Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 2, Article 35, 2004

SOME NORMALITY CRITERIA

INDRAJIT LAHIRI AND SHYAMALI DEWAN
Department of Mathematics
University of Kalyani
West Bengal 741235, India.
indrajit@cal2.vsnl.net.in
Department of Mathematics
University of Kalyani
West Bengal 741235, India.

Received 12 October, 2003; accepted 01 January, 2004
Communicated by H.M. Srivastava

AbStract. In the paper we prove some sufficient conditions for a family of meromorphic functions to be normal in a domain.

Key words and phrases: Meromorphic function, Normality.
2000 Mathematics Subject Classification Primary 30D45, Secondary 30D35.

1. Introduction and Results

Let \mathbb{C} be the open complex plane and $\mathcal{D} \subset \mathbb{C}$ be a domain. A family \mathcal{F} of meromorphic functions defined in \mathcal{D} is said to be normal, in the sense of Montel, if for any sequence $f_{n} \in \mathcal{F}$ there exists a subsequence $f_{n_{j}}$ such that $f_{n_{j}}$ converges spherically, locally and uniformly in \mathcal{D} to a meromorphic function or ∞.
\mathcal{F} is said to be normal at a point $z_{0} \in \mathcal{D}$ if there exists a neighbourhood of z_{0} in which \mathcal{F} is normal. It is well known that \mathcal{F} is normal in \mathcal{D} if and only if it is normal at every point of \mathcal{D}.

It is an interesting problem to find out criteria for normality of a family of analytic or meromorphic functions. In recent years this problem attracted the attention of a number of researchers worldwide.

In 1969 D. Drasin [5] proved the following normality criterion.
Theorem A. Let \mathcal{F} be a family of analytic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. If for every $f \in \mathcal{F}, f^{\prime}-a f^{n}-b$ has no zero then \mathcal{F} is normal, where $n(\geq 3)$ is an integer.

Chen-Fang [2] and Ye [21] independently proved that Theorem A also holds for $n=2$. A number of authors $\{\mathrm{cf}$. [3, 11, 12, 13, 16, 24] $\}$ extended Theorem A to a family of meromorphic functions in a domain. Their results can be combined in the following theorem.

[^0]Theorem B. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. If for every $f \in \mathcal{F}$, $f^{\prime}-a f^{n}-b$ has no zero then \mathcal{F} is normal, where $n(\geq 3)$ is an integer.

Li [12], Li [13] and Langley [11] proved Theorem B for $n \geq 5$, Pang [16] proved for $n=4$ and Chen-Fang [3], Zalcman [24] proved for $n=3$. Fang-Yuan [6] showed that Theorem B does not, in general, hold for $n=2$. For the case $n=2$ they [6] proved the following result.
Theorem C. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. If $f^{\prime}-a f^{2}-b$ has no zero and f has no simple and double pole for every $f \in \mathcal{F}$ then \mathcal{F} is normal.

Fang-Yuan [6] mentioned the following example from which it appears that the condition for each $f \in \mathcal{F}$ not to have any simple and double pole is necessary for Theorem \mathbb{C}.
Example 1.1. Let $f_{n}(z)=n z(z \sqrt{n}-1)^{-2}$ for $n=1,2, \ldots$ and $\mathcal{D}:|z|<1$. Then each f_{n} has only a double pole and a simple zero. Also $f_{n}^{\prime}+f_{n}^{2}=n(z \sqrt{n}-1)^{-4} \neq 0$. Since $f_{n}^{\#}(0)=n \rightarrow \infty$ as $n \rightarrow \infty$, it follows from Marty's criterion that $\left\{f_{n}\right\}$ is not normal in \mathcal{D}.

