Journal of Inequalities in Pure and Applied Mathematics

THE BEST CONSTANT FOR A GEOMETRIC INEQUALITY

YU-DONG WU
Xinchang Middle School
Xinchang, Zhejiang 312500
People's Republic of China.
EMail: zjxcwyd@tom.com
volume 6 , issue 4 , article 111, 2005.

Received 29 April, 2005; accepted 02 September, 2005.
Communicated by: J. Sándor

Abstract

In this paper, we prove that the best constant for the geometric inequality $\frac{11 \sqrt{3}}{5 R+12 r+k(2 r-R)} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is a root of one polynomial by the method of mathematical analysis and linear algebra.

2000 Mathematics Subject Classification: Primary 52A40. Secondary 52C05.
Key words: Best Constant, Geometric Inequality, Euler's Inequality, Gerretsen's Inequality, Sylvester's Resultant.

The author would like to thank Professor Lu Yang and Sheng-Li Chen for their enthusiastic help.

Contents
 Contents

1 Introduction and Main Results 3
2 Lemmas 5
3 Proof of Theorem 1.1 11 1
References,

The Best Constant for a Geometric Inequality

Yu-dong Wu

J. Ineq. Pure and Appl. Math. 6(4) Art. 111, 2005 http://jipam.vu.edu.au

1. Introduction and Main Results

In 1993, Shi-Chang Shi strengthened the familiar geometric inequality (in triangle)

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{\sqrt{3}}{2 r} \tag{1.1}
\end{equation*}
$$

to

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right) \tag{1.2}
\end{equation*}
$$

in [1]. After several months, Ji Chen obtained the following beautiful and strong inequality chain in [2].

$$
\begin{equation*}
\frac{11 \sqrt{3}}{5 R+12 r} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \tag{1.3}
\end{equation*}
$$

In the same year, Xi-Ling Huang posed the following interesting inequality problem in [3].

Problem 1. Determine the best constant k for which the inequality below holds

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{1}{\sqrt{3}}\left[\frac{1}{R}+\frac{1}{r}+\frac{1}{k}\left(\frac{2}{R}-\frac{1}{r}\right)\right] \tag{1.4}
\end{equation*}
$$

The Best Constant for a Geometric Inequality

Yu-dong Wu

J. Ineq. Pure and Appl. Math. 6(4) Art. 111, 2005

Theorem 1.1. The best constant k for the inequality (1.2) is $2(1+\sqrt[3]{2}+\sqrt[3]{4})$.
In the same year, Xue-Zhi Yang [5] strengthened the inequality

$$
\begin{equation*}
\frac{11 \sqrt{3}}{5 R+12 r} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \tag{1.5}
\end{equation*}
$$

to

$$
\begin{equation*}
\frac{243 \sqrt{3}}{110 R+266 r} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \tag{1.6}
\end{equation*}
$$

In this paper we will determine the best constant for the inequality

$$
\begin{equation*}
\frac{11 \sqrt{3}}{5 R+12 r+k(2 r-R)} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \tag{1.7}
\end{equation*}
$$

where $0<k<5$. We obtain the following theorem.
Theorem 1.2. The maximum value of k for which the inequality (1.7) holds is the root on the open interval $\left(0, \frac{1}{15}\right)$ of the following equation

$$
405 k^{5}+6705 k^{4}+129586 k^{3}+1050976 k^{2}+2795373 k-62181=0
$$

Its approximation is 0.02206078402 .
In fact, let $k=\frac{5}{243} \approx 0.020576131687<0.02206078402$, we immediately

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents
Go Back
Close
Quit

2. Lemmas

In order to prove Theorem 1.1, we require several lemmas. The second was obtained by Sheng-Li Chen in [6] (see also [7]).

Lemma 2.1. If $0<k<5$, then the inequality

$$
\begin{equation*}
\frac{11 \sqrt{3}}{5 R+12 r+k(2 r-R)} \leq \frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \tag{2.1}
\end{equation*}
$$

holds if and only if $0<k \leq \frac{5}{12}$.
Proof. Since $0<k<5$, it is obvious that $5 R+12 r+k(2 r-R)>0$. Therefore, (2.1) is equivalent to

$$
\begin{equation*}
7(5-k) R^{2}+(4 k-130) R r+(20 k+120) r^{2} \geq 0 \tag{2.2}
\end{equation*}
$$

