ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

SOUMIA BELARBI AND ZOUBIR DAHMANI

Department of Mathematics University of Mostaganem

Algeria

EMail: soumia-math@hotmail.fr zzdahmani@yahoo.fr

Received: 23 May, 2009

Accepted: 24 June, 2009

Communicated by: G. Anastassiou

2000 AMS Sub. Class.: 26D10, 26A33.

Key words: Fractional integral inequalities, Riemann-Liouville fractional integral.

Abstract: In this paper, using the Riemann-Liouville fractional integral, we establish some

new integral inequalities for the Chebyshev functional in the case of two syn-

chronous functions.

Acknowledgements: The authors would like to thank professor A. El Farissi for his helpful.

Fractional Integral Inequalities

Soumia Belarbi and Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

44

>>

Page 1 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction	•
2	Description of Fractional Calculus	4
3	Main Results	

Fractional Integral Inequalities
Soumia Belarbi and
Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

Let us consider the functional [1]:

$$(1.1) \quad T(f,g) := \frac{1}{b-a} \int_a^b f(x) g(x) dx$$
$$-\frac{1}{b-a} \left(\int_a^b f(x) dx \right) \left(\frac{1}{b-a} \int_a^b g(x) dx \right),$$

where f and g are two integrable functions which are synchronous on [a,b] (i.e.

$$(f(x) - f(y))(g(x) - g(y)) \ge 0$$
, for any $x, y \in [a, b]$.

Many researchers have given considerable attention to (1.1) and a number of inequalities have appeared in the literature, see [3, 4, 5].

The main purpose of this paper is to establish some inequalities for the functional (1.1) using fractional integrals.

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

44 >>

Page 3 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Description of Fractional Calculus

We will give the necessary notation and basic definitions below. For more details, one can consult [2, 6].

Definition 2.1. A real valued function f(t), $t \ge 0$ is said to be in the space C_{μ} , $\mu \in \mathbb{R}$ if there exists a real number $p > \mu$ such that $f(t) = t^p f_1(t)$, where $f_1(t) \in C([0,\infty[)]$.

Definition 2.2. A function $f(t), t \geq 0$ is said to be in the space $C_{\mu}^{n}, n \in \mathbb{R}$, if $f^{(n)} \in C_{\mu}$.

Definition 2.3. The Riemann-Liouville fractional integral operator of order $\alpha \geq 0$, for a function $f \in C_{\mu}$, $(\mu \geq -1)$ is defined as

(2.1)
$$J^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau; \qquad \alpha > 0, t > 0,$$
$$J^0 f(t) = f(t),$$

where $\Gamma(\alpha) := \int_0^\infty e^{-u} u^{\alpha-1} du$.

For the convenience of establishing the results, we give the semigroup property:

(2.2)
$$J^{\alpha}J^{\beta}f(t) = J^{\alpha+\beta}f(t), \qquad \alpha \ge 0, \beta \ge 0,$$

which implies the commutative property:

(2.3)
$$J^{\alpha}J^{\beta}f(t) = J^{\beta}J^{\alpha}f(t).$$

From (2.1), when $f(t) = t^{\mu}$ we get another expression that will be used later:

(2.4)
$$J^{\alpha}t^{\mu} = \frac{\Gamma(\mu+1)}{\Gamma(\alpha+\mu+1)}t^{\alpha+\mu}, \qquad \alpha > 0; \quad \mu > -1, t > 0.$$

Fractional Integral Inequalities

Soumia Belarbi and Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 4 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Main Results

Theorem 3.1. Let f and g be two synchronous functions on $[0, \infty[$. Then for all $t > 0, \alpha > 0$, we have:

(3.1)
$$J^{\alpha}(fg)(t) \ge \frac{\Gamma(\alpha+1)}{t^{\alpha}} J^{\alpha}f(t)J^{\alpha}g(t).$$

Proof. Since the functions f and g are synchronous on $[0, \infty[$, then for all $\tau \geq 0, \rho \geq 0$, we have

(3.2)
$$\left(f(\tau) - f(\rho) \right) \left(g(\tau) - g(\rho) \right) \ge 0.$$

Therefore

(3.3)
$$f(\tau)g(\tau) + f(\rho)g(\rho) \ge f(\tau)g(\rho) + f(\rho)g(\tau).$$

Now, multiplying both sides of (3.3) by $\frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)}$, $\tau \in (0,t)$, we get

$$(3.4) \quad \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} f(\tau)g(\tau) + \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} f(\rho)g(\rho) \\ \geq \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} f(\tau)g(\rho) + \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} f(\rho)g(\tau).$$