However, the following example suggests that the restriction on the poles of $f \in \mathcal{F}$ may be relaxed at the cost of some restriction imposed on the zeros of $f \in \mathcal{F}$.
Example 1.2. Let $f_{n}(z)=n z^{-2}$ for $n=3,4, \ldots$ and $\mathcal{D}:|z|<1$. Then each f_{n} has only a double pole and no simple zero. Also we see that $f_{n}^{\prime}+f_{n}^{2}=n(n-2 z) z^{-4} \neq 0$ in \mathcal{D}. Since

$$
f_{n}^{\#}(z)=\frac{2 n|z|}{|z|^{2}+n^{2}} \leq \frac{2}{n}<1
$$

in \mathcal{D}, it follows from Marty's criterion that the family $\left\{f_{n}\right\}$ is normal in \mathcal{D}.
Now we state the first theorem of the paper.
Theorem 1.1. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} such that no $f \in \mathcal{F}$ has any simple zero and simple pole. Let

$$
E_{f}=\left\{z: z \in \mathcal{D} \text { and } f^{\prime}(z)-a f^{2}(z)=b\right\},
$$

where $a(\neq 0)$, b are two finite numbers.
If there exists a positive number M such that for every $f \in \mathcal{F},|f(z)| \leq M$ whenever $z \in E_{f}$, then \mathcal{F} is normal.

The following examples together with Example 1.1 show that the condition of Theorem 1.1 on the zeros and poles are necessary.
Example 1.3. Let $f_{n}(z)=n \tan n z$ for $n=1,2, \ldots$ and $\mathcal{D}:|z|<\pi$. Then f_{n} has only simple zeros and simple poles. Also we see that $f_{n}^{\prime}-f_{n}^{2}=n^{2} \neq 0$. Since $f_{n}^{\#}(0)=n^{2} \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal.
Example 1.4. Let $f_{n}(z)=\left(1+e^{2 n z}\right)^{-1}$ for $n=1,2, \ldots$ and $\mathcal{D}:|z|<1$. Then f_{n} has no simple zero and no multiple pole. Also we see that $f_{n}^{\prime}+f_{n}^{2} \neq 1$. Since $f_{n}^{\#}(0)=\frac{2 n}{3} \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal.

Drasin [18, p. 130] also proved the following normality criterion which involves differential polynomials.
Theorem D. Let \mathcal{F} be a family of analytic functions in a domain \mathcal{D} and $a_{0}, a_{1}, \ldots, a_{k-1}$ be finite constants, where k is a positive integer. Let

$$
H(f)=f^{(k)}+a_{k-1} f^{(k-1)}+\ldots+a_{1} f^{(1)}+a_{0} f .
$$

If for every $f \in \mathcal{F}$
(i) f has no zero,
(ii) $H(f)-1$ has no zero of multiplicity less than $k+2$,
then \mathcal{F} is normal.
Recently Fang-Yuan [6] proved that Theorem D remains valid even if $H(f)-1$ has only multiple zeros for every $f \in \mathcal{F}$. In the next theorem we extend Theorem D to a family of meromorphic functions which also improves a result of Fang-Yuan [6].
Theorem 1.2. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and

$$
H(f)=f^{(k)}+a_{k-1} f^{(k-1)}+\ldots+a_{1} f^{(1)}+a_{0} f
$$

where $a_{0}, a_{1}, \ldots, a_{k-1}$ are finite constants and k is a positive integer.
Let

$$
E_{f}=\{z: z \in \mathcal{D} \text { and } z \text { is a simple zero of } H(f)-1\} .
$$

If for every $f \in \mathcal{F}$
(i) f has no pole of multiplicity less than $3+k$,
(ii) f has no zero,
(iii) there exists a positive constant M such that $|f(z)| \geq M$ whenever $z \in E_{f}$,
then \mathcal{F} is normal.
The following examples show that conditions (ii) and (iii) of Theorem 1.2 are necessary, leaving the question of necessity of the condition (i) as open.
Example 1.5. Let $f_{n}(z)=n z$ for $n=2,3, \ldots, \mathcal{D}:|z|<1, H(f)=f^{\prime}-f$ and $M=\frac{1}{2}$. Then each f_{n} has a zero at $z=0$ and $E_{f_{n}}=\left\{1-\frac{1}{n}\right\}$ for $n=2,3, \ldots$. So $\left|f\left(1-\frac{1}{n}\right)\right|=n-1 \geq M$ for $n=2,3, \ldots$. Since $f_{n}^{\#}(0)=n \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathcal{D}.
Example 1.6. Let $f_{n}(z)=e^{n z}$ for $n=2,3, \ldots, \mathcal{D}:|z|<1$ and $H(f)=f^{\prime}-f$. Then each f_{n} has no zero and $E_{f_{n}}=\left\{z: z \in \mathcal{D}\right.$ and $\left.(n-1) e^{n z}=1\right\}$ for $n=2,3, \ldots$. Also we see that for $z \in E_{f_{n}},\left|f_{n}(z)\right|=\frac{1}{n-1} \rightarrow 0$ as $n \rightarrow \infty$. Since $f_{n}^{\#}(0)=\frac{n}{2} \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathcal{D}.