Setting $\frac{R}{2 r}=x$, then with Euler's Inequality $R \geq 2 r$, we have $x \geq 1$. Inequality (2.2) is equivalent to

$$
28(5-k) x^{2}+2(4 k-130) x+20 k+120 \geq 0
$$

that is,

$$
\begin{equation*}
4(x-1)[(35-7 k) x-5 k-30] \geq 0 \tag{2.3}
\end{equation*}
$$

Considering that $x \geq 1$, (2.3) holds if and only if $(35-7 k) x-5 k-30 \geq 0$ $(x \geq 1)$. Namely, $k \leq \frac{5(7 x-6)}{7 x+5}$ or $k \leq \min \frac{5(7 x-6)}{7 x+5}(x \geq 1)$.

The Best Constant for a Geometric Inequality

Yu-dong Wu

Define the function

$$
f(x)=\frac{5(7 x-6)}{7 x+5}(x \geq 1)
$$

Calculating the derivative for $f(x)$, we get

$$
f^{\prime}(x)=-\frac{35(7 x-6)}{(7 x+5)^{2}}+\frac{35}{7 x+5}=\frac{385}{(7 x+5)^{2}}>0,
$$

and thus the function $f(x)$ is strictly monotone increasing on the interval $[1,+\infty)$. Then $f(x) \geq f(1)=\frac{5}{12}$. That is $\min f(x)=1$ for $x \geq 1$. So $k \leq \frac{5}{12}$, combining $0<k<5$, we immediately obtain $0<k \leq \frac{5}{12}$. Thus, Lemma 2.1 is proved.

Lemma 2.2. [6] The homogeneous inequality $F(R, r, s) \geq(>) 0$ in triangle which form is equivalent to $p \geq(>) f(R, r)$ holds if and only if it holds by setting $R=2$, $r=1-x^{2}, p=\sqrt{(1-x)(3+x)^{3}}$, where $0 \leq x<1$. And the form which is equivalent to $p \leq(<) f(R, r)$ holds if and only if it holds by setting the same substitution, where $-1<x \leq 0$.

Proof. It is well known that the following two inequalities

$$
\begin{equation*}
p^{2} \geq 2 R^{2}+10 R r-r^{2}-2(R-2 r) \sqrt{r(R-2 r)} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{2} \leq 2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{r(R-2 r)} \tag{2.5}
\end{equation*}
$$

hold in any triangle $A B C$.
Now we prove the inequality (2.4) with equality holding if and only if $\triangle A B C$ is an isosceles triangle whose top-angle is greater than or equal to 60°, and the inequality (2.5) with equality holding if and only if $\triangle A B C$ is an isosceles

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

Go Back
Close
Quit
Q

Page 6 of 17
triangle whose top-angle is less than or equal to 60°.
Let A be the top- angle of isosceles triangle $A B C$, and let

$$
t=\sin \frac{A}{2}(=\cos B=\cos C) \in(0,1)
$$

then

$$
\sin \frac{B}{2}=\sin \frac{C}{2}=\sqrt{\frac{1-t}{2}}
$$

With known identities

$$
r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}, \quad p=R(\sin A+\sin B+\sin C)
$$

in triangle, we easily obtain

$$
\begin{equation*}
r=2 R t(1-t), \quad p=2 R(1+t) \sqrt{1-t^{2}} \tag{2.6}
\end{equation*}
$$

We put the identities (2.6) into the inequality (2.4) and (2.5), with simple calculations, we can find the inequality (2.4) with equality holding if and only if $t \in\left[\frac{1}{2}, 1\right)$ or $A \geq 60^{\circ}$; the inequality (2.5) with equality holding if and only if $t \in\left(0, \frac{1}{2}\right]$ or $A \leq 60^{\circ}$.
Then we prove the following two propositions.
Proposition 2.3. For every triangle $A B C$, there are isosceles triangle $A_{1} B_{1} C_{1}$ with top angle $A_{1} \geq 60^{\circ}$ and isosceles triangle $A_{2} B_{2} C_{2}$ with top angle $A_{1} \leq$ 60° make

$$
R_{1}=R_{2}=R, \quad r_{1}=r_{2}=r ; \quad p_{1} \leq p \leq p_{2}
$$

with $p=p_{1}$ holding if and only if $\triangle A B C$ is an isosceles triangle with top angle $A \geq 60^{\circ}, p=p_{2}$ holding if and only if $\triangle A B C$ is an isosceles triangle with top angle $A \leq 60^{\circ}$.

