

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 5, Issue 2, Article 35, 2004

SOME NORMALITY CRITERIA

INDRAJIT LAHIRI AND SHYAMALI DEWAN

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
WEST BENGAL 741235, INDIA.
indrajit@cal2.vsnl.net.in

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KALYANI WEST BENGAL 741235, INDIA.

Received 12 October, 2003; accepted 01 January, 2004 Communicated by H.M. Srivastava

ABSTRACT. In the paper we prove some sufficient conditions for a family of meromorphic functions to be normal in a domain.

Key words and phrases: Meromorphic function, Normality.

2000 Mathematics Subject Classification. Primary 30D45, Secondary 30D35.

1. Introduction and Results

Let $\mathbb C$ be the open complex plane and $\mathcal D\subset \mathbb C$ be a domain. A family $\mathcal F$ of meromorphic functions defined in $\mathcal D$ is said to be normal, in the sense of Montel, if for any sequence $f_n\in \mathcal F$ there exists a subsequence f_{n_j} such that f_{n_j} converges spherically, locally and uniformly in $\mathcal D$ to a meromorphic function or ∞ .

 \mathcal{F} is said to be normal at a point $z_0 \in \mathcal{D}$ if there exists a neighbourhood of z_0 in which \mathcal{F} is normal. It is well known that \mathcal{F} is normal in \mathcal{D} if and only if it is normal at every point of \mathcal{D} .

It is an interesting problem to find out criteria for normality of a family of analytic or meromorphic functions. In recent years this problem attracted the attention of a number of researchers worldwide.

In 1969 D. Drasin [5] proved the following normality criterion.

Theorem A. Let \mathcal{F} be a family of analytic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. If for every $f \in \mathcal{F}$, $f' - af^n - b$ has no zero then \mathcal{F} is normal, where $n(\geq 3)$ is an integer.

Chen-Fang [2] and Ye [21] independently proved that *Theorem A* also holds for n = 2. A number of authors {cf. [3, 11, 12, 13, 16, 24]} extended *Theorem A* to a family of meromorphic functions in a domain. Their results can be combined in the following theorem.

ISSN (electronic): 1443-5756

© 2004 Victoria University. All rights reserved.

Theorem B. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. If for every $f \in \mathcal{F}$, $f' - af^n - b$ has no zero then \mathcal{F} is normal, where $n(\geq 3)$ is an integer.

Li [12], Li [13] and Langley [11] proved *Theorem B* for $n \ge 5$, Pang [16] proved for n = 4 and Chen-Fang [3], Zalcman [24] proved for n = 3. Fang-Yuan [6] showed that *Theorem B* does not, in general, hold for n = 2. For the case n = 2 they [6] proved the following result.

Theorem C. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. If $f'-af^2-b$ has no zero and f has no simple and double pole for every $f \in \mathcal{F}$ then \mathcal{F} is normal.

Fang-Yuan [6] mentioned the following example from which it appears that the condition for each $f \in \mathcal{F}$ not to have any simple and double pole is necessary for *Theorem C*.

Example 1.1. Let $f_n(z) = nz(z\sqrt{n}-1)^{-2}$ for $n=1,2,\ldots$ and $\mathcal{D}:|z|<1$. Then each f_n has only a double pole and a simple zero. Also $f'_n+f^2_n=n(z\sqrt{n}-1)^{-4}\neq 0$. Since $f^\#_n(0)=n\to\infty$ as $n\to\infty$, it follows from Marty's criterion that $\{f_n\}$ is not normal in \mathcal{D} .

However, the following example suggests that the restriction on the poles of $f \in \mathcal{F}$ may be relaxed at the cost of some restriction imposed on the zeros of $f \in \mathcal{F}$.

Example 1.2. Let $f_n(z) = nz^{-2}$ for $n = 3, 4, \ldots$ and $\mathcal{D}: |z| < 1$. Then each f_n has only a double pole and no simple zero. Also we see that $f'_n + f^2_n = n(n-2z)z^{-4} \neq 0$ in \mathcal{D} . Since

$$f_n^{\#}(z) = \frac{2n|z|}{|z|^2 + n^2} \le \frac{2}{n} < 1$$

in \mathcal{D} , it follows from Marty's criterion that the family $\{f_n\}$ is normal in \mathcal{D} .

Now we state the first theorem of the paper.