Then integrating (3.4) over (0, t), we obtain:

$$(3.5) \quad \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) g(\tau) d\tau + \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\rho) g(\rho) d\tau$$

$$\geq \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) g(\rho) d\tau + \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\rho) g(\tau) d\tau.$$

Fractional Integral Inequalities
Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 5 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Consequently,

$$(3.6) \quad J^{\alpha}(fg)(t) + f(\rho) g(\rho) \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} d\tau$$

$$\geq \frac{g(\rho)}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} f(\tau) d\tau + \frac{f(\rho)}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} g(\tau) d\tau.$$

So we have

$$(3.7) J^{\alpha}(fg)(t) + f(\rho)g(\rho)J^{\alpha}(1) \ge g(\rho)J^{\alpha}(f)(t) + f(\rho)J^{\alpha}(g)(t).$$

Multiplying both sides of (3.7) by $\frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)}$, $\rho \in (0,t)$, we obtain:

$$(3.8) \quad \frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)} J^{\alpha}(fg)(t) + \frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)} f(\rho) g(\rho) J^{\alpha}(1)$$

$$\geq \frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)} g(\rho) J^{\alpha} f(t) + \frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)} f(\rho) J^{\alpha} g(t).$$

Now integrating (3.8) over (0, t), we get:

$$(3.9) \quad J^{\alpha}(fg)(t) \int_{0}^{t} \frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)} d\rho + \frac{J^{\alpha}(1)}{\Gamma(\alpha)} \int_{0}^{t} f(\rho)g(\rho)(t-\rho)^{\alpha-1} d\rho$$

$$\geq \frac{J^{\alpha}f(t)}{\Gamma(\alpha)} \int_{0}^{t} (t-\rho)^{\alpha-1}g(\rho)d\rho + \frac{J^{\alpha}g(t)}{\Gamma(\alpha)} \int_{0}^{t} (t-\rho)^{\alpha-1}f(\rho)d\rho.$$

Hence

(3.10)
$$J^{\alpha}(fg)(t) \ge \frac{1}{J^{\alpha}(1)} J^{\alpha}f(t)J^{\alpha}g(t),$$

and this ends the proof.

Fractional Integral Inequalities
Soumia Belarbi and

Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 6 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

The second result is:

Theorem 3.2. Let f and g be two synchronous functions on $[0, \infty[$. Then for all t > 0, $\alpha > 0$, $\beta > 0$, we have:

$$(3.11) \quad \frac{t^{\alpha}}{\Gamma(\alpha+1)} J^{\beta}(fg)(t) + \frac{t^{\beta}}{\Gamma(\beta+1)} J^{\alpha}(fg)(t) \\ \geq J^{\alpha}f(t)J^{\beta}g(t) + J^{\beta}f(t)J^{\alpha}g(t).$$

Proof. Using similar arguments as in the proof of Theorem 3.1, we can write

$$(3.12) \frac{(t-\rho)^{\beta-1}}{\Gamma(\beta)} J^{\alpha}(fg)(t) + J^{\alpha}(1) \frac{(t-\rho)^{\beta-1}}{\Gamma(\beta)} f(\rho) g(\rho)$$

$$\geq \frac{(t-\rho)^{\beta-1}}{\Gamma(\beta)} g(\rho) J^{\alpha} f(t) + \frac{(t-\rho)^{\beta-1}}{\Gamma(\beta)} f(\rho) J^{\alpha} g(t).$$

By integrating (3.12) over (0, t), we obtain

$$(3.13) \quad J^{\alpha}(fg)(t) \int_{0}^{t} \frac{(t-\rho)^{\beta-1}}{\Gamma(\beta)} d\rho + \frac{J^{\alpha}(1)}{\Gamma(\beta)} \int_{0}^{t} f(\rho) g(\rho) (t-\rho)^{\beta-1} d\rho$$

$$\geq \frac{J^{\alpha}f(t)}{\Gamma(\beta)} \int_{0}^{t} (t-\rho)^{\beta-1} g(\rho) d\rho + \frac{J^{\alpha}g(t)}{\Gamma(\beta)} \int_{0}^{t} (t-\rho)^{\beta-1} f(\rho) d\rho,$$

and this ends the proof.

