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Abstract

Let F be a Schatten p-operator and R,S positive operators. We show that the
inequality |F (R + S)

1
c |p

c
≤ |FR

1
c |p

c
+ |FS

1
c |p

c
for the Schatten p-norm | · |p is true

for p ≥ c = 1 and for p ≥ c = 2, conjecture it to be true for p ≥ c ∈ [1, 2], give
counterexamples for the other cases, and present a numerical study for 2 × 2
matrices. Furthermore, we have a look at a generalisation of the inequality
which involves an additional factor σ(c, p).
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Triangle inequality, Powers of operators, Schatten-Minkowski constant.
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1. Introduction
Let H andK be complex Hilbert spaces and0 < p ≤ ∞. Following [1], we
denote bycp(H,K) the space of Schattenp-operatorsT : H −→ K, equipped
with the Schattenp-norm or quasi-norm| · |p. Note that [1] deals only with the
spacescp(H) := cp(H,H). The generalisationscp(H,K) can be found in text-
books like [2] and [3] (there written asBp(H,K) andSp(H,K) respectively).

By L(H) we denote the space of bounded linear operators onH, and by
L(H)+ the subset of positive operators. With|T | := (T ∗ T )1/2 ∈ L(H)+ for
T ∈ L(H,K) we have forp <∞

|T |pp = tr |T |p for T ∈ cp(H,K), and consequently

|T |pp = tr T p for T ∈ cp(H)+ := cp(H) ∩ L(H)+.

Applying |T |p = |T ∗|p for T ∈ cp(H,K), this shows in case ofp <∞∣∣∣FU 1
2

∣∣∣2
p

=
∣∣∣U 1

2F ∗
∣∣∣2
p

=
(
tr (FUF ∗)

p
2

) 2
p

= |FUF ∗| p
2

for F ∈ cp(H,K) andU ∈ L(H)+. Because| · |∞ is the usual operator norm,∣∣∣FU 1
2

∣∣∣2
p

= |FUF ∗| p
2

is also true forp = ∞, with the common convention∞
2

:= ∞.
Our question, which arose while studying the integration of Schatten opera-

tor valued functions in [4], is: For what values ofp ∈ (0,∞] andc ∈ (0,∞) is
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the Minkowski-like inequality

(MS)
∣∣∣F (R + S)

1
c

∣∣∣c
p
≤
∣∣∣FR 1

c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

true for allF ∈ cp(H,K) andR,S ∈ L(H)+?
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2. The Conjecture
LetH,K, p, c, F,R, S be as above.

Theorem 2.1. Inequality (MS) is true forp ≥ c = 1 and forp ≥ c = 2.

Proof. Forp ≥ c = 1, the triangle inequality for| · |p shows

|F (R + S)|p = |FR + FS|p ≤ |FR|p + |FS|p.

Forp ≥ c = 2, the triangle inequality for| · | p
2

shows∣∣∣F (R + S)
1
2

∣∣∣2
p

= |F (R + S)F ∗| p
2
≤ |FRF ∗| p

2
+|FSF ∗| p

2
=
∣∣∣FR 1

2

∣∣∣2
p
+
∣∣∣FS 1

2

∣∣∣2
p
.

Theorem2.1suggests the following conjecture.

Conjecture 1. Inequality (MS) is true forp ≥ c ∈ [1, 2].

For c ∈ (1, 2) we have at the present time no proof of this conjecture for
other than trivial situations, not even for the special case of2 × 2 matrices.
However, some justification will be given in Section4.
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3. The Casep < c and the Casec 6∈ [1, 2]

In this section we will demonstrate, by providing counterexamples, that inequal-
ity (MS) is not necessarily true for other values of(c, p) than those stated in
Conjecture1. We will offer one example for0 < p < c < ∞, and one for
arbitraryp whenc < 1 or c > 2, both examples using2 × 2 matrices. The
powerU t for t > 0 of a non-negative matrixU can be calculated easily with
help of the spectral decomposition ofU .

