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ABSTRACT. We modify the definition of the weighted integral mean so that we can compare
two such means not only upon the main function but also upon the weight function. As a conse-
quence, some inequalities between means are proved.
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1. I NTRODUCTION

A mean(of two positive real numbers on the intervalJ) is defined as a functionM : J2 → J,
which has the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀a, b ∈ J.

Of course, each meanM is reflexive, i.e.

M(a, a) = a, ∀a ∈ J

which will be used also as the definition ofM(a, a) if it is necessary. The mean is said to be
symmetric if

M(a, b) = M(b, a), ∀a, b ∈ J.

Given two meansM andN , we writeM < N (onJ ) if

M(a, b) < N(a, b), ∀a, b ∈ J, a 6= b.
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2 GHEORGHETOADER AND JOZSEFSÁNDOR

Among the most known examples of means are the arithmetic meanA, the geometric mean
G, the harmonic meanH, and the logarithmic meanL, defined respectively by

A(a, b) =
a + b

2
, G(a, b) =

√
a · b,

H(a, b) =
2ab

a + b
, L(a, b) =

b− a

ln b− ln a
, a, b > 0,

and satisfying the relationH < G < L < A.
We deal with the following weighted integral mean. Letf : J → R be a strictly monotone

function andp : J → R+ be a positive function. ThenM(f, p) defined by

M(f, p)(a, b) = f−1

(∫ b

a
f(x) · p(x)dx∫ b

a
p(x)dx

)
, ∀a, b ∈ J

gives a mean onJ. This mean was considered in [3] for arbitrary weight functionp and f =
en whereen is defined by

en(x) =

{
xn, if n 6= 0

ln x, if n = 0.

More means of typeM(f, p) are given in [2], but only for special cases of functionsf.
A general example of mean which can be defined in this way is the extended mean considered

in [4]:

Er,s(a, b) =

(
r

s
· bs − as

br − ar

) 1
s−r

, s 6= 0, r 6= s.

We haveEr,s = M(es−r, er−1).
The following is proved in [6].

Lemma 1.1. If the function f : R+ → R+ is strictly monotone, the functiong : R+ → R+ is
strictly increasing, and the composed functiong ◦ f−1 is convex, then the inequality

M(f, p) < M(g, p)

holds for every positive functionp.

The meansA, G andL can be obtained as meansM(en, 1) for n = 1, n = −2 andn = −1
respectively. So the relations between them follow from the above result. However,H =
M(e1, e−3), thus the inequalityH < G cannot be proved on this way.

A special case of integral mean was defined in [5]. Letp be a strictly increasing real function
having an increasing derivativep′ onJ. ThenM ′

p given by

M ′
p(a, b) =

∫ b

a

x · p′(x) · dx

p(b)− p(a)
, a, b ∈ J

defines a mean. In fact we haveM ′
p = M(e1, p

′).
In this paper we use the result of the above lemma to modify the definition of the mean

M(f, p). Moreover, we find that an analogous property also holds for the weight function. We
apply these properties for proving relations between some means.
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2. THE NEW I NTEGRAL M EAN

We define another integral mean using two functions as above, but only one integral. Letf
andp be two strictly monotone functions onJ . ThenN(f, p) defined by

N(f, p)(a, b) = f−1

(∫ 1

0

(f ◦ p−1)[t · p(a) + (1− t) · p(b)]dt

)
is a symmetric mean onJ . Making the change of the variable

t =
[p(b)− s]

[p(b)− p(a)]

we obtain the simpler representation

N(f, p)(a, b) = f−1

(∫ p(b)

p(a)

(f ◦ p−1)(s)ds

p(b)− p(a)

)
.

Denotingf ◦ p−1 = g, the meanN(f, p) becomes

N ′(g, p)(a, b) = p−1 ◦ g−1

(∫ p(b)

p(a)

g(x)dx

p(b)− p(a)

)
.

Using it we can obtain again the extended meanEr,s asN ′(es/r−1, er).
Also, if the function p has an increasing derivative, by the change of the variable

s = p(x)

the meanN(f, p) reduces atM(f, p′). For such a functionp we haveN(e1, p) = M ′
p. Thus

M ′
p can also be generalized for non differentiable functionsp at

Mp(a, b) =

∫ 1

0

p−1[t · p(a) + (1− t) · p(b)]dt, ∀a, b ∈ J

or

Mp(a, b) =

∫ p(b)

p(a)

p−1(s)ds

p(b)− p(a)
, ∀a, b ∈ J,

which is simpler for computations.