In connection to Theorem A Chen-Fang [3] proposed the following conjecture:
Conjecture 1.3. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D}. Iffor every function $f \in \mathcal{F}, f^{(k)}-a f^{n}-b$ has no zero in \mathcal{D} then \mathcal{F} is normal, where $a(\neq 0)$, b are two finite numbers and $k, n(\geq k+2)$ are positive integers.

In response to this conjecture Xu [23] proved the following result.
Theorem E. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite constants. If k and n are positive integers such that $n \geq k+2$ and for every $f \in \mathcal{F}$
(i) $f^{(k)}-a f^{n}-b$ has no zero,
(ii) f has no simple pole,
then \mathcal{F} is normal.
The condition (ii) of Theorem E can be dropped if we choose $n \geq k+4$ (cf. [15, 17]). Also some improvement of Theorem E can be found in [22]. In the next theorem we investigate the situation when the power of f is negative in condition (i) of Theorem E.
Theorem 1.4. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. Suppose that $E_{f}=\left\{z: z \in \mathcal{D}\right.$ and $\left.f^{(k)}(z)+a f^{-n}(z)=b\right\}$, where $k, n(\geq k)$ are positive integers.

Iffor every $f \in \mathcal{F}$
(i) f has no zero of multiplicity less than k,
(ii) there exists a positive number M such that for every $f \in \mathcal{F},|f(z)| \geq M$ whenever $z \in E_{f}$,
then \mathcal{F} is normal.
Following examples show that the conditions of Theorem 1.4 are necessary.
Example 1.7. Let $f_{p}(z)=p z^{2}$ for $p=1,2, \ldots$ and $\mathcal{D}:|z|<1, n=k=3, a=1, b=0$. Then f_{p} has only a double zero and $E_{f_{p}}=\emptyset$. Since $f_{p}(0)=0$ and for $z \neq 0, f_{p}(z) \rightarrow \infty$ as $p \rightarrow \infty$, it follows that the family $\left\{f_{p}\right\}$ is not normal.
Example 1.8. Let $f_{p}(z)=p z$ for $p=1,2, \ldots$ and $\mathcal{D}:|z|<1, n=k=1$. Then f_{p} has simple zero at the origin and for any two finite numbers $a(\neq 0), b, E_{f_{p}}=\{a / p(b-p)\}$ so that $\left|f_{p}(z)\right| \rightarrow 0$ as $p \rightarrow \infty$ whenever $z \in E_{f_{p}}$. Since $f_{p}^{\#}(0)=p \rightarrow \infty$ as $p \rightarrow \infty$, by Marty's criterion the family $\left\{f_{p}\right\}$ is not normal.
For the standard definitions and notations of the value distribution theory we refer to [8, 18].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Lemma 2.1. [1] Let f be a transcendental meromorphic function of finite order in \mathbb{C}. If f has no simple zero then f^{\prime} assumes every non-zero finite value infinitely often.
Lemma 2.2. [10] Let f be a nonconstant rational function in \mathbb{C} having no simple zero and simple pole. Then f^{\prime} assumes every non-zero finite value.