Proof. Denote $\odot O$ as the circumcircle of $\triangle A B C$, then there are inscribed isosceles triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ of $\bigodot O$ which satisfy the next two identities:

$$
\begin{aligned}
& \frac{A_{1}}{2}=\arcsin \frac{1}{2}\left(1+\sqrt{1-\frac{2 r}{R}}\right) \\
& \frac{A_{2}}{2}=\arcsin \frac{1}{2}\left(1-\sqrt{1-\frac{2 r}{R}}\right)
\end{aligned}
$$

Then $A_{1} \geq 60^{\circ}, A_{2} \leq 60^{\circ}$ and

$$
\begin{align*}
& \sin \frac{A_{1}}{2}\left(1-\sin \frac{A_{1}}{2}\right)=\frac{r}{2 R} \tag{2.7}\\
& \sin \frac{A_{2}}{2}\left(1-\sin \frac{A_{2}}{2}\right)=\frac{r}{2 R} \tag{2.8}
\end{align*}
$$

For isosceles triangles $A_{1} B_{1} C_{1}$ where the top-angle is A_{1} and $A_{2} B_{2} C_{2}$ where the top-angle is A_{2}, we have

$$
\begin{equation*}
\sin \frac{A_{1}}{2}\left(1-\sin \frac{A_{1}}{2}\right)=\frac{r_{1}}{2 R_{1}} \tag{2.9}
\end{equation*}
$$

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

Go Back

Close
Quit
Page 8 of 17

$$
\begin{equation*}
\sin \frac{A_{2}}{2}\left(1-\sin \frac{A_{2}}{2}\right)=\frac{r_{2}}{2 R_{2}} \tag{2.10}
\end{equation*}
$$

From (2.7) to (2.10), we get $\frac{r}{R}=\frac{r_{1}}{R_{1}}=\frac{r_{2}}{R_{2}}$, and it is easy to see that $R=$ $R_{1}=R_{2}$, so $r_{1}=r_{2}=r$. Denote $\varphi(R, r)$ to be the right of (2.4), then $p^{2} \geq \varphi(R, r)=\varphi\left(R_{1}, r_{1}\right)=p_{1}^{2}$, so $p \geq p_{1}$. In the same manner, we can prove that $p \leq p_{2}$.

Proposition 2.4.

(i) If the inequality $p \geq(>) f_{1}(R, r)$ holds for any isosceles triangle whose top-angle is greater than or equal to 60°, then the inequality $p \geq(>) f_{1}(R, r)$ holds for any triangle.
(ii) If the inequality $p \leq(<) f_{1}(R, r)$ holds for any isosceles triangle whose top-angle is less than or equal to 60°, then the inequality $p \leq(<) f_{1}(R, r)$ holds for any triangle.

Proof. For any $\Delta A^{\prime} B^{\prime} C^{\prime}$, with Proposition 2.3, we know there is an isosceles triangle $A_{1} B_{1} C_{1}$ which make

$$
R_{1}=R^{\prime}, \quad r_{1}=r^{\prime}, \quad p_{1} \leq p^{\prime} .
$$

Because the inequality $p \geq(>) f_{1}(R, r)$ holds for isosceles triangle $A_{1} B_{1} C_{1}$, we have

$$
p^{\prime} \geq p_{1} \geq(>) f_{1}\left(R_{1}, r_{1}\right)=f_{1}\left(R^{\prime}, r^{\prime}\right)
$$

Thus, the inequality $p \geq(>) f_{1}(R, r)$ holds for $\Delta A^{\prime} B^{\prime} C^{\prime}$. In the same way we

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

Go Back
Close
Quit

Page 9 of 17

From Proposition 2.4, the homogeneous inequality in triangle whose form is equivalent to $p \geq(>) f(R, r)$ holds if and only if it holds by setting $R=2$, $r=4 t(1-t), p=4(1+t) \sqrt{1-t^{2}}$. Taking $t=\frac{x+1}{2}$, we immediately get $r=1-x^{2}, p=\sqrt{(1-x)(3+x)^{3}}$, where $0 \leq x<1$. For the homogeneous inequality in triangle whose form is equivalent to $p \leq(<) f(R, r)$, we only need to change the range of x. Namely, we change $0 \leq x<1$ to be $-1<x \leq 0$. Thus, the proof of Lemma 2.2 is completed. (The proof was given by Sheng-Li Chen in [6].)