Theorem 1.1. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} such that no $f \in \mathcal{F}$ has any simple zero and simple pole. Let

$$E_f = \{z : z \in \mathcal{D} \text{ and } f'(z) - af^2(z) = b\},\$$

where $a(\neq 0)$, b are two finite numbers.

If there exists a positive number M such that for every $f \in \mathcal{F}$, $|f(z)| \leq M$ whenever $z \in E_f$, then \mathcal{F} is normal.

The following examples together with *Example 1.1* show that the condition of *Theorem 1.1* on the zeros and poles are necessary.

Example 1.3. Let $f_n(z) = n \tan nz$ for $n = 1, 2, \ldots$ and $\mathcal{D} : |z| < \pi$. Then f_n has only simple zeros and simple poles. Also we see that $f'_n - f^2_n = n^2 \neq 0$. Since $f^\#_n(0) = n^2 \to \infty$ as $n \to \infty$, by Marty's criterion the family $\{f_n\}$ is not normal.

Example 1.4. Let $f_n(z)=(1+e^{2nz})^{-1}$ for $n=1,2,\ldots$ and $\mathcal{D}:|z|<1$. Then f_n has no simple zero and no multiple pole. Also we see that $f'_n+f^2_n\neq 1$. Since $f^\#_n(0)=\frac{2n}{3}\to\infty$ as $n\to\infty$, by Marty's criterion the family $\{f_n\}$ is not normal.

Drasin [18, p. 130] also proved the following normality criterion which involves differential polynomials.

Theorem D. Let \mathcal{F} be a family of analytic functions in a domain \mathcal{D} and $a_0, a_1, \ldots, a_{k-1}$ be finite constants, where k is a positive integer. Let

$$H(f) = f^{(k)} + a_{k-1}f^{(k-1)} + \dots + a_1f^{(1)} + a_0f.$$

If for every $f \in \mathcal{F}$

- (i) f has no zero,
- (ii) H(f) 1 has no zero of multiplicity less than k + 2, then \mathcal{F} is normal.

Recently Fang-Yuan [6] proved that *Theorem D* remains valid even if H(f)-1 has only multiple zeros for every $f \in \mathcal{F}$. In the next theorem we extend *Theorem D* to a family of meromorphic functions which also improves a result of Fang-Yuan [6].

Theorem 1.2. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and

$$H(f) = f^{(k)} + a_{k-1}f^{(k-1)} + \dots + a_1f^{(1)} + a_0f,$$

where $a_0, a_1, \ldots, a_{k-1}$ are finite constants and k is a positive integer. Let

$$E_f = \{z : z \in \mathcal{D} \text{ and } z \text{ is a simple zero of } H(f) - 1\}.$$

If for every $f \in \mathcal{F}$

- (i) f has no pole of multiplicity less than 3 + k,
- (ii) f has no zero,
- (iii) there exists a positive constant M such that $|f(z)| \ge M$ whenever $z \in E_f$, then \mathcal{F} is normal.

The following examples show that conditions (ii) and (iii) of *Theorem 1.2* are necessary, leaving the question of necessity of the condition (i) as open.

Example 1.5. Let $f_n(z) = nz$ for $n = 2, 3, ..., \mathcal{D} : |z| < 1$, H(f) = f' - f and $M = \frac{1}{2}$. Then each f_n has a zero at z = 0 and $E_{f_n} = \{1 - \frac{1}{n}\}$ for n = 2, 3, ... So $|f(1 - \frac{1}{n})| = n - 1 \ge M$ for n = 2, 3, ... Since $f_n^{\#}(0) = n \to \infty$ as $n \to \infty$, by Marty's criterion the family $\{f_n\}$ is not normal in \mathcal{D} .

Example 1.6. Let $f_n(z)=e^{nz}$ for $n=2,3,\ldots,\mathcal{D}:|z|<1$ and H(f)=f'-f. Then each f_n has no zero and $E_{f_n}=\{z:z\in\mathcal{D} \text{ and } (n-1)e^{nz}=1\}$ for $n=2,3,\ldots$. Also we see that for $z\in E_{f_n}, |f_n(z)|=\frac{1}{n-1}\to 0$ as $n\to\infty$. Since $f_n^\#(0)=\frac{n}{2}\to\infty$ as $n\to\infty$, by Marty's criterion the family $\{f_n\}$ is not normal in \mathcal{D} .