The following lemma can be proved in the line of [9].
Lemma 2.3. Let f be a meromorphic function in \mathbb{C} such that $f^{(k)} \not \equiv 0$. Suppose that $\psi=$ $f^{n} f^{(k)}$, where k, n are positive integers. If $n>k=2$ or $n \geq k \geq 3$ then

$$
\left\{1-\frac{1+k}{n+k}-\frac{n(1+k)}{(n+k)(n+k+1)}\right\} T(r, \psi) \leq \bar{N}(r, a ; \psi)+S(r, \psi)
$$

where $a(\neq 0, \infty)$ is a constant.
Lemma 2.4. [19] Let f be a transcendental meromorphic function in \mathbb{C} and $\psi=f^{n} f^{(2)}$, where $n(\geq 2)$ is an integer. Then

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, a ; \psi)}{T(r, \psi)}>0
$$

where $a(\neq 0, \infty)$ is a constant.
The following lemma is a combination of the results of [3, 7, 14].
Lemma 2.5. Let f be a transcendental meromorphic function in \mathbb{C}. Then $f^{n} f^{\prime}$ assumes every non-zero finite value infinitely often, where $n(\geq 1)$ is an integer.
Lemma 2.6. Let f be a non-constant rational function in \mathbb{C}. Then $f^{n} f^{\prime}$ assumes every non-zero finite value.
Proof. Let $g=f^{n+1} /(n+1)$. Then g is a nonconstant rational function having no simple zero and simple pole. So by Lemma $2.2 g^{\prime}=f^{n} f^{\prime}$ assumes every non-zero finite value. This proves the lemma.

Lemma 2.7. Let f be a rational function in \mathbb{C} such that $f^{(2)} \not \equiv 0$. Then $\psi=f^{2} f^{(2)}$ assumes every non-zero finite value.

Proof. Let $f=p / q$, where p, q are polynomials of degree m, n respectively and p, q have no common factor.

Let a be a non-zero finite number. We now consider the following cases.
Case 1. Let $m=n$. Then $f=\alpha+p_{1} / q$, where α is a constant and p_{1} is a polynomial of degree $m_{1}<n$.
Now

$$
f^{\prime}=\frac{p_{1}^{\prime} q-p_{1} q^{\prime}}{q^{2}}=\frac{p_{2}}{q_{2}}, \text { say, }
$$

where p_{2} and q_{2} are polynomials of degree $m_{2}=m_{1}+n-1$ and $n_{2}=2 n$. Also we note that $m_{2}<n_{2}$. Hence

$$
f^{\prime \prime}=\frac{p_{2}^{\prime} q_{2}-p_{2} q_{2}^{\prime}}{q_{2}^{2}}=\frac{p_{3}}{q_{3}}, \text { say },
$$

where p_{3} and q_{3} are polynomials of degree $m_{3}=m_{2}+n_{2}-1=m_{1}+3 n-2$ and $n_{3}=2 n_{2}=4 n$. Also we see that $m_{3}<n_{3}$.

Let $\psi=f^{2} f^{(2)}=P / Q$. Then P, Q are polynomials of degree $2 m+m_{3}$ and $2 n+n_{3}$ respectively and $2 m+m_{3}<2 n+n_{3}$. Therefore ψ is nonconstant.

Now $\psi-a=(P-a Q) / Q$ and the degree of $P-a Q$ is equal to the degree of Q. If $\psi-a$ has no zero then $P-a Q$ and Q share $0 C M$ (counting multiplicites) and so $P-a Q \equiv A Q$, where A is a constant. Therefore $\psi=A-a$, which is impossible. So $\psi-a$ must have some zero.

Case 2. Let $m=n+1$. Then

$$
f=\alpha z+\beta+\frac{p_{1}}{q},
$$

where α, β are constants and p_{1} is a polynomial of degree $m_{1}<n$.
Now $f^{\prime \prime}=p_{3} / q_{3}$, where p_{3} and q_{3} are polynomials of degree $m_{3}=m_{1}+3 n-2$ and $n_{3}=4 n$ respectively and $m_{3}<n_{3}$.
If $\psi=P / Q$ then P, Q are polynomials of degree $2 m+m_{3}$ and $2 n+n_{3}$ respectively. We see that $2 m+m_{3}=5 n+m_{1}<6 n=2 n+n_{3}$ and so ψ is nonconstant. Therefore as Case $1 \psi-a$ must have some zero.