Example 3.1. Inequality (MS) is violated for0 < p < c <∞ by

F :=

(
1 0
0 1

)
, R :=

(
1 0
0 0

)
, S :=

(
0 0
0 1

)
.

Proof. FromU t = U for U ∈ {R,S,R + S} andt ∈ (0,∞) we get∣∣∣FU 1
c

∣∣∣
p

= |U |p = (trUp)
1
p = (trU)

1
p ,

yielding ∣∣∣FR 1
c

∣∣∣
p

= 1,
∣∣∣FS 1

c

∣∣∣
p

= 1,
∣∣∣F (R + S)

1
c

∣∣∣
p

= 2
1
p ,

and usingp < c,∣∣∣FR 1
c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

= 2 < 2
c
p =

∣∣∣F (R + S)
1
c

∣∣∣c
p
.
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The second example makes use of an inequality which is interesting in its
own right. Seeming simple, it is surprisingly fiddly to prove:

Lemma 3.1. For x ∈ (0, 1) ∪ (2,∞) we have(
1 +

1√
5

)(
3 +

√
5

2

)x

+

(
1− 1√

5

)(
3−

√
5

2

)x

< 1 + 3x.

Proof. Settingr :=
√

5, α1 := 1 + 1
r
, α2 := 1 − 1

r
, andω := 3+r

2
, we have to

show
α1 ω

x + α2 ω
−x < 1 + 3x.

The casex ∈ (2,∞): Setf(x) := α1 ω
x, g(x) := α2 ω

−x, h(x) := 1 + 3x

for x ∈ (0,∞). Becauseα2 > 0 andω > 1, g is strictly decreasing, thus
f(x) + g(x) < f(x) + g(2) for x > 2. We will showf(x) + g(2) < h(x) for
x > 2. Becausef(2) + g(2) = h(2), this is done if we provef ′(x) < h′(x)
for x > 2, which is equivalent toα1 (ω

3
)x lnω < ln 3. This inequality is true

for x = 2. All factors of its left side are positive, andω < 3, so the left side is
strictly decreasing forx ≥ 2. Hence the inequality is true forx > 2 as well.

The casex ∈ (0, 1): After substitutings := ωx and settingδ := ln 3
ln ω

, we
have to prove the equivalent inequality

s+
1

s
+

1

r

(
s− 1

s

)
< 1 + sδ

for s ∈ (1, ω), which can be done by building a sandwich with a suitable poly-
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nomial function inside: Set

ϕ(s) := s+
1

s
+

1

r

(
s− 1

s

)
, p(s) := 2

(
1 +

s− 1

ω − 1

)
,

q(s) :=
(s− 1)(s− ω)

(3− 1)(3− ω)
(ϕ(3)− p(3))

for s > 0. The claim is

ϕ(s) < p(s) + q(s) < 1 + sδ

for s ∈ (1, ω). The left inequality is verified by the fact thats · (p(s) + q(s) −
ϕ(s)) defines a polynomial of degree3 with three zeros{1, ω, 3}, where1 <
ω < 3, and with positive leading coefficientλ := 1

2
(ϕ(3) − p(3))/(3 − ω). To

prove the second inequality, we inspect

ψ(s) := 1 + sδ − p(s)− q(s)

for s > 0 and getψ′′(s) = δ(δ − 1)sδ−2 − 2λ. Because1 < δ < 2, ψ′′ has a
unique zero

s0 :=

(
δ(δ − 1)

2λ

) 1
2−δ

, 1 < s0 < ω,

with ψ′′(s) > 0 for s ∈ (0, s0) andψ′′(s) < 0 for s ∈ (s0,∞). Nowψ(1) = 0,
ψ′(1) > 0, andψ′′(s) > 0 for s ∈ (1, s0) showψ(s) > 0 for s ∈ (1, s0], while
ψ(s0) > 0, ψ(ω) = 0, ψ′(ω) < 0, andψ′′(s) < 0 for s ∈ (s0, ω) showψ(s) > 0
for s ∈ [s0, ω).
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Example 3.2. Inequality (MS) is violated for0 < p ≤ ∞ andc < 1 as well as
c > 2 by

F :=

(
0 0
1 0

)
, R :=

(
0 0
0 1

)
, S :=

(
2 −1
−1 1

)
.

