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ABSTRACT. Let F be a Schattenp-operator andR,S positive operators. We show that the
inequality|F (R + S)

1
c |p

c
≤ |FR

1
c |p

c
+ |FS

1
c |p

c
for the Schattenp-norm| · |p is true forp ≥ c = 1

and forp ≥ c = 2, conjecture it to be true forp ≥ c ∈ [1, 2], give counterexamples for the other
cases, and present a numerical study for2 × 2 matrices. Furthermore, we have a look at a
generalisation of the inequality which involves an additional factorσ(c, p).
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1. I NTRODUCTION

Let H andK be complex Hilbert spaces and0 < p ≤ ∞. Following [1], we denote by
cp(H,K) the space of Schattenp-operatorsT : H −→ K, equipped with the Schattenp-
norm or quasi-norm| · |p. Note that [1] deals only with the spacescp(H) := cp(H,H). The
generalisationscp(H,K) can be found in textbooks like [2] and [3] (there written asBp(H,K)
andSp(H,K) respectively).

By L(H) we denote the space of bounded linear operators onH, and byL(H)+ the subset
of positive operators. With|T | := (T ∗ T )1/2 ∈ L(H)+ for T ∈ L(H,K) we have forp <∞

|T |pp = tr |T |p for T ∈ cp(H,K), and consequently

|T |pp = tr T p for T ∈ cp(H)+ := cp(H) ∩ L(H)+.

Applying |T |p = |T ∗|p for T ∈ cp(H,K), this shows in case ofp <∞∣∣∣FU 1
2

∣∣∣2
p

=
∣∣∣U 1

2F ∗
∣∣∣2
p

=
(
tr (FUF ∗)

p
2

) 2
p

= |FUF ∗| p
2

ISSN (electronic): 1443-5756

c© 2005 Victoria University. All rights reserved.

This work was supported by the Dr. Helmut Manfred Riedl Foundation.

135-04

http://jipam.vu.edu.au/
mailto:mail@MarkusSigg.de
http://www.ams.org/msc/


2 MARKUS SIGG

for F ∈ cp(H,K) andU ∈ L(H)+. Because| · |∞ is the usual operator norm,∣∣∣FU 1
2

∣∣∣2
p

= |FUF ∗| p
2

is also true forp = ∞, with the common convention∞
2

:= ∞.
Our question, which arose while studying the integration of Schatten operator valued func-

tions in [4], is: For what values ofp ∈ (0,∞] andc ∈ (0,∞) is the Minkowski-like inequality

(MS)
∣∣∣F (R + S)

1
c

∣∣∣c
p
≤
∣∣∣FR 1

c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

true for allF ∈ cp(H,K) andR,S ∈ L(H)+?

2. THE CONJECTURE

LetH,K, p, c, F,R, S be as above.

Theorem 2.1. Inequality (MS) is true forp ≥ c = 1 and forp ≥ c = 2.

Proof. Forp ≥ c = 1, the triangle inequality for| · |p shows

|F (R + S)|p = |FR + FS|p ≤ |FR|p + |FS|p.

Forp ≥ c = 2, the triangle inequality for| · | p
2

shows∣∣∣F (R + S)
1
2

∣∣∣2
p

= |F (R + S)F ∗| p
2
≤ |FRF ∗| p

2
+ |FSF ∗| p

2
=
∣∣∣FR 1

2

∣∣∣2
p
+
∣∣∣FS 1

2

∣∣∣2
p
.

�

Theorem 2.1 suggests the following conjecture.

Conjecture 2.2. Inequality (MS) is true forp ≥ c ∈ [1, 2].

For c ∈ (1, 2) we have at the present time no proof of this conjecture for other than trivial
situations, not even for the special case of2 × 2 matrices. However, some justification will be
given in Section 4.