Case 3. Let $m \neq n, n+1$. Then

$$
f^{\prime}=\frac{p q^{\prime}-p^{\prime} q}{q^{2}}=\frac{p_{4}}{q_{4}}, \text { say },
$$

where p_{4}, q_{4} are polynomials of degree $m_{4}=m+n-1$ and $n_{4}=2 n$. Also we note that $m_{4} \neq n_{4}$.

Hence

$$
f^{\prime \prime}=\frac{p_{4}^{\prime} q_{4}-p_{4} q_{4}^{\prime}}{q_{4}^{2}}=\frac{p_{5}}{q_{5}}, \text { say },
$$

where p_{5}, q_{5} are polynmials of degree $m_{5}=m_{4}+n_{4}-1=m+3 n-2$ and $n_{5}=2 n_{4}=4 n$.
If $\psi=P / Q$ then P, Q are polynomials of degree $2 m+m_{5}$ and $2 n+n_{5}$ respectively. Clearly $2 m+m_{5} \neq 2 n+n_{5}$ because otherwise $m=n+2 / 3$, which is impossible. So ψ is nonconstant. Also we see that $\psi-a=(P-a Q) / Q$, where the degree of $P-a Q$ is not less than that of Q. If $\psi-a$ has no zero then as per Case $\square \psi$ becomes a constant, which is impossible. So $\psi-a$ must have some zero. This proves the lemma.

Lemma 2.8. Let f be a meromorphic function in \mathbb{C} such that $f^{(k)} \not \equiv 0$ and $a(\neq 0)$ be a finite constant. Then $f^{(k)}+a f^{-n}$ must have some zero, where k and $n(\geq k)$ are positive integers.

Proof. First we assume that $k=1$. Then by Lemmas 2.5 and 2.6 we see that $f^{n} f^{\prime}+a$ must have some zero. Since a zero of $f^{n} f^{\prime}+a$ is not a pole or a zero of f, it follows that a zero of $f^{n} f^{\prime}+a$ is a zero of $f^{\prime}+a f^{-n}$.

Now we assume that $k=2$. Then by Lemmas 2.3, 2.4 and 2.7 we see that $f^{n} f^{(2)}+a$ must have some zero. As the preceding paragraph a zero of $f^{n} f^{(2)}+a$ is a zero of $f^{(2)}+a f^{-n}$.

Finally we assume that $k \geq 3$. Then by Lemma $2.3 f^{n} f^{(k)}+a$ must have some zero. Since a zero of $f^{n} f^{(k)}+a$ is a zero of $f^{(k)}+a f^{-n}$, the lemma is proved.

Lemma 2.9. Let f be a nonconstant meromorphic function in \mathbb{C} such that f has no zero and has no pole of multiplicity less than $3+k$. Then $f^{(k)}-1$ must have some simple zero, where k is a positive integer.

Proof. Since $N\left(r, f^{(k)}\right)=N(r, f)+k \bar{N}(r, f)$ and $m\left(r, f^{(k)}\right) \leq m(r, f)+S(r, f)$, we get

$$
\begin{aligned}
T\left(r, f^{(k)}\right) & \leq T(r, f)+k \bar{N}(r, f)+S(r, f) \\
& \leq T(r, f)+\frac{k}{3+k} N(r, f)+S(r, f) \\
& \leq \frac{3+2 k}{3+k} T(r, f)+S(r, f)
\end{aligned}
$$

Since f has no zero and no pole of multiplicity less than $3+k$, we get by Milloux inequality ([8, p. 57])

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+\bar{N}\left(r, 1 ; f^{(k)}\right)+S(r, f) \\
& \leq \frac{1}{3+k} T(r, f)+\bar{N}\left(r, 1 ; f^{(k)}\right)+S(r, f)
\end{aligned}
$$