Proof. Evaluation of the matrix powers fort ∈ (0,∞) gives

Rt = R, St =

(
1
2
(α1 ω

t + α2 ω
−t) 1

r
(ω−t − ωt)

1
r
(ω−t − ωt) 1

2
(α2 ω

t + α1 ω
−t)

)
,

(R + S)t =
1

2

(
1 + 3t 1− 3t

1− 3t 1 + 3t

)
with r :=

√
5, α1 := 1 + 1

r
, α2 := 1− 1

r
, ω := 3+r

2
. ForU ∈ {R,S,R+ S} we

get in case ofp <∞

|FU t|p =
(
tr (FU2tF ∗)

p
2

) 1
p

=
√
ut

with ut being the top left entry ofU2t. Using |FU t|2∞ = |FU2tF ∗|∞, the case
p = ∞ yields the same result, thus for allp:∣∣∣FR 1

c

∣∣∣
p

= 0,
∣∣∣FS 1

c

∣∣∣
p

=

√
1

2
(α1 ω2/c + α2 ω−2/c),∣∣∣F (R + S)

1
c

∣∣∣
p

=

√
1

2
(1 + 32/c).

Substituting2
c

by x, we have to proveα1 ω
x + α2 ω

−x < 1 + 3x for x ∈ (2,∞)
and forx ∈ (0, 1), which is the statement of Lemma3.1.
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4. Some Numerical Evidence
To justify Conjecture1, we present the results of a numerical study performed
with 2× 2 matrices.

From functional calculus it is known: For an operatorT ≥ 0 on a complex
Hilbert space the powersTα, T β for α, β ∈ (0,∞) obey the ruleTα T β =
Tα+β. If T is invertible, thenTα can be defined forα ≤ 0 as well, andTα T β =
Tα+β is true for allα, β ∈ R.

Before turning to the matrix case, we note the following general lemma.

Lemma 4.1. LetH,K,F be as above andα ∈ (0,∞).

(a) LetT ∈ L(H)+. ThenFTα = 0 if and only ifFT = 0.

(b) LetR,S ∈ L(H)+. ThenF (R + S)α = 0 if and only ifFRα = 0 and
FSα = 0.

Proof. (a) SupposeFTα = 0. Then|FTα/2|2 = |FTαF ∗| = 0, henceFTα/2 =
0. Repeated application yieldsβ ∈ (0, 1) with FT β = 0, thusFT = FT βT 1−β

= 0.
Now supposeFT = 0. There is nothing to prove in the case ofα = 1,

so assumeα 6= 1. If T is invertible, thenFTα = FTTα−1 = 0. If T is not
invertible, then we have0 ∈ σ(T ), the spectrum ofT . Choose polynomialsfn ∈
R[t] for n ∈ N such thatfn(x) → xα for n→∞ uniformly forx ∈ σ(T ). Then
fn(T ) → Tα andFfn(T ) → FTα for n → ∞, henceFfn(T ) = fn(0)F → 0
for n→∞, thusFTα = 0.

http://jipam.vu.edu.au/
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(b) Part (a) shows:

FRα = 0 ∧ FSα = 0 ⇐⇒ FR = 0 ∧ FS = 0

=⇒ F (R + S) = 0

⇐⇒ F (R + S)α = 0.

To prove the missing implication, supposeF (R + S) = 0. ThenFRF ∗ +
FSF ∗ = 0. BecauseFRF ∗ ≥ 0 andFSF ∗ ≥ 0, we getFRF ∗ = 0, thus
|FR1/2|2 = |FRF ∗| = 0 andFR1/2 = 0. Applying (a) again givesFR = 0.
Symmetry showsFS = 0.

