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In this paper, using the Riemann-Liouville fractional integral, we establish some
new integral inequalities for the Chebyshev functional in the case of two syn-
chronous functions.
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1. Introduction
Let us consider the functional]f

1

b
| 1@

(@) (5 [ o).

where f and g are two integrable functions which are synchronougomn] (i.e.

(f(x) = F())(g(x) — 9(y)) = 0. for any, y € [a,8]).

Many researchers have given considerable attentiori f) &nd a number of
inequalities have appeared in the literature, S¢4,[5].

The main purpose of this paper is to establish some inequalities for the functional
(1.7) using fractional integrals.

(1.1) T(f.9) =
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2. Description of Fractional Calculus

We will give the necessary notation and basic definitions below. For more details,
one can consultZ, 6].

Definition 2.1. A real valued functiory(¢), t > 0 is said to be in the spad@,, u €
R if there exists a real number > 4 such thatf(t) = t*fi(t), where f,(t) €
([0, o0]).

Definition 2.2. A function f(¢),t > 0 is said to be in the spac€;,n € R, if
fm e,

Definition 2.3. The Riemann-Liouville fractional integral operator of order> 0,
for a functionf € C,, (n > —1) is defined as

2.1) e /t(t U (r)dr a0t >0,
0

[(a)
JUf(t) = f(2),
wherel'(«) := [;* e u*"du.
For the convenience of establishing the results, we give the semigroup property:

(2.2) JEIOf(t) = Jf(t),  a>0,8>0,

which implies the commutative property:

(2.3) JUJPf(t) = JPT*f(1).

From (2.1), whenf(t) = t* we get another expression that will be used later:
I'(p+1)

2.4 Joh = 0 T1 gotn >0; u>-—1,¢t>0.

2.4) T(a+p+1) “ a
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3. Main Results

Theorem 3.1. Let f and g be two synchronous functions ¢ oo[. Then for all

t > 0,a > 0, we have:

(3.1) 7 (fa)e) = O o gy g
Proof. Since the functiong andg are synchronous df, oo[, then for allr > 0, p >
0, we have
(3.2) (7) = 1) (97) = 9(0) = 0.
Therefore
(3.3) f(m)g(r) + f(p)alp) = f(T)g(p) + f(p)g(T).
Now, multiplying both sides of{.3) by (t}T(S_I, T € (0,1), we get
e L rmatn) + L st
(t — 7)ot (t — 7)ot

> Wf(ﬂg(p) + Wf(ﬂ)g(ﬂ-

Then integrating¥.4) over (0, ¢), we obtain:

(35) ﬁ / (t — 1) f(r)g(r)dr + ﬁ / (t = 1) f(p)glp)dr

1 t o1 1 t o1
> w7 | = @i+ s [ =0 (e
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Consequently,

@8) (a0 + 1 (9o s [ (¢ =)
M t — ) () dr M t —7)* g (r)dr
2 ey, = O G [ e

So we have

(3.7) JUf9)@&) + [ (p)g(p) J*(1) = g (p) J*(/)(&) + [ (p) J*(9)(t)-
Multiplying both sides of §.7) by ‘=2 _1, p € (0,t), we obtain:

e

I'(a)
08 a0+ S () )

S (t=n)” g(p) JUf(t) + (t—p) fp) Jg(t).

I ()
Now integrating 8.5) over (0, t) we get:

[ (e)

(3.9) JY(f9)(t) /0 (t_ / F(p)g(p)(t — p)*dp

Jaf( ) Jeg(t) [* a1
Hence

(3.10) JU(f9)t) = =5 J"‘f( )J%g(t),

and this ends the proof.
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The second resultis:

Theorem 3.2. Let f and g be two synchronous functions ¢ oo[. Then for all
t>0, a>0,0>0,we have:

« tﬂ

(3.11) mﬂ(fg)(t) + NCES]

J(fg)(t)
> Jf() ] g(t) + I F ()] g(2).

Proof. Using similar arguments as in the proof of Theorém we can write

(t—p)"" ooy (E=p)""
(3.12) WJ (fg)(t)+J (UWJ[(P)Q(P)
(t—p)"" o (t—p)"" o
> T (p) Jf () + T ) f(p) J%g ()
By integrating 8.12) over (0, ¢) , we obtain
t _\8- 1 «

@13 (o) [ Ll / F(0)a (o) (t - o) do

> JE{S)/U (t—p)"""g(p)dp+ F?ﬁ())/o (t—p)""" f (p) dp,
and this ends the proof. O

Remarkl. The inequalities{.1) and (.11) are reversed if the functions are asyn-
chronous orf0, oo[ (i.e. (f(x) — f(y))(g(x) — g(y)) < 0, for anya, y € [0, o).