If possible, suppose that $f^{(k)}-1$ has no simple zero. Then we get from above

$$
\begin{aligned}
T(r, f) & \leq \frac{1}{3+k} T(r, f)+\frac{1}{2} N\left(r, 1 ; f^{(k)}\right)+S(r, f) \\
& \leq\left\{\frac{1}{3+k}+\frac{3+2 k}{2(3+k)}\right\} T(r, f)+S(r, f)
\end{aligned}
$$

and so

$$
\frac{1}{2(3+k)} T(r, f) \leq S(r, f)
$$

a contradiction. This proves the lemma.
Lemma 2.10. [4, 20] Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and let the zeros of f be of multiplicity not less than k (a positive integer) for each $f \in \mathcal{F}$. If \mathcal{F} is not normal at $z_{0} \in \mathcal{D}$ then for $0 \leq \alpha<k$ there exist a sequence of complex numbers $z_{j} \rightarrow z_{0}$, a sequence of functions $f_{j} \in \mathcal{F}$, and a sequence of positive numbers $\rho_{j} \rightarrow 0$ such that

$$
g_{j}(\zeta)=\rho_{j}^{-\alpha} f_{j}\left(z_{j}+\rho_{j} \zeta\right)
$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C}. Moreover the order of g is not greater than two and the zeros of g are of multiplicity not less than k.

Note 1. If each $f \in \mathcal{F}$ has no zero then g also has no zero and in this case we can choose α to be any finite real number.

3. Proofs of the Theorems

In this section we discuss the proofs of the theorems.
Proof of Theorem [1.1. If possible suppose that \mathcal{F} is not normal at $z_{0} \in \mathcal{D}$. Then $\mathcal{F}_{1}=\{1 / f$: $f \in \mathcal{F}\}$ is not normal at $z_{0} \in \mathcal{D}$. Let $\alpha=1$. Then by Lemma 2.10 there exist a sequence of functions $f_{j} \in \mathcal{F}$, a sequence of complex numbers $z_{j} \rightarrow z_{0}$ and a sequence of positive numbers $\rho_{j} \rightarrow 0$ such that

$$
g_{j}(\zeta)=\rho_{j}^{-1} f_{j}^{-1}\left(z_{j}+\rho_{j} \zeta\right)
$$

converges spherically and locally uniformly to a nonconstant meromorphic fucntion $g(\zeta)$ in \mathbb{C}. Also the order of g does not exceed two and g has no simple zero. Again by Hurwitz's theorem g has no simple pole.

By Lemmas 2.1 and 2.2 we see that there exists $\zeta_{0} \in \mathbb{C}$ such that

$$
\begin{equation*}
g^{\prime}\left(\zeta_{0}\right)+a=0 . \tag{3.1}
\end{equation*}
$$

Since ζ_{0} is not a pole of g, it follows that $g_{j}(\zeta)$ converges uniformly to $g(\zeta)$ in some neighbourhood of ζ_{0}. We also see that $\frac{-1}{g^{2}(\zeta)}\left\{g^{\prime}(\zeta)+a\right\}$ is the uniform limit of $\rho_{j}^{2}\left\{f_{j}^{\prime}-a f_{j}^{2}-b\right\}$ in some neighbourhood of ζ_{0}.

In view of (3.1) and Hurwitz's theorem there exists a sequence $\zeta_{j} \rightarrow \zeta_{0}$ such that $f_{j}^{\prime}\left(\zeta_{j}\right)-$ $a f_{j}^{2}\left(\zeta_{j}\right)-b=0$. So by the given condition

$$
\left|g_{j}\left(\zeta_{j}\right)\right|=\frac{1}{\rho_{j}} \cdot \frac{1}{\left|f_{j}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right|} \geq \frac{1}{\rho_{j} M} .
$$

Since ζ_{0} is not a pole of g, there exists a positive number K such that in some neighbourhood of ζ_{0} we get $|g(\zeta)| \leq K$.