Remark 1. The inequalities (3.1) and (3.11) are reversed if the functions are asynchronous on $[0, \infty[$ (i.e. $(f(x) - f(y))(g(x) - g(y)) \le 0$, for any $x, y \in [0, \infty[)$. Remark 2. Applying Theorem 3.2 for $\alpha = \beta$, we obtain Theorem 3.1.

Fractional Integral Inequalities

Soumia Belarbi and Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 7 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

The third result is:

Theorem 3.3. Let $(f_i)_{i=1,\dots,n}$ be n positive increasing functions on $[0,\infty[$. Then for any $t>0, \alpha>0$, we have

(3.14)
$$J^{\alpha}\left(\prod_{i=1}^{n} f_{i}\right)(t) \geq \left(J^{\alpha}\left(1\right)\right)^{1-n} \prod_{i=1}^{n} J^{\alpha} f_{i}\left(t\right).$$

Proof. We prove this theorem by induction.

Clearly, for n=1, we have $J^{\alpha}\left(f_{1}\right)\left(t\right)\geq J^{\alpha}\left(f_{1}\right)\left(t\right)$, for all $t>0,\alpha>0$.

For n = 2, applying (3.1), we obtain:

$$J^{\alpha}(f_1f_2)(t) \ge (J^{\alpha}(1))^{-1} J^{\alpha}(f_1)(t) J^{\alpha}(f_2)(t),$$
 for all $t > 0, \alpha > 0$.

Now, suppose that (induction hypothesis)

(3.15)
$$J^{\alpha}\left(\prod_{i=1}^{n-1} f_{i}\right)(t) \geq (J^{\alpha}(1))^{2-n} \prod_{i=1}^{n-1} J^{\alpha} f_{i}(t), \qquad t > 0, \alpha > 0.$$

Since $(f_i)_{i=1,\dots,n}$ are positive increasing functions, then $\left(\prod_{i=1}^{n-1} f_i\right)(t)$ is an increasing function. Hence we can apply Theorem 3.1 to the functions $\prod_{i=1}^{n-1} f_i = g$, $f_n = f$. We obtain:

$$(3.16) \quad J^{\alpha} \left(\prod_{i=1}^{n} f_{i} \right) (t) = J^{\alpha} (fg) (t) \ge (J^{\alpha} (1))^{-1} J^{\alpha} \left(\prod_{i=1}^{n-1} f_{i} \right) (t) J^{\alpha} (f_{n}) (t).$$

Taking into account the hypothesis (3.15), we obtain:

$$(3.17) J^{\alpha} \left(\prod_{i=1}^{n} f_{i} \right) (t) \ge (J^{\alpha} (1))^{-1} ((J^{\alpha} (1))^{2-n} \left(\prod_{i=1}^{n-1} J^{\alpha} f_{i} \right) (t)) J^{\alpha} (f_{n}) (t),$$

and this ends the proof.

Fractional Integral Inequalities

Soumia Belarbi and Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 8 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

We further have:

Theorem 3.4. Let f and g be two functions defined on $[0, +\infty[$, such that f is increasing, g is differentiable and there exists a real number $m := \inf_{t \ge 0} g'(t)$. Then the inequality

(3.18)
$$J^{\alpha}(fg)(t) \ge (J^{\alpha}(1))^{-1} J^{\alpha}f(t)J^{\alpha}g(t) - \frac{mt}{\alpha+1}J^{\alpha}f(t) + mJ^{\alpha}(tf(t))$$

is valid for all $t > 0, \alpha > 0$

Proof. We consider the function h(t) := g(t) - mt. It is clear that h is differentiable and it is increasing on $[0, +\infty[$. Then using Theorem 3.1, we can write:

$$(3.19) J^{\alpha}\Big((g-mt)f(t)\Big)$$

$$\geq (J^{\alpha}(1))^{-1}J^{\alpha}f(t)\Big(J^{\alpha}g(t)-mJ^{\alpha}(t)\Big)$$

$$\geq (J^{\alpha}(1))^{-1}J^{\alpha}f(t)J^{\alpha}g(t)-\frac{m(J^{\alpha}(1))^{-1}t^{\alpha+1}}{\Gamma(\alpha+2)}J^{\alpha}f(t)$$

$$\geq (J^{\alpha}(1))^{-1}J^{\alpha}f(t)J^{\alpha}g(t)-\frac{m\Gamma(\alpha+1)t}{\Gamma(\alpha+2)}J^{\alpha}f(t)$$

$$\geq (J^{\alpha}(1))^{-1}J^{\alpha}f(t)J^{\alpha}g(t)-\frac{mt}{\alpha+1}J^{\alpha}f(t).$$

Hence

(3.20)
$$J^{\alpha}(fg)(t) \ge (J^{\alpha}(1))^{-1} J^{\alpha}f(t)J^{\alpha}g(t)$$

 $-\frac{mt}{\alpha+1}J^{\alpha}f(t) + mJ^{\alpha}(tf(t)), \quad t > 0, \alpha > 0.$

Theorem 3.4 is thus proved.