Lemma 2.5. [8] Denote

$$
\begin{aligned}
& f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \\
& g(x)=b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{m} .
\end{aligned}
$$

If $a_{0} \neq 0$ or $b_{0} \neq 0$, then the polynomials $f(x)$ and $g(x)$ have a common root if and only if

$$
R(f, g)=\left|\begin{array}{cccccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n} & 0 & \cdots & 0 \\
0 & a_{0} & a_{1} & \cdots & a_{n-1} & a_{n} & \cdots & \cdots \\
\cdots & \cdots \\
0 & 0 & \cdots & a_{0} & \cdots & \cdots & \cdots & a_{n} \\
b_{0} & b_{1} & b_{2} & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & \cdots & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & \cdots & b_{0} & b_{1} & \cdots & b_{m}
\end{array}\right|=0,
$$

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 10 of 17 |

where $R(f, g)$ is Sylvester's Resultant of $f(x)$ and $g(x)$.

3. Proof of Theorem $\mathbf{1 . 1}$

Proof. With known identities $a b c=4 R r p$ and $a b+b c+c a=p^{2}+4 R r+r^{2}$ in triangle, we easily know the inequality (1.7) is equivalent to

$$
\begin{equation*}
\frac{11 \sqrt{3}}{5 R+12 r+k(2 r-R)} \leq \frac{p^{2}+4 R r+r^{2}}{4 R r p} \tag{3.1}
\end{equation*}
$$

The inequality (3.1) is equivalent to the following inequality
(3.2) $[5 R+12 r+k(2 r-R)] p^{2}-44 \sqrt{3} R r p$

$$
+[5 R+12 r+k(2 r-R)]\left(4 R r+r^{2}\right) \geq 0
$$

(i) If

$$
\Delta(R, r)=(44 \sqrt{3} R r)^{2}-4[5 R+12 r+k(2 r-R)]^{2}\left(4 R r+r^{2}\right)<0
$$

it is obvious that the inequality (3.2) holds.
(ii) If

$$
\Delta(R, r)=(44 \sqrt{3} R r)^{2}-4[5 R+12 r+k(2 r-R)]^{2}\left(4 R r+r^{2}\right) \geq 0
$$

then the inequality (3.2) is equivalent to

$$
\begin{equation*}
p \geq \frac{44 \sqrt{3} R r+\sqrt{\Delta(R, r)}}{2[5 R+12 r+k(2 r-R)]} \tag{3.3}
\end{equation*}
$$

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

44	-
4	-
Go Back	
Close	
Quit	

Page 11 of 17

$$
\begin{equation*}
p \leq \frac{44 \sqrt{3} R r-\sqrt{\Delta(R, r)}}{2[5 R+12 r+k(2 r-R)]} \tag{3.4}
\end{equation*}
$$

In fact, the inequality (3.4) does not hold. From (1.3) and (1.7), we have

$$
\begin{equation*}
\frac{11 \sqrt{3}}{5 R+12 r+k(2 r-R)} \leq \frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \tag{3.5}
\end{equation*}
$$

By Lemma 2.1, we know that $0<k \leq \frac{5}{12}$. It is easy to see that the following inequalities hold

$$
\begin{align*}
\frac{44 \sqrt{3} R r-\sqrt{\Delta(R, r)}}{2[5 R+12 r+k(2 r-R)]} & \leq \frac{44 \sqrt{3} R r}{2[5 R+12 r+k(2 r-R)]} \tag{3.6}\\
& \leq \frac{22 \sqrt{3} R r}{\left[5 R+12 r+\frac{5}{12}(2 r-R)\right]}
\end{align*}
$$

Now we prove the next inequality

$$
\begin{equation*}
p \geq \frac{22 \sqrt{3} R r}{\left[5 R+12 r+\frac{5}{12}(2 r-R)\right]} \tag{3.7}
\end{equation*}
$$

The inequality (3.7) is equivalent to

The Best Constant for a Geometric Inequality

Yu-dong Wu

J. Ineq. Pure and Appl. Math. 6(4) Art. 111, 2005

With Gerretsen's Inequality $p^{2} \geq 16 R r-5 r^{2}$, in order to prove the inequality (3.8), we only need to prove the following inequality.