Since $g_{j}(\zeta)$ converges uniformly to $g(\zeta)$ in some neighbourhood of ζ_{0}, we get for all large values of j and for all ζ in that neighbourhood of ζ_{0}

$$
\left|g_{j}(\zeta)-g(\zeta)\right|<1
$$

Since $\zeta_{j} \rightarrow \zeta$, we get for all large values of j

$$
K \geq\left|g\left(\zeta_{j}\right)\right| \geq\left|g_{j}\left(\zeta_{j}\right)\right|-\left|g\left(\zeta_{j}\right)-g_{j}\left(\zeta_{j}\right)\right|>\frac{1}{\rho_{j} M}-1
$$

which is a contradiction. This proves the theorem.
Proof of Theorem 1.2. Let $\alpha=k$. If possible suppose that \mathcal{F} is not normal at $z_{0} \in \mathcal{D}$. Then by Lemma 2.10 and Note η there exists a sequence of functions $f_{j} \in \mathcal{F}$, a sequence of complex numbers $z_{j} \rightarrow z_{0}$ and a sequence of positive numbers $\rho_{j} \rightarrow 0$ such that

$$
g_{j}(\zeta)=\rho_{j}^{-k} f_{j}\left(z_{j}+\rho_{j} \zeta\right)
$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C}. Now by conditions (i) and (ii) and by Hurwitz's theorem we see that $g(\zeta)$ has no zero and has no pole of multiplicity less than $3+k$.

Now by Lemma $2.9 g^{(k)}(\zeta)-1$ has a simple zero at a point $\zeta_{0} \in \mathbb{C}$. Since ζ_{0} is not a pole of $g(\zeta)$, in some neighbourhood of $\zeta_{0}, g_{j}(\zeta)$ converges uniformly to $g(\zeta)$.

Since

$$
\begin{aligned}
g_{j}^{(k)}(\zeta)-1+\sum_{i=0}^{k-1} a_{i} \rho_{j}^{k-i} g_{j}^{(i)}(\zeta) & =f_{j}^{(k)}\left(z_{j}+\rho_{j} \zeta\right)+\sum_{i=0}^{k-1} a_{i} f_{j}^{(i)}\left(z_{j}+\rho_{j} \zeta\right)-1 \\
& =H\left(f_{j}\left(z_{j}+\rho_{j} \zeta\right)\right)-1
\end{aligned}
$$

and $\sum_{i=0}^{k-1} a_{i} \rho_{j}^{k-i} g_{j}^{(i)}(\zeta)$ converges uniformly to zero in some neighbourhood of ζ_{0}, it follows that $g^{(k)}(\zeta)-1$ is the uniform limit of $H\left(f_{j}\left(z_{j}+\rho_{j} \zeta\right)\right)-1$.

Since ζ_{0} is a simple zero of $g^{(k)}(\zeta)-1$, by Hurwitz's theorem there exists a sequence $\zeta_{j} \rightarrow \zeta_{0}$ such that ζ_{j} is a simple zero of $H\left(f_{j}\left(z_{j}+\rho_{j} \zeta\right)\right)-1$. So by the given condition $\left|f_{j}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right| \geq$ M for all large values of j.

Hence for all large values of j we get $\left|g_{j}\left(\zeta_{j}\right)\right| \geq M / \rho_{j}^{k}$ and as the last part of the proof of Theorem [1.1] we arrive at a contradiction. This proves the theorem.

Proof of Theorem 1.4. Let $\alpha=k /(1+n)<1$. If possible suppose that \mathcal{F} is not normal at $z_{0} \in \mathcal{D}$. Then by Lemma 2.10 there exist a sequence of functions $f_{j} \in \mathcal{F}$, a sequence of complex numbers $z_{j} \rightarrow z_{0}$ and a sequence of positive numbers $\rho_{j} \rightarrow 0$ such that

$$
g_{j}(\zeta)=\rho_{j}^{-\alpha} f_{j}\left(z_{j}+\rho_{j} \zeta\right)
$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C}. Also g has no zero of multiplicity less than k. So $g^{(k)} \not \equiv 0$ and by Lemma 2.8 we get

$$
\begin{equation*}
g^{(k)}\left(\zeta_{0}\right)+\frac{a}{g^{n}\left(\zeta_{0}\right)}=0 \tag{3.2}
\end{equation*}
$$

for some $\zeta_{0} \in \mathbb{C}$.
Clearly ζ_{0} is neither a zero nor a pole of g. So in some neighbourhood of $\zeta_{0}, g_{j}(\zeta)$ converges uniformly to $g(\zeta)$.