In connection to *Theorem A* Chen-Fang [3] proposed the following conjecture:

Conjecture 1.3. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} . If for every function $f \in \mathcal{F}$, $f^{(k)} - af^n - b$ has no zero in \mathcal{D} then \mathcal{F} is normal, where $a(\neq 0)$, b are two finite numbers and k, $n(\geq k+2)$ are positive integers.

In response to this conjecture Xu [23] proved the following result.

Theorem E. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite constants. If k and n are positive integers such that $n \geq k + 2$ and for every $f \in \mathcal{F}$

- (i) $f^{(k)} af^n b$ has no zero,
- (ii) f has no simple pole,

then \mathcal{F} is normal.

The condition (ii) of *Theorem E* can be dropped if we choose $n \ge k + 4$ (cf. [15, 17]). Also some improvement of *Theorem E* can be found in [22]. In the next theorem we investigate the situation when the power of f is negative in condition (i) of *Theorem E*.

Theorem 1.4. Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and $a(\neq 0)$, b be two finite numbers. Suppose that $E_f = \{z : z \in \mathcal{D} \text{ and } f^{(k)}(z) + af^{-n}(z) = b\}$, where $k, n(\geq k)$ are positive integers.

If for every $f \in \mathcal{F}$

- (i) f has no zero of multiplicity less than k,
- (ii) there exists a positive number M such that for every $f \in \mathcal{F}$, $|f(z)| \geq M$ whenever $z \in E_f$,

then \mathcal{F} is normal.

Following examples show that the conditions of *Theorem 1.4* are necessary.

Example 1.7. Let $f_p(z) = pz^2$ for p = 1, 2, ... and $\mathcal{D} : |z| < 1$, n = k = 3, a = 1, b = 0. Then f_p has only a double zero and $E_{f_p} = \emptyset$. Since $f_p(0) = 0$ and for $z \neq 0$, $f_p(z) \to \infty$ as $p \to \infty$, it follows that the family $\{f_p\}$ is not normal.

Example 1.8. Let $f_p(z) = pz$ for $p = 1, 2, \ldots$ and $\mathcal{D} : |z| < 1$, n = k = 1. Then f_p has simple zero at the origin and for any two finite numbers $a(\neq 0)$, b, $E_{f_p} = \{a/p(b-p)\}$ so that $|f_p(z)| \to 0$ as $p \to \infty$ whenever $z \in E_{f_p}$. Since $f_p^\#(0) = p \to \infty$ as $p \to \infty$, by Marty's criterion the family $\{f_p\}$ is not normal.

For the standard definitions and notations of the value distribution theory we refer to [8, 18].

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [1] Let f be a transcendental meromorphic function of finite order in \mathbb{C} . If f has no simple zero then f' assumes every non-zero finite value infinitely often.

Lemma 2.2. [10] Let f be a nonconstant rational function in \mathbb{C} having no simple zero and simple pole. Then f' assumes every non-zero finite value.

The following lemma can be proved in the line of [9].

Lemma 2.3. Let f be a meromorphic function in \mathbb{C} such that $f^{(k)} \not\equiv 0$. Suppose that $\psi = f^n f^{(k)}$, where k, n are positive integers. If n > k = 2 or $n \geq k \geq 3$ then

$$\left\{1 - \frac{1+k}{n+k} - \frac{n(1+k)}{(n+k)(n+k+1)}\right\} T(r,\psi) \le \overline{N}(r,a;\psi) + S(r,\psi),$$

where $a \neq 0, \infty$ is a constant.

Lemma 2.4. [19] Let f be a transcendental meromorphic function in \mathbb{C} and $\psi = f^n f^{(2)}$, where $n \geq 2$ is an integer. Then

$$\limsup_{r \to \infty} \frac{\overline{N}(r, a; \psi)}{T(r, \psi)} > 0,$$

where $a \neq 0, \infty$ is a constant.

The following lemma is a combination of the results of [3, 7, 14].

Lemma 2.5. Let f be a transcendental meromorphic function in \mathbb{C} . Then $f^n f'$ assumes every non-zero finite value infinitely often, where $n(\geq 1)$ is an integer.

Lemma 2.6. Let f be a non-constant rational function in \mathbb{C} . Then $f^n f'$ assumes every non-zero finite value.

Proof. Let $g = f^{n+1}/(n+1)$. Then g is a nonconstant rational function having no simple zero and simple pole. So by *Lemma 2.2* $g' = f^n f'$ assumes every non-zero finite value. This proves the lemma.

