Variational Inequalities
Involving Maximal 7-Monotone

Ap+1 S (1 - tn)an + bntn + Cn,

Mappings
for all n > ng, wheret,, € [0,1], >  t, = oo, nh—>nolo b, =0and} > ¢, < Mao-Ming Jin
oco. Thenlim a, = 0.

o e _ ) ) Title Page
Definition 2.2. A mappingg : H — H is said to be
Contents
() a-strongly monotone if there exists a constant 0 such that « NS
(g(u1) — g(uz), ur — ug) > arfjuy — U2H27 4 >
forallu, € H,i=1,2; Go Back
(i) p-Lipschitz continuous if there exists a constant 0 such that Close
Quit
_ < —
lg(u1) — g(u2)|| < Bllur — us, Page 8 of 29

forall u; € H,i=1,2.
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Definition 2.3. A multivalued mapping : H — CB(H) is said to be
(i) H-Lipschitz continuous if there exists a constant 0 such that

H(Suy, Sug) < yllur — usl|,

forall u; € H,1=1,2;

(i) strongly monotone with respect to the first argumenVof, -) : H x H —
H, if there exists a constapt > 0 such that

Generalized Nonlinear Mixed

(N(21,7) = N3, ), ur = ug) > pulJur = ug?, S ] e s
Mappings
forall z; € Su;, w; € H,i=1,2.
Mao-Ming Jin
Definition 2.4. A mappingN(-,-) : H x H — H is said to be Lipschitz con-
tinuous with respect to the first argument if there exists a constant) such :
that Title Page
IV (u, ) = N(uz, )|l < vljur — o, Contents
forallu; € H,i=1,2. 4« >
In a similar way, we can define Lipschitz continuity &, -) with respect < >
to the second argument. Go Back
Defini.tion 2.5. Letn : H X H — H be a single-valued mapping. A multivalued Close
mappingM : H — 21 is said to be —
uit
(i) »-monotone if Page 9 of 29

(x —y,n(u,v)) >0 forall u,v € H,x € Mu,y € Mu;,
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(i) strictly n-monotone if
(x —y,n(u,v)) >0 forall u,v € H,x € Mu,y € Mv

and equality holds if and only if = v;

(i) stronglyn-monotone if there exists a constant- 0 such that

(x —y,m(u,v)) > rl|u—v|? forall u,v € H,x € Mu,y € Mv;

Generalized Nonlinear Mixed
Quasi-Variational Inequalities

(iv) maximalp-monotone if\/ is n-monotone and/ + A\M)(H) = H for any Involving Maximal - -Monotone

A > 0. Mappings
Remark 1. Mao-Ming Jin
1. If n(u,v) = u—wvforall u,vin H, then (i)-(iv) of Definitior2.5reduce to Title Page
the classical definitions of monotonicity, strict monotonicity, strong mono-
tonicity, and maximal monotonicity, respectively. Contents
2. Huang and Fang gave one example of maximahonotone mapping in « dd
[10]. < >
Lemma 2.2 ([L(]). Letn : H x H — H be strictly monotone andl/ : H — 24 Go Back
be a maximah-monotone mapping. Then the following conclusions hold: Close
1. (z — y,n(u,v)) > 0 forall (v,y) € Graph(M) implies that(u,z) € Quit
Graph(M), whereGraph(M) = {(u,z) € H x H : x € Mu}; Page 10 of 29

2. the inverse mappin@/ + AM)~! is single-valued for any > 0.
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Based on Lemma&.2, we can define the resolvent operator for a maximal
n-monotone mapping/ as follows:

(2.7) JM(z) = (I +pM)™'(z) forallze H,

wherep > 0 isaconstantang : H x H — H is a strictly monotone mapping.

Lemma 2.3 ([L(]). Letn : H x H — H be strongly monotone and Lipschtiz
continuous with constants > 0 andr > 0, respectively. Lef/ : H — 2%
be a maximah-monotone mapping. Then the resolvent operal;ﬁrfor M is
Lipschitz continuous with constanto, i.e.,

1TM () — TM (0)]| < gHu —v|  forallu,v € H.

Generalized Nonlinear Mixed

Quasi-Variational Inequalities

Involving Maximal 7-Monotone
Mappings
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We first transfer problen®(1) into a fixed point problem.