Remark2. Applying Theoren3.2for o = 3, we obtain Theorem. L
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The third result is:

Theorem 3.3.Let (f;),_,
anyt > 0,a > 0, we have

(3.14) (H ﬁ) > (

Proof. We prove this theorem by induction.
Clearly, forn = 1, we haveJ® (f1) (t) > J*(f1) (t), forall t > 0,a > 0.
Forn = 2, applying @.1), we obtain:

T (fuf2) (8) 2 (% ()7 T (A) (8) I (£2) (1),

Now, suppose that (induction hypothesis)

., ben positive increasing functions df, oo[. Then for

)" ”HJafz

forallt > 0,a > 0.

(3.15) Je (h fz-> (t) > (J* (1))2nh Jfi (1), t>0,a>0.

=1
Since(f;);_, .., are positive increasing functions, théf[!"}' f;) (¢) is an increas-

ing function. Hence we can apply Theoréirl to the functions]_[?:_l1 fi=g9
fn = f. We obtain:

(3.16) J° (H fi) (t) = J* (fg) (t) >

=1

I

(Hﬁ) £) J* (fa) ().

Taking into account the hypothesis {5, we obtain:

(3.17) J“(Hﬁ) )= (J* (1)) (I (HJ%) ) (fa) (),

and this ends the proof. O
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We further have:

Theorem 3.4. Let f and g be two functions defined df, +oc[, such thatf is
increasing,g is differentiable and there exists a real number= inf,~,¢’ (¢) . Then
the inequality

(318) I (Fg)(t) = (JO(1) " T Ig(t) — — T F(E) + m (£ (1))

a+1 _ "
Fractional Integral Inequalities
isvalid forallt > 0,a > 0. S;umLé BDe'ifbi and
Proof. We consider the functioh (t) := g (t) — mt. Itis clear thath is differentiable vol. 10, iss. 3, art. 86, 2009
and it is increasing ofv, +-oo[. Then using Theorerf.1, we can write:
(3.19) Ja( (g —mt) f (1) ) Title Page
> (o) S (1) (179(0) = mI (1)) Sl
<« >
_ m (Jo(1)) " tt!
> (J)) T TYf()T%(t) — @ F(t
2 (JU () IS0 9() - = ) < | >
r 1)t
> (Joz(l))fl Jaf(t)Jag(t) _ m (Oé—i— ) Jaf(t) Page 9 of 12
I'(a+2)
B mt Go Back
> (J7(V) TSI () — =T (@), i Sereen
Hence Close
(3.20) J(fg)(t) = (J*(1)) " Jf(t)J°g(t) journal of inequalities
mt o in pure and applied
Theorem3.4is thus proved. O pesn TS
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Corollary 3.5. Let f and g be two functions defined @6, +oo|.

(A) Suppose thaf is decreasingy is differentiable and there exists a real number

M := sup,;,g' (t). Then forallt > 0, a > 0, we have:

(B21) J*(f)(1) 2 (J°() ™ T F(0)T"g(6) = =" (1) + M. (1)

(B) Suppose thaf and g are differentiable and there exist, := inf;>of’ (z),
me = inf;>0g’ (t). Then we have

(3.22) J*(fg)(t) — miJ%tg(t) — maJotf(t) + mymyJt?
> (J2(1))" (J“ F(£)I%(t) — myJotTg(t)

- ngo‘tJo‘f(t) + mlmg(Jo‘t)2> .

(C) Suppose thaf and g are differentiable and there exist/; := sup,.qf’ (),
M, := sup;so9’ (t) . Then the inequality

(3.23) J*(fg)(t) — My Jg(t) — MaJtf(t) + My Mo J*t?
> (J2(0) 7 (£ (0179 (1) = Myt g (1)
— My JotJOf(t) + MlMg(J"‘t)2>.
is valid.

Proof.
(A): Apply Theorem3.1to the functionsf andG(t) := g(t) — mat.
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(B): Apply Theorens.1to the functiong” andG, where:F'(t) := f(t)—myt, G(t) :=

g(t) — mat.
To prove(C'), we apply Theoren3.1to the functions

F(t) == f(t) — Myt, G(t) := g(t) — Mat.
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