Lemma 2.7. Let f be a rational function in \mathbb{C} such that $f^{(2)} \not\equiv 0$. Then $\psi = f^2 f^{(2)}$ assumes every non-zero finite value.

Proof. Let f = p/q, where p, q are polynomials of degree m, n respectively and p, q have no common factor.

Let a be a non-zero finite number. We now consider the following cases.

Case 1. Let m = n. Then $f = \alpha + p_1/q$, where α is a constant and p_1 is a polynomial of degree $m_1 < n$.

Now

$$f' = \frac{p'_1 q - p_1 q'}{q^2} = \frac{p_2}{q_2}$$
, say,

where p_2 and q_2 are polynomials of degree $m_2 = m_1 + n - 1$ and $n_2 = 2n$. Also we note that $m_2 < n_2$. Hence

$$f'' = \frac{p'_2q_2 - p_2q'_2}{q_2^2} = \frac{p_3}{q_3}$$
, say,

where p_3 and q_3 are polynomials of degree $m_3 = m_2 + n_2 - 1 = m_1 + 3n - 2$ and $n_3 = 2n_2 = 4n$. Also we see that $m_3 < n_3$.

Let $\psi = f^2 f^{(2)} = P/Q$. Then P, Q are polynomials of degree $2m + m_3$ and $2n + n_3$ respectively and $2m + m_3 < 2n + n_3$. Therefore ψ is nonconstant.

Now $\psi - a = (P - aQ)/Q$ and the degree of P - aQ is equal to the degree of Q. If $\psi - a$ has no zero then P - aQ and Q share 0 CM (counting multiplicites) and so $P - aQ \equiv AQ$, where A is a constant. Therefore $\psi = A - a$, which is impossible. So $\psi - a$ must have some zero.

Case 2. Let m = n + 1. Then

$$f = \alpha z + \beta + \frac{p_1}{q},$$

where α , β are constants and p_1 is a polynomial of degree $m_1 < n$.

Now $f'' = p_3/q_3$, where p_3 and q_3 are polynomials of degree $m_3 = m_1 + 3n - 2$ and $n_3 = 4n$ respectively and $m_3 < n_3$.

If $\psi=P/Q$ then P, Q are polynomials of degree $2m+m_3$ and $2n+n_3$ respectively. We see that $2m+m_3=5n+m_1<6n=2n+n_3$ and so ψ is nonconstant. Therefore as Case 1 $\psi-a$ must have some zero.

Case 3. Let $m \neq n, n+1$. Then

$$f' = \frac{pq' - p'q}{q^2} = \frac{p_4}{q_4}$$
, say,

where p_4 , q_4 are polynomials of degree $m_4 = m + n - 1$ and $n_4 = 2n$. Also we note that $m_4 \neq n_4$.

Hence

$$f'' = rac{p'_4 q_4 - p_4 q'_4}{q_4^2} = rac{p_5}{q_5}, \; say,$$

where p_5 , q_5 are polynmials of degree $m_5 = m_4 + n_4 - 1 = m + 3n - 2$ and $n_5 = 2n_4 = 4n$. If $\psi = P/Q$ then P, Q are polynomials of degree $2m + m_5$ and $2n + n_5$ respectively. Clearly $2m + m_5 \neq 2n + n_5$ because otherwise m = n + 2/3, which is impossible. So ψ is nonconstant. Also we see that $\psi - a = (P - aQ)/Q$, where the degree of P - aQ is not less than that of Q. If $\psi - a$ has no zero then as per Case 1 ψ becomes a constant, which is impossible. So $\psi - a$ must have some zero. This proves the lemma.

Lemma 2.8. Let f be a meromorphic function in \mathbb{C} such that $f^{(k)} \not\equiv 0$ and $a(\not\equiv 0)$ be a finite constant. Then $f^{(k)} + af^{-n}$ must have some zero, where k and $n(\geq k)$ are positive integers.

Proof. First we assume that k = 1. Then by Lemmas 2.5 and 2.6 we see that $f^n f' + a$ must have some zero. Since a zero of $f^n f' + a$ is not a pole or a zero of f, it follows that a zero of $f^n f' + a$ is a zero of $f' + a f^{-n}$.