3. THE CASE p < c AND THE CASE c 6∈ [1, 2]

In this section we will demonstrate, by providing counterexamples, that inequality (MS) is
not necessarily true for other values of(c, p) than those stated in Conjecture 2.2. We will offer
one example for0 < p < c < ∞, and one for arbitraryp whenc < 1 or c > 2, both examples
using2 × 2 matrices. The powerU t for t > 0 of a non-negative matrixU can be calculated
easily with help of the spectral decomposition ofU .

Example 3.1. Inequality (MS) is violated for0 < p < c <∞ by

F :=

(
1 0
0 1

)
, R :=

(
1 0
0 0

)
, S :=

(
0 0
0 1

)
.

Proof. FromU t = U for U ∈ {R,S,R + S} andt ∈ (0,∞) we get∣∣∣FU 1
c

∣∣∣
p

= |U |p = (trUp)
1
p = (trU)

1
p ,

yielding ∣∣∣FR 1
c

∣∣∣
p

= 1,
∣∣∣FS 1

c

∣∣∣
p

= 1,
∣∣∣F (R + S)

1
c

∣∣∣
p

= 2
1
p ,
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and usingp < c, ∣∣∣FR 1
c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

= 2 < 2
c
p =

∣∣∣F (R + S)
1
c

∣∣∣c
p
.

�

The second example makes use of an inequality which is interesting in its own right. Seeming
simple, it is surprisingly fiddly to prove:

Lemma 3.1. For x ∈ (0, 1) ∪ (2,∞) we have(
1 +

1√
5

)(
3 +

√
5

2

)x

+

(
1− 1√

5

)(
3−

√
5

2

)x

< 1 + 3x.

Proof. Settingr :=
√

5, α1 := 1 + 1
r
, α2 := 1− 1

r
, andω := 3+r

2
, we have to show

α1 ω
x + α2 ω

−x < 1 + 3x.

The casex ∈ (2,∞): Setf(x) := α1 ω
x, g(x) := α2 ω

−x, h(x) := 1 + 3x for x ∈ (0,∞).
Becauseα2 > 0 andω > 1, g is strictly decreasing, thusf(x) + g(x) < f(x) + g(2) for x > 2.
We will showf(x) + g(2) < h(x) for x > 2. Becausef(2) + g(2) = h(2), this is done if we
provef ′(x) < h′(x) for x > 2, which is equivalent toα1 (ω

3
)x lnω < ln 3. This inequality is

true forx = 2. All factors of its left side are positive, andω < 3, so the left side is strictly
decreasing forx ≥ 2. Hence the inequality is true forx > 2 as well.

The casex ∈ (0, 1): After substitutings := ωx and settingδ := ln 3
ln ω

, we have to prove the
equivalent inequality

s+
1

s
+

1

r

(
s− 1

s

)
< 1 + sδ

for s ∈ (1, ω), which can be done by building a sandwich with a suitable polynomial function
inside: Set

ϕ(s) := s+
1

s
+

1

r

(
s− 1

s

)
, p(s) := 2

(
1 +

s− 1

ω − 1

)
,

q(s) :=
(s− 1)(s− ω)

(3− 1)(3− ω)
(ϕ(3)− p(3))

for s > 0. The claim is
ϕ(s) < p(s) + q(s) < 1 + sδ

for s ∈ (1, ω). The left inequality is verified by the fact thats · (p(s) + q(s) − ϕ(s)) defines a
polynomial of degree3 with three zeros{1, ω, 3}, where1 < ω < 3, and with positive leading
coefficientλ := 1

2
(ϕ(3)− p(3))/(3− ω). To prove the second inequality, we inspect

ψ(s) := 1 + sδ − p(s)− q(s)

for s > 0 and getψ′′(s) = δ(δ − 1)sδ−2 − 2λ. Because1 < δ < 2, ψ′′ has a unique zero

s0 :=

(
δ(δ − 1)

2λ

) 1
2−δ

, 1 < s0 < ω,

with ψ′′(s) > 0 for s ∈ (0, s0) andψ′′(s) < 0 for s ∈ (s0,∞). Now ψ(1) = 0, ψ′(1) > 0,
andψ′′(s) > 0 for s ∈ (1, s0) showψ(s) > 0 for s ∈ (1, s0], while ψ(s0) > 0, ψ(ω) = 0,
ψ′(ω) < 0, andψ′′(s) < 0 for s ∈ (s0, ω) showψ(s) > 0 for s ∈ [s0, ω). �

Example 3.2. Inequality (MS) is violated for0 < p ≤ ∞ andc < 1 as well asc > 2 by

F :=

(
0 0
1 0

)
, R :=

(
0 0
0 1

)
, S :=

(
2 −1
−1 1

)
.
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Proof. Evaluation of the matrix powers fort ∈ (0,∞) gives

Rt = R, St =

(
1
2
(α1 ω

t + α2 ω
−t) 1

r
(ω−t − ωt)

1
r
(ω−t − ωt) 1

2
(α2 ω

t + α1 ω
−t)

)
,

(R + S)t =
1

2

(
1 + 3t 1− 3t

1− 3t 1 + 3t

)
with r :=

√
5, α1 := 1 + 1

r
, α2 := 1 − 1

r
, ω := 3+r

2
. ForU ∈ {R,S,R + S} we get in case of

p <∞

|FU t|p =
(
tr (FU2tF ∗)

p
2

) 1
p

=
√
ut

with ut being the top left entry ofU2t. Using|FU t|2∞ = |FU2tF ∗|∞, the casep = ∞ yields the
same result, thus for allp:∣∣∣FR 1

c

∣∣∣
p

= 0,
∣∣∣FS 1

c

∣∣∣
p

=

√
1

2
(α1 ω2/c + α2 ω−2/c),∣∣∣F (R + S)

1
c

∣∣∣
p

=

√
1

2
(1 + 32/c).

Substituting2
c

byx, we have to proveα1 ω
x+α2 ω

−x < 1+3x for x ∈ (2,∞) and forx ∈ (0, 1),
which is the statement of Lemma 3.1. �

4. SOME NUMERICAL EVIDENCE

To justify Conjecture 2.2, we present the results of a numerical study performed with2 × 2
matrices.

From functional calculus it is known: For an operatorT ≥ 0 on a complex Hilbert space the
powersTα, T β for α, β ∈ (0,∞) obey the ruleTα T β = Tα+β. If T is invertible, thenTα can
be defined forα ≤ 0 as well, andTα T β = Tα+β is true for allα, β ∈ R.

Before turning to the matrix case, we note the following general lemma.

Lemma 4.1. LetH,K,F be as above andα ∈ (0,∞).
(a) LetT ∈ L(H)+. ThenFTα = 0 if and only ifFT = 0.
(b) LetR,S ∈ L(H)+. ThenF (R + S)α = 0 if and only ifFRα = 0 andFSα = 0.

Proof. (a) SupposeFTα = 0. Then|FTα/2|2 = |FTαF ∗| = 0, henceFTα/2 = 0. Repeated
application yieldsβ ∈ (0, 1) with FT β = 0, thusFT = FT βT 1−β = 0.

Now supposeFT = 0. There is nothing to prove in the case ofα = 1, so assumeα 6= 1.
If T is invertible, thenFTα = FTTα−1 = 0. If T is not invertible, then we have0 ∈ σ(T ),
the spectrum ofT . Choose polynomialsfn ∈ R[t] for n ∈ N such thatfn(x) → xα for
n → ∞ uniformly for x ∈ σ(T ). Thenfn(T ) → Tα andFfn(T ) → FTα for n → ∞, hence
Ffn(T ) = fn(0)F → 0 for n→∞, thusFTα = 0.

(b) Part (a) shows:

FRα = 0 ∧ FSα = 0 ⇐⇒ FR = 0 ∧ FS = 0

=⇒ F (R + S) = 0

⇐⇒ F (R + S)α = 0.

