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ABSTRACT. In this paper, using the Riemann-Liouville fractional integral, we establish some
new integral inequalities for the Chebyshev functional in the case of two synchronous functions.

Key words and phrasedtractional integral inequalities, Riemann-Liouville fractional integral.

2000Mathematics Subject Classificat 086D10, 26A33.

1. INTRODUCTION

Let us consider the functionall[1]:

@y 105 [ r@e@a— ([ i) (1 [awa).

where f and g are two integrable functions which are synchronous/@m] <i.e. (f(x) —

) (g(w) = g(y) = 0, for anya,y € [a,0]).

Many researchers have given considerable attentiop to (1.1) and a number of inequalities
have appeared in the literature, see [3,/4, 5].

The main purpose of this paper is to establish some inequalities for the funcfiofal (1.1) using
fractional integrals.

2. DESCRIPTION OF FRACTIONAL CALCULUS

We will give the necessary notation and basic definitions below. For more details, one can
consult [2]6].

Definition 2.1. A real valued functionf(t), ¢ > 0 is said to be in the spacg,, i € R if there
exists a real number > 1 such thatf(t) = ¢ f1(t), wheref,(t) € C([0, oo]).

Definition 2.2. A function f(t),¢ > 0 is said to be in the spac&, n € R, if /™) € C,..
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Definition 2.3. The Riemann-Liouville fractional integral operator of order 0, for a func-
tion f € Cy,, (u > —1) is defined as

2.1) JoF(t) = ﬁ /Ot@ (e a s 0,650,
TUf(t) = f(1),

wherel'(a) := [;° e "u*"'du.

For the convenience of establishing the results, we give the semigroup property:
(2.2) JUJPf(t) = J*Ef(t), a>0,8>0,
which implies the commutative property:
(2.3) JUJPf(t) = JPT*f(2).
From [2.1), whery (¢) = ¢* we get another expression that will be used later:
(2.4) JOtH = %taﬂz a>0; u>-—1,t>0.

3. MAIN RESuULTS

Theorem 3.1.Let f and g be two synchronous functions @ oco[. Then for allt > 0, « > 0,
we have:

(3.1) JU(f9)(t) = JUf ) Tg(t).

Proof. Since the functiong’ and g are synchronous of), oo[, then for allz > 0,p > 0, we
have

I(a+1)
tOL

(3.2) (£ = 1)) (9(r) = 9(0)) 2 0.
Therefore
(3.3) f()g(r) + f(p)g(p) = ()() flp)g(7).
Now, multiplying both sides 0.3) by%_l € (0,t), we get
(3.4) %fﬁ)g(ﬂ . ;(2; — £(0)g(p)
(t — 7)ot (t — 7)ot
> (o) f(m)g(p) I(a) f(p)g(7)

Then integrating (3]4) oveD, ), we obtain:

(35) ﬁ / <t—7>a—1f<7>g<f>df+ﬁ / (t — 1) F(0)g(p)dr

1 ! a—1 ! a—1
> w7 [ 4= @or + o [ =7 (e
Consequently,
1 ! a—1
@) I (f9)0)+ () (r) iy [ =y
g (p) ! a—1 f(p) ' a—1
> 28 [ @+ 58 [ a—n e ar
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So we have
3.7) J(fo) )+ f(p)g(p) J*(1) > g (p) J*(f)t) + f (p) J*(9)(t).
Multiplying both sides of7) by‘%, p € (0,t), we obtain:

c8) Ll rtan+ S g )

>

Now integrating[(3.B) ove(0, t), we get:

) a0 [ T+ L [ rotone - ot
> Tl [ o g+ T2 [ oo
Hence
(3.10) T (Fg)(t) = oI F(H)I°g D),
and this ends the proof. O

The second result is:

Theorem 3.2. Let f and g be two synchronous functions @ co[. Then for allt > 0, « >
0, 6 > 0, we have:

o tﬂ
o) YOO+ 55

Proof. Using similar arguments as in the proof of Theofenj 3.1, we can write

(3.11) T (fg)(t) = Jf (1) I%(t) + J7f (1) I g(t).