Now we assume that k = 2. Then by Lemmas 2.3, 2.4 and 2.7 we see that $f^n f^{(2)} + a$ must have some zero. As the preceding paragraph a zero of $f^n f^{(2)} + a$ is a zero of $f^{(2)} + a f^{-n}$.

Finally we assume that $k \geq 3$. Then by Lemma 2.3 $f^n f^{(k)} + a$ must have some zero. Since a zero of $f^n f^{(k)} + a$ is a zero of $f^{(k)} + a f^{-n}$, the lemma is proved.

Lemma 2.9. Let f be a nonconstant meromorphic function in \mathbb{C} such that f has no zero and has no pole of multiplicity less than 3+k. Then $f^{(k)}-1$ must have some simple zero, where k is a positive integer.

Proof. Since
$$N(r, f^{(k)}) = N(r, f) + k\overline{N}(r, f)$$
 and $m(r, f^{(k)}) \le m(r, f) + S(r, f)$, we get
$$T(r, f^{(k)}) \le T(r, f) + k\overline{N}(r, f) + S(r, f)$$
$$\le T(r, f) + \frac{k}{3+k}N(r, f) + S(r, f)$$
$$\le \frac{3+2k}{3+k}T(r, f) + S(r, f).$$

Since f has no zero and no pole of multiplicity less than 3 + k, we get by Milloux inequality ([8, p. 57])

$$T(r,f) \leq \overline{N}(r,f) + \overline{N}(r,1;f^{(k)}) + S(r,f)$$

$$\leq \frac{1}{3+k}T(r,f) + \overline{N}(r,1;f^{(k)}) + S(r,f).$$

If possible, suppose that $f^{(k)} - 1$ has no simple zero. Then we get from above

$$T(r,f) \le \frac{1}{3+k} T(r,f) + \frac{1}{2} N(r,1;f^{(k)}) + S(r,f)$$
$$\le \left\{ \frac{1}{3+k} + \frac{3+2k}{2(3+k)} \right\} T(r,f) + S(r,f)$$

and so

$$\frac{1}{2(3+k)}T(r,f) \le S(r,f),$$

a contradiction. This proves the lemma.

Lemma 2.10. [4, 20] Let \mathcal{F} be a family of meromorphic functions in a domain \mathcal{D} and let the zeros of f be of multiplicity not less than k (a positive integer) for each $f \in \mathcal{F}$. If \mathcal{F} is not normal at $z_0 \in \mathcal{D}$ then for $0 \le \alpha < k$ there exist a sequence of complex numbers $z_j \to z_0$, a sequence of functions $f_j \in \mathcal{F}$, and a sequence of positive numbers $\rho_j \to 0$ such that

$$g_j(\zeta) = \rho_j^{-\alpha} f_j(z_j + \rho_j \zeta)$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C} . Moreover the order of g is not greater than two and the zeros of g are of multiplicity not less than k.

Note 1. If each $f \in \mathcal{F}$ has no zero then g also has no zero and in this case we can choose α to be any finite real number.

3. PROOFS OF THE THEOREMS

In this section we discuss the proofs of the theorems.

Proof of Theorem 1.1. If possible suppose that \mathcal{F} is not normal at $z_0 \in \mathcal{D}$. Then $\mathcal{F}_1 = \{1/f : f \in \mathcal{F}\}$ is not normal at $z_0 \in \mathcal{D}$. Let $\alpha = 1$. Then by Lemma 2.10 there exist a sequence of functions $f_j \in \mathcal{F}$, a sequence of complex numbers $z_j \to z_0$ and a sequence of positive numbers $\rho_j \to 0$ such that

$$g_j(\zeta) = \rho_j^{-1} f_j^{-1} (z_j + \rho_j \zeta)$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C} . Also the order of g does not exceed two and g has no simple zero. Again by Hurwitz's theorem g has no simple pole.

By *Lemmas 2.1* and 2.2 we see that there exists $\zeta_0 \in \mathbb{C}$ such that

$$(3.1) g'(\zeta_0) + a = 0.$$

Since ζ_0 is not a pole of g, it follows that $g_j(\zeta)$ converges uniformly to $g(\zeta)$ in some neighbourhood of ζ_0 . We also see that $\frac{-1}{g^2(\zeta)}\{g'(\zeta)+a\}$ is the uniform limit of $\rho_j^2\{f_j'-af_j^2-b\}$ in some neighbourhood of ζ_0 .