Fractional Integral Inequalities

Soumia Belarbi and Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 9 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Corollary 3.5. Let f and g be two functions defined on $[0, +\infty[$.

(A) Suppose that f is decreasing, g is differentiable and there exists a real number $M := \sup_{t>0} g'(t)$. Then for all t>0, $\alpha>0$, we have:

$$(3.21) \ J^{\alpha}(fg)(t) \ge (J^{\alpha}(1))^{-1} J^{\alpha}f(t)J^{\alpha}g(t) - \frac{Mt}{\alpha + 1}J^{\alpha}f(t) + MJ^{\alpha}(tf(t)).$$

(B) Suppose that f and g are differentiable and there exist $m_1 := \inf_{t \ge 0} f'(x)$, $m_2 := \inf_{t \ge 0} g'(t)$. Then we have

$$(3.22) \quad J^{\alpha}(fg)(t) - m_{1}J^{\alpha}tg(t) - m_{2}J^{\alpha}tf(t) + m_{1}m_{2}J^{\alpha}t^{2}$$

$$\geq (J^{\alpha}(1))^{-1} \left(J^{\alpha}f(t)J^{\alpha}g(t) - m_{1}J^{\alpha}tJ^{\alpha}g(t) - m_{2}J^{\alpha}tJ^{\alpha}f(t) + m_{1}m_{2}(J^{\alpha}t)^{2} \right).$$

(C) Suppose that f and g are differentiable and there exist $M_1 := \sup_{t \geq 0} f'(t)$, $M_2 := \sup_{t \geq 0} g'(t)$. Then the inequality

$$(3.23) \quad J^{\alpha}(fg)(t) - M_{1}J^{\alpha}tg(t) - M_{2}J^{\alpha}tf(t) + M_{1}M_{2}J^{\alpha}t^{2}$$

$$\geq (J^{\alpha}(1))^{-1} \left(J^{\alpha}f(t)J^{\alpha}g(t) - M_{1}J^{\alpha}tJ^{\alpha}g(t) - M_{2}J^{\alpha}tJ^{\alpha}f(t) + M_{1}M_{2}(J^{\alpha}t)^{2} \right).$$

is valid.

Proof.

(A): Apply Theorem 3.1 to the functions f and $G(t) := g(t) - m_2 t$.

Fractional Integral Inequalities

Soumia Belarbi and Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 10 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

(B): Apply Theorem 3.1 to the functions F and G, where: $F(t) := f(t) - m_1 t$, $G(t) := g(t) - m_2 t$.

To prove (C), we apply Theorem 3.1 to the functions

$$F(t) := f(t) - M_1 t, \ G(t) := g(t) - M_2 t.$$

Fractional Integral Inequalities
Soumia Belarbi and
Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 11 of 12

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

References

- [1] P.L. CHEBYSHEV, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, *Proc. Math. Soc. Charkov*, **2** (1882), 93–98.
- [2] R. GORENFLO AND F. MAINARDI, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien (1997), 223–276.
- [3] S.M. MALAMUD, Some complements to the Jenson and Chebyshev inequalities and a problem of W. Walter, *Proc. Amer. Math. Soc.*, **129**(9) (2001), 2671–2678.
- [4] S. MARINKOVIC, P. RAJKOVIC AND M. STANKOVIC, The inequalities for some types *q*-integrals, *Comput. Math. Appl.*, **56** (2008), 2490–2498.
- [5] B.G. PACHPATTE, A note on Chebyshev-Grüss type inequalities for differential functions, *Tamsui Oxford Journal of Mathematical Sciences*, **22**(1) (2006), 29–36.
- [6] I. PODLUBNI, Fractional Differential Equations, Academic Press, San Diego, 1999.

Fractional Integral Inequalities
Soumia Belarbi and
Zoubir Dahmani

vol. 10, iss. 3, art. 86, 2009

Title Page

Contents

Page 12 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756