Lemma 3.1. For givenu € H, z € Su,y € Tu, andz € Gu, (u,z,y,z) isa
solution of the problem2(1) if and only if

(3.1) g(u) = 1)1 (g(u) = pN(z,y)),
WhererM("Z) = ([ + pM(-, Z))_1 andp > 0 is a constant. Generalized Nonlinear Mixed
Quas_i-Variati(_)naI Inequalities
Proof. This directly follows from the definition of,}""*. O oG e oo
Remark 2. Equality 3.1) can be written as Mao-Ming Jin
u= (1= Nu+Mu—g(u) + L0 (g(u) — pN (2, y))], .

Title Page
where0) < A < 1is a parameter angh > 0 is a constant. This fixed point Contents
formulation enables us to suggest the following iterative algorithm for problem
(2.1) as follows: 4« dd

< >

Algorithm 1. Letn, N : H x H — H,g: H — H be single-valued mappings
andS,T,G : H — CB(H) be multivalued mappings. Léf : H x H — 2% Go Back
be such that for each fixede H, M(-,t) : H — 2 is a maximal-monotone
mapping satisfyingj(u) € Dom(M(-, z)). For given\ € [0,1], ug € H,
g € Sug, Yo € Tug andzy € Guyg, let Quit
Page 12 of 29

Close

up = (1 = Mug + A [Uo — g(uo) + J,jw("zo)(g(uo) - PN(xoayom :
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By Nadler [L7], there existr; € Suq, y; € Tu; andz; € Gu; such that

[0 — @[] < (14 1)H(Suo, Sua),
lyo — 1|l < (1 + DYH(Tug, Tuy),
| < (1 + D)H(Guo, Guy).

|20 — 21

Let

up = (1= Nug + A [ur — g(ur) + 20 (g(ur) = pN (21, 11))] -
By induction, we can obtain sequendes }, {z,}, {y.} and{z,} satisfying
(U1 = (1= Nu,
X |t — g(un) + T3 7 (g(un) = PN (20, yn))

un g un P 9 un P x’rwyn 9

(3.2) T € Stin, |20 — Tnia| < (14 (1+ 1) "YH(Stn, Stinsr),

Yn € Tp, [[Yn — Yngr || < (T +(1+ n>_1>H(TumTun+l>v
Zn € GUp, Hzn - Zn+1|| < (1 + (1 + n)_l)H(Gum Gun+1)7

\

forn=1,2,3,...,where0 < A < 1 andp > 0 are both constants.

Now we construct a new pertured iterative algorithm for solving the gener-

alized nonlinear mixed quasi-variational inequali?yd) as follows:

Algorithm 2. Letn, N : H x H — H andS,T : H — H be single-valued
mappings. Lef\/ : H x H — 2 be such that for each fixede H, M (-, t) :
H — 2% is a maximak-monotone mapping satisfyingu) € Dom(M (-, u)).

Generalized Nonlinear Mixed

Quasi-Variational Inequalities

Involving Maximal 7-Monotone
Mappings
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For givenuy € H, the perturbed iterative sequen¢e,, } is defined by

Up41 = (1 - an)un + O4n[vn - g(vn)
+ 170 (g(0,) = PN (Svn, T0,))] + Qe

(3.3)
M (-, un
+ 1" (g (un) = pN (Stn, Tun))] + B f
forn = 0,1,2,..., where{e,} and {f,} are two sequences of the elements Generalized Nonfinear Mixed

of H introduced to take into account possible inexact computation and the se- Quasi-Variational Inequalities
Involving Maximal 7-Monotone

quenceqa, }, {3, } satisfy the following conditions: Mappings
00 Mao-Ming Jin
0 < ay, B, <1(n>0), and Zan:oo.
=0 Title Page
Let {y,} be any sequence iff and defingle,, } by i
(
€n = ’ Ynt1 — {(1 — Qn)Yn + Qi |:In — g(xn) S dd
310 (g ) = pN (S, T2a)) | + anen | 12
(3.4) Go Back
\ + 7, (g(yn) = PN (S, Tyn))] + Butfn, QU
Page 14 of 29
forn=0,1,2,....
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In this section, we first prove the existence of a solution of probl2if) and
the convergence of an iterative sequence generated by Algotithm

Theorem 4.1.Letn : H x H — H be strongly monotone and Lipschitz con-
tinuous with constants and 7, respectively. Leb,7.G : H — CB(H) be
‘H-Lipschitz continuous with constants 3, v, respectivelyg : H — H be
pu-Lipschitz continuous and-strongly monotone. LeV : H x H — H be
Lipschitz continuous with respect to the first and second arguments with con-  Generalized Nonlinear Mixed