In view of (3.1) and Hurwitz's theorem there exists a sequence $\zeta_j \to \zeta_0$ such that $f'_j(\zeta_j) - af_j^2(\zeta_j) - b = 0$. So by the given condition

$$|g_j(\zeta_j)| = \frac{1}{\rho_j} \cdot \frac{1}{|f_j(z_j + \rho_j \zeta_j)|} \ge \frac{1}{\rho_j M}.$$

Since ζ_0 is not a pole of g, there exists a positive number K such that in some neighbourhood of ζ_0 we get $|g(\zeta)| \leq K$.

Since $g_j(\zeta)$ converges uniformly to $g(\zeta)$ in some neighbourhood of ζ_0 , we get for all large values of j and for all ζ in that neighbourhood of ζ_0

$$|g_j(\zeta) - g(\zeta)| < 1.$$

Since $\zeta_j \to \zeta$, we get for all large values of j

$$K \ge |g(\zeta_j)| \ge |g_j(\zeta_j)| - |g(\zeta_j) - g_j(\zeta_j)| > \frac{1}{\rho_j M} - 1,$$

which is a contradiction. This proves the theorem.

Proof of Theorem 1.2. Let $\alpha=k$. If possible suppose that \mathcal{F} is not normal at $z_0\in\mathcal{D}$. Then by Lemma 2.10 and Note 1 there exists a sequence of functions $f_j\in\mathcal{F}$, a sequence of complex numbers $z_j\to z_0$ and a sequence of positive numbers $\rho_j\to 0$ such that

$$g_j(\zeta) = \rho_j^{-k} f_j(z_j + \rho_j \zeta)$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C} . Now by conditions (i) and (ii) and by Hurwitz's theorem we see that $g(\zeta)$ has no zero and has no pole of multiplicity less than 3+k.

Now by Lemma 2.9 $g^{(k)}(\zeta) - 1$ has a simple zero at a point $\zeta_0 \in \mathbb{C}$. Since ζ_0 is not a pole of $g(\zeta)$, in some neighbourhood of ζ_0 , $g_j(\zeta)$ converges uniformly to $g(\zeta)$.

$$g_j^{(k)}(\zeta) - 1 + \sum_{i=0}^{k-1} a_i \rho_j^{k-i} g_j^{(i)}(\zeta) = f_j^{(k)}(z_j + \rho_j \zeta) + \sum_{i=0}^{k-1} a_i f_j^{(i)}(z_j + \rho_j \zeta) - 1$$
$$= H(f_j(z_j + \rho_j \zeta)) - 1$$

Since

and $\sum_{i=0}^{k-1} a_i \rho_j^{k-i} g_j^{(i)}(\zeta)$ converges uniformly to zero in some neighbourhood of ζ_0 , it follows that $g^{(k)}(\zeta) - 1$ is the uniform limit of $H(f_j(z_j + \rho_j \zeta)) - 1$.

Since ζ_0 is a simple zero of $g^{(k)}(\zeta)-1$, by Hurwitz's theorem there exists a sequence $\zeta_j\to\zeta_0$ such that ζ_j is a simple zero of $H(f_j(z_j+\rho_j\zeta))-1$. So by the given condition $|f_j(z_j+\rho_j\zeta_j)|\geq M$ for all large values of j.

Hence for all large values of j we get $|g_j(\zeta_j)| \ge M/\rho_j^k$ and as the last part of the proof of *Theorem 1.1* we arrive at a contradiction. This proves the theorem.

Proof of Theorem 1.4. Let $\alpha = k/(1+n) < 1$. If possible suppose that \mathcal{F} is not normal at $z_0 \in \mathcal{D}$. Then by Lemma 2.10 there exist a sequence of functions $f_j \in \mathcal{F}$, a sequence of complex numbers $z_j \to z_0$ and a sequence of positive numbers $\rho_j \to 0$ such that

$$g_j(\zeta) = \rho_j^{-\alpha} f_j(z_j + \rho_j \zeta)$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C} . Also g has no zero of multiplicity less than k. So $g^{(k)} \not\equiv 0$ and by Lemma 2.8 we get

(3.2)
$$g^{(k)}(\zeta_0) + \frac{a}{g^n(\zeta_0)} = 0$$

for some $\zeta_0 \in \mathbb{C}$.