RV RV
312) Y2 ey - r ) Y2y ()

r() r()
Y Y=
> o) s )+ o1 () g )

By integrating|(3.1R) ovef0, t) , we obtain

t _ \B-1 o t
1) o) [ Ll L5 [0t

JUr@) [* - Jog(t) [* L
> T3 /O(t—p)ﬁ 9(0)dp+ 5 /O(t—p)ﬁ f (p)dp.

and this ends the proof. O

Remark 1. The inequalities](3]1) an@l (3]11) are reversed if the functions are asynchronous on
[0, 00[ (i.e. (f(x) = f(y))(g(x) — g(y)) <0, foranyz,y € [0, 0.

Remark 2. Applying Theorenj 32 for = 3, we obtain Theorer 3,1.
The third result is:
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Theorem 3.3. Let (f;),_,
0,a > 0, we have

-----

(3.14)

(i)

Proof. We prove this theorem by induction.

., ben positive increasing functions 0,

oo[. Then for anyt >

1 nHJafZ

Clearly, forn = 1, we haveJ® (f1) (t) > J* (f1) (t),forallt > 0,a > 0.

Forn = 2, applying [3.1), we obtain:
JU(fif2) (1) = (J* (1))

(3.15)

Ja (H fi) () 2 (" (1)

since(f,),_,

.....

RATIOPATHIGN

Now, suppose that (induction hypothesis)

n—1
2 H Jafl (t) )
i=1

,, are positive increasing functions, théﬁ[;:ll f) (t) is an increasing function.

forallt > 0,a > 0.

t>0,a>0.

Hence we can apply Theorém B.1 to the functipfls, f; = g, f, = f. We obtain:

(3.16)

(Hf) = J*(fg) (t) >

Taking into account the hypothesfis (3.15), we obtain:

(3.17) <Ilﬁ) > (J* (1) (

and this ends the proof.
We further have:

(Hf) £) J* (f) ().

(H J“ﬁ) )T (fa) (£,

Theorem 3.4. Let f and g be two functions defined df, +oo], such thatf is increasingy is
differentiable and there exists a real number.= inf,~¢’ (¢) . Then the inequality

3.18)  JU(f9)t) = (J(1))

is valid forallt > 0, > 0.

Proof. We consider the functioh (¢) :=

(3.19)
> (J*(1))
> (J%(1))
> (J*(1))
Hence

(3.20) J*(fg)(t) = (J*(1))
Theorenj 3.4 is thus proved.
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g(t)

a—+1

() () — — e f(t) + mJ (D))

— mt. Itis clear thath is differentiable and it is
increasing orf0, +oo[. Then using Theorefn 3.1, we can write:

L) og(t) —
“LIOf(6) () —
“LIOf(t)og(t) —

10 () () — T () 4 md® (LF(E)),

a—+1

I ((g=mt) £ @) = (@) I f 1) (S () = ma” (1))

m (1)
I'(a+2)
ml (a4 1)t

I'(a+2)

JUf(t)

JUf(t)

t>0,a>0.

O
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Corollary 3.5. Let f and g be two functions defined df, +oo].

(A) Suppose thaf is decreasingy is differentiable and there exists a real number :=
sup;sqg’ (t). Then forallt > 0, a > 0, we have:

B21) U0 2 (W) IS0 ~ I () + M ().

(B) Suppose thaf and g are differentiable and there exist, := inf;>f' (), ms =
inf;>o¢’ (). Then we have

(3.22) J*(fg)(t) — m1Jtg(t) — maJtf(t) + mimyJot?
> (7)™ (T g() — maJ I g(E) — ma I () + mama(J°)? ).
(C) Suppose thaf and g are differentiable and there exist/; := sup,.f’ (t), M, =
sup;sqg’ (t) . Then the inequality
(3.23) J*(fg)(t) — M Jtg(t) — MaJtf(t) + My Mo J*t?
> (J7(1) ™ (I g() — Mo tIg(t) — Mot f () + My Mo(J°)? ).
is valid.

Proof.

(A): Apply Theorenj 3.1 to the functionsandG(t) := g(t) — mot.

(B): Apply Theoren] 31 to the functions and G, where: F(t) := f(t) — mit, G(t) :=
g(t) — mot.

To prove(C), we apply Theorerh 3|1 to the functions

F(t) := f(t) — Myt, G(t) := g(t) — Mat.
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