To prove the missing implication, supposeF (R+ S) = 0. ThenFRF ∗ +FSF ∗ = 0. Because
FRF ∗ ≥ 0 andFSF ∗ ≥ 0, we getFRF ∗ = 0, thus|FR1/2|2 = |FRF ∗| = 0 andFR1/2 = 0.
Applying (a) again givesFR = 0. Symmetry showsFS = 0. �
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We will also use the following well-known property of2× 2 matrices:

Lemma 4.2. A complex2× 2 matrixM is positive semidefinite if and only if there exista, b ∈
[0,∞) andγ ∈ C with |γ|2 ≤ ab such that

M =

(
a γ
γ b

)
.

Lemma 4.1(b) shows that, when checking Conjecture 2.2, one may assume the denominator
to be non-zero, or setting0

0
:= 0, in

qc,p(F,R, S) :=

∣∣∣F (R + S)
1
c

∣∣∣c
p∣∣∣FR 1

c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

.

We are searching for the supremum ofqc,p(F,R, S) over all complex2× 2 matricesF,R, S
with R,S ≥ 0. For r ∈ [0,∞) andx ∈ C definer ∧ x := x if |x| ≤ r andr ∧ x := (r/|x|)x
otherwise. Lemma 4.2 shows thatR has the structure

R =

(
α2 |αβ| ∧ γ

|αβ| ∧ γ β2

)
=: P (α, β, γ)

with α, β ∈ R and γ ∈ C, and a corresponding representation is valid for the matrixS.
This means that we have to deal with six complex and four real variables, resulting in a16-
dimensional real optimisation problem: Forλ = (λ1, . . . , λ16) ∈ R16 we set

Fλ :=

(
λ1 + λ2 i λ3 + λ4 i
λ5 + λ6 i λ7 + λ8 i

)
,

Rλ := P (λ9, λ10, λ11 + λ12 i),

Sλ := P (λ13, λ14, λ15 + λ16 i)

and are asking for

σ(c, p) := sup
λ∈R16

qc,p(Fλ, Rλ, Sλ).

To attack this problem, GNU Octave [5], version 2.1.57, was utilised. It offers a function
for determining the singular values of a matrix, which can be employed for calculating the
Schatten norms. For the optimisation task the implementation [6], version 2002/05/09, with
standard parameters of the Downhill Simplex Method of Nelder and Mead ([7], 10.4) was used.
The results are in perfect agreement with Conjecture 2.2. For visualisation, approximations for
σ(c, p) for c ∈ {1.2, 1.4, 1.6, 1.8, 2.0} have been calculated and plotted with a step size of0.01
for p, see Figure 4.1.

The apparently smooth shape ofp 7→ σ(c, p) for p ≤ c, together with the fact that for eachp
a new random starting pointλ was used for the Nelder-Mead algorihm, gives some confidence
in the validity of the data.

A closer inspection of some of the calculated numerical values suggests

σ(2, 1) = 2, σ
(

3
2
, 1
)

= σ
(

9
5
, 6

5

)
= 2

1
2 , σ

(
8
5
, 6

5

)
= σ

(
2, 3

2

)
= 2

1
3 ,

σ
(

5
4
, 1
)

= σ
(

3
2
, 5

4

)
= σ

(
7
4
, 7

5

)
= σ

(
2, 8

5

)
= 2

1
4 , σ

(
6
5
, 1
)

= σ
(

9
5
, 3

2

)
= 2

1
5 ,

which leads to the idea to look atlog2 σ(c, p). It seems there is a linear dependency oflog2 σ(c, p)
from c if c ≥ p. This observation will be made precise in the next section.
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Figure 4.1: Experimental approximations ofσ(c, p).