Clearly ζ_0 is neither a zero nor a pole of g. So in some neighbourhood of ζ_0 , $g_j(\zeta)$ converges uniformly to $g(\zeta)$.

Now in some neighbourhood of ζ_0 we see that $g^{(k)}(\zeta) + ag^{-n}(\zeta)$ is the uniform limit of

$$g_j^{(k)} + ag_j^{-n}(\zeta) - \rho_j^{n\alpha}b = \rho_j^{\frac{nk}{1+n}} \left\{ f_j^{(k)}(z_j + \rho_j \zeta) + af_j^{-n}(z_j + \rho_j \zeta) - b \right\}.$$

By (3.2) and Hurwitz's theorem there exists a sequence $\zeta_j \to \zeta_0$ such that for all large values of j

$$f_j^{(k)}(z_j + \rho_j \zeta_j) + a f_j^{-n}(z_j + \rho_j \zeta_j) = b.$$

Therefore for all large values of j it follows from the given condition $|g_j(\zeta_j)| \geq M/\rho_j^{\alpha}$ and as in the last part of the proof of *Theorem 1.1* we arrive at a contradiction. This proves the theorem.

REFERENCES

- [1] W. BERGWEILER AND A. EREMENKO, On the singularities of the inverse to a meromorphic function of finite order, *Rev. Mat. Iberoamericana*, **11**(2) (1995), 355–373.
- [2] H. CHEN AND M. FANG, On a theorem of Drasin, Adv. in Math. (China), 20 (1991), 504.
- [3] H. CHEN AND M. FANG, The value distribution of $f^n f'$, Science in China (Ser.A), **38**(7) (1995), 121–127.
- [4] H. CHEN, Yosida functions and Picard values of integral functions and their derivatives, *Bull. Austral. Math. Soc.*, **54** (1996), 373–384.
- [5] D. DRASIN, Normal families and Nevanlinna theory, *Acta Math.*, **122** (1969), 231–263.
- [6] M. FANG AND W. YUAN, On the normality for families of meromorphic functions, *Indian J. Math.*, **43**(3) (2001), 341–351.
- [7] W.K. HAYMAN, Picard values of meromorphic functions and their derivatives, *Ann. Math.*, **70** (1959), 9–42.
- [8] W.K. HAYMAN, Meromorphic Functions, The Clarendon Press (1964).

- [9] I. LAHIRI AND S. DEWAN, Value distribution of the product of a meromorphic function and its derivative, *Kodai Math. J.*, **26**(1) (2003), 95–100.
- [10] I. LAHIRI, A simple normality criterion leading to a counterexample to the converse of Bloch principle, *New Zealand J. Math.*, (to appear).
- [11] J.K. LANGLEY, On normal families and a result of Drasin, *Proc. Royal Soc. Edinburgh*, **98A** (1984), 385–393.
- [12] S. LI, The normality criterion of a class of the functions, *J. East China Normal Univ.*, **2** (1984), 156–158.
- [13] X. LI, The proof of Hayman's conjecture on normal families, *Sci. Sinica* (Ser. A), **28**(6) (1985), 569–603.
- [14] E. MUES, Über ein problem von Hayman, *Math. Z.*, **164** (1979), 239–259.
- [15] X. PANG, Criteria for normality about differential polynomial, *Chin. Sci. Bull.*, **22** (1988), 1690–1693.
- [16] X. PANG, On normal criterion of meromorphic functions, Sci. Sinica, 33(5) (1990), 521–527.
- [17] W. SCHWICK, Normality criteria for families of meromorphic functions, *J. Analyse Math.*, **52** (1989), 241–289.
- [18] J.L. SCHIFF, Normal Families, Springer-Verlag (1993).
- [19] N. STEINMETZ, Über die nullste von differential polynomen, Math. Z., 176 (1981), 255–264.
- [20] Y. WANG AND M. FANG, Picard values and normal families of meromorphic functions with multiple zeros, *Acta Math. Sinica* (N.S.), **14**(1) (1998), 17–26.
- [21] Y. YE, A new criterion and its application, Chin. Ann. Math., Ser. A (Supplement), 2 (1991), 44–49.
- [22] Y. YE AND X. HUA, Normality criteria of families of meromorphic functions, *Indian J. Pure Appl. Math.*, **31**(1) (2000), 61–68.
- [23] Y. XU, Normal families of meromorphic functions (preprint).
- [24] L. ZALCMAN, On some problem of Hayman (preprint).