We will also use the following well-known property of2× 2 matrices:

Lemma 4.2. A complex2 × 2 matrixM is positive semidefinite if and only if
there exista, b ∈ [0,∞) andγ ∈ C with |γ|2 ≤ ab such that

M =

(
a γ
γ b

)
.

Lemma4.1(b) shows that, when checking Conjecture1, one may assume the
denominator to be non-zero, or setting0

0
:= 0, in

qc,p(F,R, S) :=

∣∣∣F (R + S)
1
c

∣∣∣c
p∣∣∣FR 1

c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

.

We are searching for the supremum ofqc,p(F,R, S) over all complex2 × 2
matricesF,R, S with R,S ≥ 0. For r ∈ [0,∞) andx ∈ C definer ∧ x := x

http://jipam.vu.edu.au/
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if |x| ≤ r andr ∧ x := (r/|x|)x otherwise. Lemma4.2 shows thatR has the
structure

R =

(
α2 |αβ| ∧ γ

|αβ| ∧ γ β2

)
=: P (α, β, γ)

with α, β ∈ R and γ ∈ C, and a corresponding representation is valid for
the matrixS. This means that we have to deal with six complex and four real
variables, resulting in a16-dimensional real optimisation problem: Forλ =
(λ1, . . . , λ16) ∈ R16 we set

Fλ :=

(
λ1 + λ2 i λ3 + λ4 i
λ5 + λ6 i λ7 + λ8 i

)
,

Rλ := P (λ9, λ10, λ11 + λ12 i),

Sλ := P (λ13, λ14, λ15 + λ16 i)

and are asking for

σ(c, p) := sup
λ∈R16

qc,p(Fλ, Rλ, Sλ).

To attack this problem, GNU Octave [5], version 2.1.57, was utilised. It
offers a function for determining the singular values of a matrix, which can
be employed for calculating the Schatten norms. For the optimisation task the
implementation [6], version 2002/05/09, with standard parameters of the Down-
hill Simplex Method of Nelder and Mead ([7], 10.4) was used. The results are
in perfect agreement with Conjecture1. For visualisation, approximations for
σ(c, p) for c ∈ {1.2, 1.4, 1.6, 1.8, 2.0} have been calculated and plotted with a
step size of0.01 for p, see Figure1.
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Figure 1: Experimental approximations ofσ(c, p).

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1 1.2 1.4 1.6 1.8 2
p

c = 1.2
c = 1.4
c = 1.6
c = 1.8
c = 2.0

The apparently smooth shape ofp 7→ σ(c, p) for p ≤ c, together with the
fact that for eachp a new random starting pointλ was used for the Nelder-Mead
algorihm, gives some confidence in the validity of the data.

A closer inspection of some of the calculated numerical values suggests

σ(2, 1) = 2, σ
(

3
2
, 1
)

= σ
(

9
5
, 6

5

)
= 2

1
2 , σ

(
8
5
, 6

5

)
= σ

(
2, 3

2

)
= 2

1
3 ,

σ
(

5
4
, 1
)

= σ
(

3
2
, 5

4

)
= σ

(
7
4
, 7

5

)
= σ

(
2, 8

5

)
= 2

1
4 , σ

(
6
5
, 1
)

= σ
(

9
5
, 3

2

)
= 2

1
5 ,

which leads to the idea to look atlog2 σ(c, p). It seems there is a linear depen-
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dency oflog2 σ(c, p) from c if c ≥ p. This observation will be made precise in
the next section.
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5. Generalisation of (MS)
It is natural to generalise (MS) and to ask for the smallestσ(c, p) ∈ [0,∞] for
c ∈ (0,∞) andp ∈ (0,∞] such that∣∣∣F (R + S)

1
c

∣∣∣c
p
≤ σ(c, p)

(∣∣∣FR 1
c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

)
for all F ∈ cp(H,K) andR,S ∈ L(H)+ (and for all complex Hilbert spaces
H andK). It is tempting to callσ(c, p) the Schatten-Minkowski constantfor
(c, p). By choosingF 6= 0 and settingR to be the identity andS := 0 it can be
seen thatσ(c, p) ≥ 1. Now Conjecture1 can be re-phrased usingσ(c, p), and,
motivated by the numerical results, we add another conjecture:

Conjecture 2. (a) For 1 ≤ c ≤ 2 andp ≥ c we haveσ(c, p) = 1.