Now in some neighbourhood of ζ_{0} we see that $g^{(k)}(\zeta)+a g^{-n}(\zeta)$ is the uniform limit of

$$
g_{j}^{(k)}+a g_{j}^{-n}(\zeta)-\rho_{j}^{n \alpha} b=\rho_{j}^{\frac{n k}{1+n}}\left\{f_{j}^{(k)}\left(z_{j}+\rho_{j} \zeta\right)+a f_{j}^{-n}\left(z_{j}+\rho_{j} \zeta\right)-b\right\} .
$$

By (3.2) and Hurwitz's theorem there exists a sequence $\zeta_{j} \rightarrow \zeta_{0}$ such that for all large values of j

$$
f_{j}^{(k)}\left(z_{j}+\rho_{j} \zeta_{j}\right)+a f_{j}^{-n}\left(z_{j}+\rho_{j} \zeta_{j}\right)=b
$$

Therefore for all large values of j it follows from the given condition $\left|g_{j}\left(\zeta_{j}\right)\right| \geq M / \rho_{j}^{\alpha}$ and as in the last part of the proof of Theorem 1.1 we arrive at a contradiction. This proves the theorem.

References

[1] W. BERGWEILER AND A. EREMENKO, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11(2) (1995), 355-373.
[2] H. CHEN and M. FANG, On a theorem of Drasin, Adv. in Math. (China), 20 (1991), 504.
[3] H. CHEN AND M. FANG, The value distribution of $f^{n} f^{\prime}$, Science in China (Ser.A), 38(7) (1995), 121-127.
[4] H. CHEN, Yosida functions and Picard values of integral functions and their derivatives, Bull. Austral. Math. Soc., 54 (1996), 373-384.
[5] D. DRASIN, Normal families and Nevanlinna theory, Acta Math., 122 (1969), 231-263.
[6] M. FANG and W. YUAN, On the normality for families of meromorphic functions, Indian J. Math., 43(3) (2001), 341-351.
[7] W.K. HAYMAN, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9-42.
[8] W.K. HAYMAN, Meromorphic Functions, The Clarendon Press (1964).
[9] I. LAHIRI AND S. DEWAN, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26(1) (2003), 95-100.
[10] I. LAHIRI, A simple normality criterion leading to a counterexample to the converse of Bloch principle, New Zealand J. Math., (to appear).
[11] J.K. LANGLEY, On normal families and a result of Drasin, Proc. Royal Soc. Edinburgh, 98A (1984), 385-393.
[12] S. LI, The normality criterion of a class of the functions, J. East China Normal Univ., 2 (1984), 156-158.
[13] X. LI, The proof of Hayman's conjecture on normal families, Sci. Sinica (Ser. A), 28(6) (1985), 569-603.
[14] E. MUES, Über ein problem von Hayman, Math. Z., 164 (1979), 239-259.
[15] X. PANG, Criteria for normality about differential polynomial, Chin. Sci. Bull., 22 (1988), 16901693.
[16] X. PANG, On normal criterion of meromorphic fucntions, Sci. Sinica, 33(5) (1990), 521-527.
[17] W. SCHWICK, Normality criteria for families of meromorphic functions, J. Analyse Math., 52 (1989), 241-289.
[18] J.L. SCHIFF, Normal Families, Springer-Verlag (1993).
[19] N. STEINMETZ, Über die nullste von differential polynomen, Math. Z., 176 (1981), 255-264.
[20] Y. WANG and M. FANG, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.), 14(1) (1998), 17-26.
[21] Y. YE, A new criterion and its application, Chin. Ann. Math., Ser. A (Supplement), 2 (1991), 44-49.
[22] Y. YE AND X. HUA, Normality criteria of families of meromorphic functions, Indian J. Pure Appl. Math., 31(1) (2000), 61-68.
[23] Y. XU, Normal families of meromorphic functions (preprint).
[24] L. ZALCMAN, On some problem of Hayman (preprint).

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 144-03