. . Quasi-Variational Inequalities
stants¢ and ¢, respectively, and : H — C'B(H) be strongly monotone with T aRngIMAXmAR o oTane
respect to the first argument of(-, -) with constant-. LetM : H x H — 2% Mappings

be a multivalued mapping such that for each fixed H, M(-,t) is maximal

Mao-Ming Jin
n-monotone. Suppose that there exist constantsO and < > 0 such that for
eachx,y,z € H,
Title Page
(4.1) ||J,£V[("x)(z) - J,y("y)(z)” < &llz —yll, Contents
and <4 >
(| mresa-mes | _ /0B (€02 —2F) (202 (1-h)%) < d
T(€2a2—(232 (E2a2—-(232 )
(€ ¢26%) (€ ¢2p%) Go Back
Tr > 0(1—h)(6 Close
(4.2) \/22_22 2 _52(1 = h)2 i
+/(§%a? = (262)(7 ( )?),  fa> (P, Quit
h=(1+0r"1)/1—-2v+p? Page 15 of 29
+ry, pr¢B < d(1—h), h<l.
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Then the iterative sequencgs, }, {z,}, {y,} and{z,} generated by Algorithm
1 converge strongly ta*, z*, y* and z*, respectively andu*, z*, y*, z*) is a
solution of problemZ.1).

Proof. It follows from (3.2), (4.1) and Lemma2.3that

[

= ||(1 — M) (tn = tn—1) + M[ttn — tn—1 — (g(tn) — g(tn—1))
+ 10 (g(wn) = pN (20, )
_J%("Z"71)<g<un—1) PN (Tp-1,Yn—1 m

< (L= Mun = una|l + Mun — un—1 = (g(tint1) — g(un))|
+ A [V (g(u) = pN (2, )
_J,ﬁw("zn)(g(un—l) - pN(xn—lyyn—l))H
+ A }}Jé\/[("zn)(g(un—l) — pN(Tn—1,Yn-1))
_Jéw("zn*l)(g(un—l) — pN(2p1, yn—l))”

< (1= N = wn—a || + Mlun — -1 = (g(un) = g(un-1))
A l9(0n) = gta1) = (N (2 9) = N1, g))|
+ Ak zn — Zn-1]|

< (1= Mun = upl

+ A (1 + g) [wn = vn—1 — (g(un) — g(un-1))||

Generalized Nonlinear Mixed

Quasi-Variational Inequalities
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T
+ )\g”un — Up—1 — p(N(xrwyn) - N(xnfla yn))”

-
(4.3) + AngN(xn—b Yn) = N(@p_1, Yn1)|| + M6l|2n — 20|

Sincey is strongly monotone and Lipschitz continuous, we obtain

|tn — tn—1 — (g(tin) — g(un—l))Hz

= [[un — 1

— _ — — 2 Generalized Nonlinear Mixed
2<un Un—1, g(un) g(unfl» T Hg(un) g(unfﬁ H Quasi-Variational Inequalities
(4.4) < (1 — v+ M2)||Un — Un—1||2~ Involving Maximal 7-Monotone
Mappings
Since S is ‘H-Lipschitz continuous and strongly monotone with respect to the Mao-Ming Jin

first argument ofV (-, -) and N is Lipschitz continuous with respect to the first
argument, we have

Title Page
Hun — Up—1 — p(N(lUn, yn) - N(xnfla yn))H2 Contents
= ||un _un—1||2 _2p<un_un—17N(xnayn) _N($n—1vyn)> <« >
+p2||N(xmyn) _N(In—layn)||2 < >
(4.5) < (1=2pr +p*€(1+ ")) uy — wa .
Go Back
Further, sincél’, G are H-Lipschitz continuous and/ is Lipschitz continuous ——
with respect to the second argument, we get
Quit
(4'6) ||N(‘/L‘TL—17 yn) - N<xn_17 yn_l)” S CHyn - yn—l” Page 17 of 29

< B+ [Jun = upal,
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(4.7) 12 = 2n-all < (L + 07 Jun — .

By (4.3) — (4.7), we obtain

ltn — Un_1]] < (T =X+ A1 +761)/1 =20 + p?

+ )\7'(5_1\/1 —2pr + p?&2(1 + n~1)2a?