(b) For 0 ≤ c ≤ 2 andp ≤ c we haveσ(c, p) = 2
c
p
−1.

Again, the casesc = 1 andc = 2 are not too difficult to prove:

Theorem 5.1.

(a) σ(1, p) =

{
1 for p ≥ 1

2
1
p
−1 for p ≤ 1

(b) σ(2, p) =

{
1 for p ≥ 2

2
2
p
−1 for p ≤ 2

.

Proof. σ(1, p) ≤ 1 for p ≥ 1 andσ(2, p) ≤ 1 for p ≥ 2 is the subject of
Theorem2.1, while σ(c, p) ≥ 1 is noted above. Example3.1 tells us that
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σ(c, p) ≥ 2c/p−1 for 0 < p ≤ c <∞, yielding

σ(1, p) ≥ 2
1
p
−1 for p ≤ 1 and σ(2, p) ≥ 2

2
p
−1 for p ≤ 2.

Now for the missing ‘≤’ inequalities. For the casec = 1, recall the inequality
between the power means of degreesp ≤ 1 and1, see e.g. [8], 8.12, which
reads(

αp + βp

2

) 1
p

≤ α+ β

2
or equivalently αp + βp ≤ 21−p (α+ β)p

for α, β ∈ [0,∞). Together with the quasi-norm inequality of| · |p this gives

|F (R + S)|pp ≤ |FR|
p
p + |FS|pp ≤ 21−p (|FR|p + |FS|p)

p

and thus|F (R + S)|p ≤ 2
1
p
−1 (|FR|p + |FS|p).

For the casec = 2, start with the power means inequality for the degrees
p ≤ 2 and2,(
αp + βp

2

) 1
p

≤
(
α2 + β2

2

) 1
2

or equivalently αp + βp ≤ 21− p
2 (α2 + β2)

p
2

for α, β ∈ [0,∞). Together with the quasi-norm inequality of| · | p
2

this gives∣∣∣F (R + S)
1
2

∣∣∣p
p

= |F (R + S)F ∗|
p
2
p
2

≤ |FRF ∗|
p
2
p
2

+ |FSF ∗|
p
2
p
2

=
∣∣∣FR 1

2

∣∣∣p
p
+
∣∣∣FS 1

2

∣∣∣p
p
≤ 21− p

2

(∣∣∣FR 1
2

∣∣∣2
p
+
∣∣∣FS 1

2

∣∣∣2
p

) p
2
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and consequently∣∣∣F (R + S)
1
2

∣∣∣2
p
≤ 2

2
p
−1

(∣∣∣FR 1
2

∣∣∣2
p
+
∣∣∣FS 1

2

∣∣∣2
p

)
.
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6. Conclusion
Starting with Conjecture1, which we proved for the casesc = 1 andc = 2
in Theorem2.1, a numerical study of2 × 2 matrices led to the generalised
Conjecture2, which we also proved forc = 1 andc = 2 in Theorem5.1.

The given proofs make use of the (quasi-) triangle inequality of the Schatten
(quasi-) norm. Another ingredient to Theorem5.1 is the power means inequal-
ity. Presumably, a combination of these inequalities shall also be central when
dealing with the casec 6= 1, 2. However, it is unclear how to apply the tri-
angle inequality in this situation, because there is no obvious way to get from
F (R + S)1/c to an expression whereR andS can be separated.
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