$$
\begin{equation*}
16 R r-5 r^{2} \geq \frac{1452 R^{2} r^{2}}{\left[5 R+12 r+\frac{5}{12}(2 r-R)\right]^{2}} \tag{3.9}
\end{equation*}
$$

The inequality (3.9) is equivalent to

$$
\begin{equation*}
r\left(400 R^{3}+387 R^{2}+2436 R r-980 r^{3}\right) \geq 0 \tag{3.10}
\end{equation*}
$$

With Euler's inequality $R \geq 2 r$, we easily see that the inequality (3.10) holds. So, the inequality (3.7) holds. Then the inequality (3.4) does not hold. Therefore, the inequality (3.2) is equivalent to the inequality (3.3). From Lemma 2.2, the inequality (3.2) holds if and only if the following inequality holds.
(3.11) $8(1-x)(3+x)\left[(2 x+3)\left(11-6 x^{2}-k x^{2}\right)\right.$

$$
-11 \sqrt{3}(x+1) \sqrt{(1-x)(3+x)}] \geq 0 \quad(0 \leq x<1)
$$

The inequality (3.11) holds when $x=0$. When $0<x<1$, the inequality (3.11) is equivalent to

$$
\begin{equation*}
k \leq \frac{(2 x+3)\left(11-6 x^{2}\right)-11 \sqrt{3}(x+1) \sqrt{(1-x)(3+x)}}{x^{2}(2 x+3)} \tag{3.12}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
g(x)=\frac{(2 x+3)\left(11-6 x^{2}\right)-11 \sqrt{3}(x+1) \sqrt{(1-x)(3+x)}}{x^{2}(2 x+3)}, \tag{3.13}
\end{equation*}
$$

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 13 of 17 |

Calculating the derivative for $g(x)$, we get
(3.14) $g^{\prime}(x)$

$$
=\frac{-22\left[\sqrt{3}\left(x^{4}+5 x^{3}+2 x^{2}-9 x-9\right)+(2 x+3)^{2} \sqrt{(1-x)(3+x)}\right]}{x^{3}(2 x+3)^{2} \sqrt{(1-x)(3+x)}} .
$$

Let $g^{\prime}(x)=0$, we get

$$
\begin{equation*}
3 x^{5}+30 x^{4}+103 x^{3}+134 x^{2}+48 x-18=0, \quad(0<x<1) . \tag{3.15}
\end{equation*}
$$

It is easy to see that the equation (3.15) has the only one positive root on the open interval $(0,1)$. Denote x_{0} to be the root of the equation (3.15). Then

$$
g(x)_{\min }=g\left(x_{0}\right)=\frac{\left(2 x_{0}+3\right)\left(11-6 x_{0}^{2}\right)-11 \sqrt{3}\left(x_{0}+1\right) \sqrt{\left(1-x_{0}\right)\left(3+x_{0}\right)}}{x_{0}^{2}\left(2 x_{0}+3\right)} .
$$

Therefore, the maximum of k is $g\left(x_{0}\right)$. Now we prove $g\left(x_{0}\right)$ is the root of the equation

$$
405 k^{5}+6705 k^{4}+129586 k^{3}+1050976 k^{2}+2795373 k-62181=0 .
$$

It is easy to find that $g\left(x_{0}\right)$ is a root of the following equation.

$$
x_{0}^{2}\left(2 x_{0}+3\right)^{2} t^{2}-2\left(2 x_{0}+3\right)^{2}\left(11-6 x_{0}^{2}\right) t+144 x_{0}^{4}+432 x_{0}^{3}+159 x_{0}^{2}-132 x_{0}+22=0 .
$$

We know that

$$
3 x_{0}^{5}+30 x_{0}^{4}+103 x_{0}^{3}+134 x_{0}^{2}+48 x_{0}-18=0 .
$$

Considering the simultaneous equations

$$
\left\{\begin{array}{r}
x_{0}^{2}\left(2 x_{0}+3\right)^{2} t^{2}-2\left(2 x_{0}+3\right)^{2}\left(11-6 x_{0}^{2}\right) t+144 x_{0}^{4} \tag{3.16}\\
+432 x_{0}^{3}+159 x_{0}^{2}-132 x_{0}+22=0 \\
3 x_{0}^{5}+30 x_{0}^{4}+103 x_{0}^{3}+134 x_{0}^{2}+48 x_{0}-18=0
\end{array}\right.
$$

The simultaneous equations (3.16) can be changed to the simultaneous equations as follows.