+ )\pr(sflgﬁ(l + nil) + )\/W(l + nfl) Generalized Nonlinear Mixed
Quasi-Variational Inequalities
= (1 — A+ Ah, + )\tn(p)) ||un - un_1|| Involving Maximal - n-Monotone
(4.8) = Ot — ], Mappings
Mao-Ming Jin
where
B = (1+70)/1 =20+ p2+ ry(1+n"1), Title Page
ta(p) = 701 = 2pr 4+ p2€2(1 + n—1)2a2 + pré~'¢B(1+n"') and ContEns
O =1 — A+ Ny + Mulp). «“« 3
Lettingd = 1 — A+ Ah + At(p), where ¢ >
Go Back
h=0+710"Y1—-2v+pu2+ky and Close
Hp) = 767"V = 2pr + 0’ + pT6 (B, Quit
we have that,, — h, t,(p) — t(p) andf, — 6 asn — oo. It follows from Page 18 of 29

condition @.2) thatd < 1. Hence#d, < 1 for n sufficiently large. Therefore,
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(4.8) implies that{u, } is a Cauchy sequence fii and so we can assume that

u, — u* € H asn — oo. By the Lipschitz continuity of5, 7" andG we obtain

|20 — 2pa]] < (1 + (1 +n)"HYH(Sun, St 1)
< a(l+(1+n)"lun = unal,
19 = Ynaall < (14 (1 +n)" " YH(Tun, Tun1)
<AL+ (1 +n)"un = unal,
20 — 2zn_1|| < (14 (1 +n) " YH(Gup, Gup_y)
<A1+ (1+ n>_1)”un — Up—1]|-
It follows that{z,}, {y.} and{z,} are also Cauchy sequencesHn We can

assume that, — z*, y, — y* andz, — z*, respectively. Note that for
r, € Su,, we have

d(z*, Su*) < ||z* — z,|| + d(zy, Su™)

< ||z* = x| + H(Sup, Su*)

< |Jz" = x| + offun — ]| — 0,
asn — oo. Hence we must have* € Su*. Similarly, we can show that
y* € Tu* andz* € Gu*. From

tn1 = (1= Ny + A [un = glun) + 13705 (g(un) = pN (2, ya))]
it follows that
g(u) = 1" (g(u") — pN(a*, 7).

By Lemma3.1, (u*, z*, y*, 2*) is a solution of problemZ.1). This completes
the proof. n
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Remark 3. For an appropriate and suitable choice of the mappingsV, S,
T,G, g, M and the spacéf, we can obtain several known results if},[[ 3],
[5]=12], [14], [ 18] —[27], [ 24] — [ 26] as special cases of Theorefrl

Now we prove the convergence and stability of the iterative sequence gener-
ated by the Algorithn®.

Theorem 4.2.Letn : H x H — H be strongly monotone and Lipschitz con-
tinuous with constants and r, respectively. Leb, T : H — H be Lipschitz
continuous with constants, 3, respectivelyg : H — H be p-Lipschitz contin- Generalized Nonlinear Mixed
uous andv-strongly monotone. LeV : H x H — H be Lipschitz continuous Qu?s_i-variatisma: Inequalities
with respect to the first and second arguments with constaatsl ¢, respec- e

Mappings
tively, andS : H — H be strongly monotone with respect to the first argument -
of N(-,-) with constant. LetM : H x H — 2" be a multivalued mapping e
such that for each fixetl e H, M(-,t) is maximalp-monotone. Suppose that
there exist constanys > 0 andx > 0 such that for each, y, z € H, Title Page
@9) [2°62) = 2P| < wlle =y, Contents
and 44 44

(| mrsa-mes | A/rra(-meBE—(€a?—CF) (02 (1-h)?) < 4
T(€2a2—(232 (€202 (232 )
(£2a2-(25?) (£2a2-(25?) Go Back
r > §(1—h)(0 Close
(4.10) +/(@aT =P P == 1), o> (B Qi
h= (1401 —2v+ 12 + &, Page 20 of 29
\ pr¢B < 6(1—h), h<l1.
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If lim ||e,|| =0, lim ||f,]| =0, then
(I) The sequencéu, } defined by Algorithn? converges strongly to the unique
solutionu* of problem @.3).
() If > €, < oo, then lim y,, = u*.