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1 1.2 1.4 1.6 1.8 2
p

c = 1.2
c = 1.4
c = 1.6
c = 1.8
c = 2.0

5. GENERALISATION OF (MS)

It is natural to generalise (MS) and to ask for the smallestσ(c, p) ∈ [0,∞] for c ∈ (0,∞) and
p ∈ (0,∞] such that ∣∣∣F (R + S)

1
c

∣∣∣c
p
≤ σ(c, p)

(∣∣∣FR 1
c

∣∣∣c
p
+
∣∣∣FS 1

c

∣∣∣c
p

)
for all F ∈ cp(H,K) andR,S ∈ L(H)+ (and for all complex Hilbert spacesH andK). It
is tempting to callσ(c, p) theSchatten-Minkowski constantfor (c, p). By choosingF 6= 0 and
settingR to be the identity andS := 0 it can be seen thatσ(c, p) ≥ 1. Now Conjecture 2.2 can
be re-phrased usingσ(c, p), and, motivated by the numerical results, we add another conjecture:

Conjecture 5.1. (a) For 1 ≤ c ≤ 2 andp ≥ c we haveσ(c, p) = 1.

(b) For 0 ≤ c ≤ 2 andp ≤ c we haveσ(c, p) = 2
c
p
−1.

Again, the casesc = 1 andc = 2 are not too difficult to prove:

Theorem 5.2. (a) σ(1, p) =

{
1 for p ≥ 1

2
1
p
−1 for p ≤ 1

(b) σ(2, p) =

{
1 for p ≥ 2

2
2
p
−1 for p ≤ 2

.

Proof. σ(1, p) ≤ 1 for p ≥ 1 andσ(2, p) ≤ 1 for p ≥ 2 is the subject of Theorem 2.1, while
σ(c, p) ≥ 1 is noted above. Example 3.1 tells us thatσ(c, p) ≥ 2c/p−1 for 0 < p ≤ c < ∞,
yielding

σ(1, p) ≥ 2
1
p
−1 for p ≤ 1 and σ(2, p) ≥ 2

2
p
−1 for p ≤ 2.

Now for the missing ‘≤’ inequalities. For the casec = 1, recall the inequality between the
power means of degreesp ≤ 1 and1, see e.g. [8], 8.12, which reads(

αp + βp

2

) 1
p

≤ α+ β

2
or equivalently αp + βp ≤ 21−p (α+ β)p

for α, β ∈ [0,∞). Together with the quasi-norm inequality of| · |p this gives

|F (R + S)|pp ≤ |FR|
p
p + |FS|pp ≤ 21−p (|FR|p + |FS|p)

p
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and thus|F (R + S)|p ≤ 2
1
p
−1 (|FR|p + |FS|p).

For the casec = 2, start with the power means inequality for the degreesp ≤ 2 and2,(
αp + βp

2

) 1
p

≤
(
α2 + β2

2

) 1
2

or equivalently αp + βp ≤ 21− p
2 (α2 + β2)

p
2

for α, β ∈ [0,∞). Together with the quasi-norm inequality of| · | p
2

this gives∣∣∣F (R + S)
1
2

∣∣∣p
p

= |F (R + S)F ∗|
p
2
p
2

≤ |FRF ∗|
p
2
p
2

+ |FSF ∗|
p
2
p
2

=
∣∣∣FR 1

2

∣∣∣p
p
+
∣∣∣FS 1

2

∣∣∣p
p
≤ 21− p

2

(∣∣∣FR 1
2

∣∣∣2
p
+
∣∣∣FS 1

2

∣∣∣2
p

) p
2

and consequently ∣∣∣F (R + S)
1
2

∣∣∣2
p
≤ 2

2
p
−1

(∣∣∣FR 1
2

∣∣∣2
p
+
∣∣∣FS 1

2

∣∣∣2
p

)
.

�

6. CONCLUSION

Starting with Conjecture 2.2, which we proved for the casesc = 1 andc = 2 in Theorem 2.1,
a numerical study of2×2 matrices led to the generalised Conjecture 5.1, which we also proved
for c = 1 andc = 2 in Theorem 5.2.

The given proofs make use of the (quasi-) triangle inequality of the Schatten (quasi-) norm.
Another ingredient to Theorem 5.2 is the power means inequality. Presumably, a combination
of these inequalities shall also be central when dealing with the casec 6= 1, 2. However, it is
unclear how to apply the triangle inequality in this situation, because there is no obvious way
to get fromF (R + S)1/c to an expression whereR andS can be separated.
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