Example 2.1.Forn 6= −1, 0, we get

Men(a, b) =
n

n + 1
· bn+1 − an+1

bn − an
, for a, b > 0,

which is a special case of the extended mean. We obtain the arithmetic meanA for n = 1,
the logarithmic meanL for n = 0, the geometric meanG for n = −1/2, the inverse of the
logarithmic meanG2/L for n = −1, and the harmonic meanH for n = −2.

Example 2.2.Analogously we have

Mexp(a, b) =
b · eb − a · ea

eb − ea
− 1 = E(a, b), a, b ≥ 0

which is an exponential mean introduced by the authors in [7]. We can also give a new expo-
nential mean

M1/ exp(a, b) =
a · eb − b · ea

eb − ea
+ 1 = (2A− E)(a, b), a, b ≥ 0.
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Example 2.3.Some trigonometric means such as

Msin(a, b) =
b · sin b− a · sin a

sin b− sin a
− tan

a + b

2
, a, b ∈ [0, π/2],

Marcsin(a, b) =

√
1− b2 −

√
1− a2

arcsin a− arcsin b
, a, b ∈ [0, 1],

Mtan(a, b) =
b · tan b− a · tan a + ln(cos b/ cos a)

tan b− tan a
, a, b ∈ [0, π/2)

and

Marctan(a, b) =
ln
√

1 + b2 − ln
√

1 + a2

arctan b− arctan a
, a, b ≥ 0,

can be also obtained.

3. M AIN RESULTS

In [5] it was shown that the inequalityM ′
p > A holds for each functionp (assumed to be

strictly increasing and with strictly increasing derivative). We can prove more general proper-
ties. First of all, the result from Lemma 1.1 holds also in this case with the same proof.

Theorem 3.1. If the function f : R+ → R+ is strictly monotone, the functiong : R+ → R+ is
strictly increasing, and the composed functiong ◦ f−1 is convex, then the inequality

N(f, p) < N(g, p)

holds for every monotone functionp.

Proof. Using a simplified variant of Jensen’s integral inequality for the convex functiong ◦
f−1 (see [1]), we have

(g ◦ f−1)

(∫ 1

0

(f ◦ p−1) [t · p(a) + (1− t) · p(b)] dt

)
≤
∫ 1

0

(g ◦ f−1) ◦ (f ◦ p−1) [t · p(a) + (1− t) · p(b)] dt.

Applying the increasing functiong−1 we get the desired inequality. �

We can now also prove a similar result with respect to the functionp.

Theorem 3.2. If p is a strictly monotone real function onJ andq is a strictly increasing real
function onJ , such thatq ◦ p−1 is strictly convex, then

N(f, p) < N(f, q) onJ ,

for each strictly monotone functionf.

Proof. Let a, b ∈ J and denotep(a) = c, p(b) = d. As q ◦ p−1 is strictly convex, we have

(q ◦ p−1)[tc + (1− t)d] < t · (q ◦ p−1)(c) + (1− t) · (q ◦ p−1)(d), ∀t ∈ (0, 1).

As q is strictly increasing, this implies

p−1[t · p(a) + (1− t) · p(b)] < q−1[t · q(a) + (1− t) · q(b)], ∀t ∈ (0, 1).

If the function f is increasing, the inequality is preserved by the composition with it. Integrat-
ing on [0, 1] and then composing withf−1, we obtain the desired result. If the functionf is
decreasing, so also isf−1 and the result is the same. �
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Corollary 3.3. If the functionq is strictly convex and strictly increasing then

Mq > A.

Proof. We apply the second theorem forp = f = e1, taking into account thatMe1 = A. �

Remark 3.4. If we replace the convexity by the concavity and/or the increase by the decrease,
we get in the above theorems the same/the opposite inequalities.

Example 3.1.Takinglog, sin respectivelyarctan as functionq, we get the inequalities

L, Msin, Marctan < A.

Example 3.2.However, if we takeexp, arcsin respectivelytan as functionq, we have

E, Marcsin, Mtan > A.

Example 3.3. Taking p = en, q = em and f = e1, from Theorem 3.2 we deduce that for
m · n > 0 we have

Men < Mem , if n < m.

As special cases we have
Men > A, for n > 1,

L < Men < A, for 0 < n < 1,

G < Men < L, for − 1/2 < n < 0,

H < Men < G, for − 2 < n < −1/2,

and
Men < H, for n < −2.

Applying the above theorems we can also study the monotonicity of the extended means.
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