(m If lim y, = u*, thenlim ¢, = 0.

n—oo

Proof. (I) It follows from Theorem4.1 that there exists* € H which is a
solution of problemZ.3) and so

(4.11) g(u”) = IO (g(u*) = pN(Su*, Tu")).
From @.9), (4.11) and Algorithmz2, it follows that

[t a1 — u”||
‘(1 — ap)(up —u*) — oy [vn —u* — (g(vy,) — g(u"))
T (g(0,) = PN (S, Ton)
= M g(u') = pN(Su" Tu))| + e
< (1= an)lfun — u*| + anflvn —u* = (g(va) — g(u”))]| + anllenl]
Ty (g(va) = pN(Sva, Tv,))

+ a,

— I (g(u) — pN(Su”, Tu)
+ ay, HJéM("”")(g(u*) — pN(Su*, Tu"))
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— ) (g(w) — pN(Su*, Tu®)) ||
< (1 = a)lfun — u*|| 4 anllvy — u* = (g(vn) — g(u"))|| + anllen]
T
+angllg(vn) = g(u”) = p(N (S, Tvn) — N(Su”, Tu"))|

+ apkllv, — u*|
< (1= an)Jun — u|
+an (14 3) llun =" = (9(0a) = g(u))l| + anleal
+ a,%uun — " — p(N(Svn, Tv,) — N(Su*, Tv,))|
(4.12) + anp%HN(Su*, Tuv,) — N(Su*, Tu")|| + ant||vn — u*|.

By the Lipschitz continuity ofV, S, T', ¢ and the strong monotonicity ¢f and
g, we obtain

(4.13) lvn = = (g(vn) — g(W)II* < (1 =20 + p?)lvn — "%,

(4.14) ||v, —u* — p(N(Svy,, Tv,) — N(Su*,Tvn))H2
< (1 =2pr + p*&0?) vy — '],

(4.15) IN(Su*, Tv,) — N(Su*, Tu*))|| < CBllo, — u”]|.
It follows from (4.12) — (4.19) that

(4.16) |tn g1 — U*” <(1- an)”un - U*H + QoanUn - U*H + an”enH»
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where

0=r+ (1+70 )1 =20+ p24+7671/1 = 2pr + p2€2a2 + prd~ (B

Similarly, we have

4.17)  lon — [ < (= Bo)llun — w[[ + 0Bnllun — @[ + Ball full-
From (4.16 and @.17), we have

[tnsr — wl| < [1 = (1 = 0)(1+ 08:)]llun — u|| + nfBb|| full + cnllenl]
Condition @.10 implies that) < 6 < 1, and so
(4.18) [t — | < [1 = an(l = 0)]flun — vl + an(l = 0)dy,

whered,, = (3.0 f.|| +|lex]])(1—0)"1 — 0, asn — oc. It follows from (4.18
and Lemmé&.1thatu,, — u* asn — oo.

Now we prove that.* is a unique solution of problen2(3). In fact, if u is
also a solution of problen®(3), then

g(u) = J;" (g(u) — pN(Su, Tu)),
and, as the proof o#(16), we have

[ = ul} < Oju” = ul],

where0 < # < 1 and sou* = u. This completes the proof of Conclusion (I).
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Next we prove Conclusion (I1). Usin@(4) we obtain

[ |
< ||yn+1 - {(1 — )Yn + an[ Tn — 9(Tn)
+ IO (g(wn) = pN (Sza, Ta))] + anen |
+[[(1 = an)yn + an [z, — gl@n)
+ I (g(20) = pN (S, Tn))] + anen — u”|
(4.19) = [|[(1 — an)yn + an [2n — g(z)
+ I g(0) = pN (S, Ta))] + anen — || + e

As the proof of inequality4.18, we have
(4.20) ||(1 = on)yn + an[2n — g(an)

+ Jy("x")(g(xn) — pN(Sz,, Txy))] + e, — u'
< (1= an(1=0)||yn — u*|| + an(1 — 0)d,.

It follows from (4.19 and @.20) that
(4.21)  lynr =o' < (A = an(1 = 0))llyn — u*|| + an(l = 0)dn + €.

Since)” " je, < 00, d, — 0,andd ° «, < oco. It follows that ¢.21) and
Lemma2.1that lim y, = u*.

n—oo
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Now we prove Conclusion (lll). Suppose thhain y,, = «*. Then we have

€, = HynH — (1= an)yn + an| 0
—g(x,) + Jéw("x")(g(mn) — pN (S, Ty))] + anen|
< lgngr — w4 || (1 = an)yn + o [2n
—g(x,) + Jéw("z”)(g(xn) — pN(Sz,, Txn))] + ape, — u”
< [ynr — 'l + (1 = an(1 = 0))[lyn — v”|| + (1 = O)dr, — 0

asn — oo. This completes the proof. O
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