$$
\left\{\begin{array}{r}
4(t+6)^{2} x_{0}^{4}+12(t+6)^{2} x_{0}^{3}+\left(9 t^{2}+20 t+159\right) x_{0}^{2} \tag{3.17}\\
-132(2 t+1) x_{0}-198 t+22=0 \\
3 x_{0}^{5}+30 x_{0}^{4}+103 x_{0}^{3}+134 x_{0}^{2}+48 x_{0}-18=0
\end{array}\right.
$$

Then,
$R_{x_{0}}(f, g)=\left|\begin{array}{ccccccc}4(t+6)^{2} & 12(t+6)^{2} & \ldots & 22-198 t & 0 & \ldots & 0 \\ 0 & 4(t+6)^{2} & \ldots & \ldots & 22-198 t & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \cdots & \cdots \\ 0 & \ldots & 0 & 4(t+6)^{2} & \ldots & \cdots & 22-198 t \\ 3 & 30 & \ldots & -18 & 0 & 0 & 0 \\ 0 & 3 & 30 & \ldots & -18 & 0 & 0 \\ 0 & 0 & 3 & 30 & \ldots & -18 & 0 \\ 0 & 0 & 0 & 3 & 30 & \cdots & -18\end{array}\right|$

The Best Constant for a Geometric Inequality

Yu-dong Wu

Title Page
Contents

Go Back
Close
Quit
Page 15 of 17

Page 15 of 17

$$
\begin{aligned}
=100 & \left(405 t^{5}+6705 t^{4}+129586 t^{3}+1050976 t^{2}+2795373 t-62181\right) \\
\times & \left(405 t^{5}-178425 t^{4}-1656374 t^{3}\right. \\
& \left.\quad-13317290 t^{2}-100675599 t-330639021\right)
\end{aligned}
$$

The solution of the equation $R_{x_{0}}(f, g)=0$ is the union of the solution of the equation

$$
\begin{equation*}
405 t^{5}+6705 t^{4}+129586 t^{3}+1050976 t^{2}+2795373 t-62181=0 \tag{3.18}
\end{equation*}
$$ and the equation

$$
\begin{align*}
& 405 t^{5}-178425 t^{4}-1656374 t^{3} \tag{3.19}\\
& \quad-13317290 t^{2}-100675599 t-330639021=0
\end{align*}
$$

With differential calculus, it is easy to see that the equation (3.19) has no root on the interval $[0,1]$. We can get $g\left(x_{0}\right)<1$, with Lemma 2.5 , we can conclude that $g\left(x_{0}\right)$ is the real root of the equation (3.18). Define the function
(3.20) $f(t)=405 t^{5}+6705 t^{4}+129586 t^{3}+1050976 t^{2}+2795373 t-62181$.

Then $f\left(\frac{1}{15}\right)=\frac{2174963624}{16875}>0$. Therefore, the real root of the equation (3.18) is on the interval $\left(0, \frac{1}{15}\right)$.
Thus, the proof of Theorem 1.2 is completed.

References

[1] SHI-CHANG SHI, Strengthing on a geometric inequality, Fujian HighSchool Mathematics (in Chinese), 7(4) (1993).
[2] JI CHEN, Discussion about a geometric inequality (First), Fujian HighSchool Mathematics (in Chinese), 10-11(6) (1993).
[3] XI-LING HUANG, Discussion about a geometric inequality (Third), Fujian High-School Mathematics (in Chinese), 11(6) (1993).
[4] SHENG-LI CHEN, Discussing about a geometric inequality again, Geometric Inequalities in China (in Chinese), Jiangsu Educational Press, No. 46-50, 1996.
[5] XUE-ZHI YANG, Strengthing on a geometric inequality (First), Forward Position of Elementary Mathematics (in Chinese), Jiangsu Educational Press, No. 236-242, 1996.
[6] SHENG-LI CHEN, A new method to prove one kind of inequalitiesequate substitution method (in Chinese), Fujian High-School Mathematics, No. 20-23, 1993(3).
[7] SHENG-LI CHEN, The simplified method to prove inequalities in triangle (in Chinese), Research in Inequalities, Xizang People's Press, No. 3-8, 2000.
[8] LU YANG, JING-ZHONG ZHANG AND XIAO-RONG HOU, Nonlinear Algebraic Equation System and Automated Theorem Proving (in Chinese), Shanghai Scientific and Technological Education Press, No. 23-25, 1996.

