A MINKOWSKI-TYPE INEQUALITY FOR THE SCHATTEN NORM

MARKUS SIGG
Department of Mathematics and Statistics
University of Konstanz Germany
mail@MarkusSigg.de

Received 16 July, 2004; accepted 29 June, 2005
Communicated by F. Hansen

Abstract

Let F be a Schatten p-operator and R, S positive operators. We show that the inequality $\left|F(R+S)^{\frac{1}{c}}\right|_{p}^{c} \leq\left|F R^{\frac{1}{c}}\right|_{p}^{c}+\left|F S^{\frac{1}{c}}\right|_{p}^{c}$ for the Schatten p-norm $|\cdot|_{p}$ is true for $p \geq c=1$ and for $p \geq c=2$, conjecture it to be true for $p \geq c \in[1,2]$, give counterexamples for the other cases, and present a numerical study for 2×2 matrices. Furthermore, we have a look at a generalisation of the inequality which involves an additional factor $\sigma(c, p)$.

Key words and phrases: Schatten class, Schatten norm, Norm inequality, Minkowski inequality, Triangle inequality, Powers of operators, Schatten-Minkowski constant.

2000 Mathematics Subject Classification. 47A30, 47B10.

1. Introduction

Let H and K be complex Hilbert spaces and $0<p \leq \infty$. Following [1], we denote by $c_{p}(H, K)$ the space of Schatten p-operators $T: H \longrightarrow K$, equipped with the Schatten p norm or quasi-norm $|\cdot|_{p}$. Note that [1] deals only with the spaces $c_{p}(H):=c_{p}(H, H)$. The generalisations $c_{p}(H, K)$ can be found in textbooks like [2] and [3] (there written as $B_{p}(H, K)$ and $S_{p}(H, K)$ respectively).

By $L(H)$ we denote the space of bounded linear operators on H, and by $L(H)_{+}$the subset of positive operators. With $|T|:=\left(T^{*} T\right)^{1 / 2} \in L(H)_{+}$for $T \in L(H, K)$ we have for $p<\infty$

$$
\begin{aligned}
& |T|_{p}^{p}=\operatorname{tr}|T|^{p} \quad \text { for } T \in c_{p}(H, K), \text { and consequently } \\
& |T|_{p}^{p}=\operatorname{tr} T^{p} \quad \text { for } T \in c_{p}(H)_{+}:=c_{p}(H) \cap L(H)_{+} .
\end{aligned}
$$

Applying $|T|_{p}=\left|T^{*}\right|_{p}$ for $T \in c_{p}(H, K)$, this shows in case of $p<\infty$

$$
\left|F U^{\frac{1}{2}}\right|_{p}^{2}=\left|U^{\frac{1}{2}} F^{*}\right|_{p}^{2}=\left(\operatorname{tr}\left(F U F^{*}\right)^{\frac{p}{2}}\right)^{\frac{2}{p}}=\left|F U F^{*}\right|_{\frac{p}{2}}
$$

[^0]for $F \in c_{p}(H, K)$ and $U \in L(H)_{+}$. Because $|\cdot|_{\infty}$ is the usual operator norm,
$$
\left|F U^{\frac{1}{2}}\right|_{p}^{2}=\left|F U F^{*}\right|_{\frac{p}{2}}
$$
is also true for $p=\infty$, with the common convention $\frac{\infty}{2}:=\infty$.
Our question, which arose while studying the integration of Schatten operator valued functions in [4], is: For what values of $p \in(0, \infty]$ and $c \in(0, \infty)$ is the Minkowski-like inequality
(MS)
$$
\left|F(R+S)^{\frac{1}{c}}\right|_{p}^{c} \leq\left|F R^{\frac{1}{c}}\right|_{p}^{c}+\left|F S^{\frac{1}{c}}\right|_{p}^{c}
$$
true for all $F \in c_{p}(H, K)$ and $R, S \in L(H)_{+}$?

2. The Conjecture

Let H, K, p, c, F, R, S be as above.
Theorem 2.1. Inequality (MS) is true for $p \geq c=1$ and for $p \geq c=2$.
Proof. For $p \geq c=1$, the triangle inequality for $|\cdot|_{p}$ shows

$$
|F(R+S)|_{p}=|F R+F S|_{p} \leq|F R|_{p}+|F S|_{p} .
$$

For $p \geq c=2$, the triangle inequality for $|\cdot|_{\frac{p}{2}}$ shows

$$
\left|F(R+S)^{\frac{1}{2}}\right|_{p}^{2}=\left|F(R+S) F^{*}\right|_{\frac{p}{2}} \leq\left|F R F^{*}\right|_{\frac{p}{2}}+\left|F S F^{*}\right|_{\frac{p}{2}}=\left|F R^{\frac{1}{2}}\right|_{p}^{2}+\left|F S^{\frac{1}{2}}\right|_{p}^{2}
$$

Theorem 2.1 suggests the following conjecture.
Conjecture 2.2. Inequality (MS) is true for $p \geq c \in[1,2]$.
For $c \in(1,2)$ we have at the present time no proof of this conjecture for other than trivial situations, not even for the special case of 2×2 matrices. However, some justification will be given in Section 4 .

3. The Case $p<c$ and the Case $c \notin[1,2]$

In this section we will demonstrate, by providing counterexamples, that inequality ($\overline{\mathrm{MS}}$) is not necessarily true for other values of (c, p) than those stated in Conjecture 2.2. We will offer one example for $0<p<c<\infty$, and one for arbitrary p when $c<1$ or $c>2$, both examples using 2×2 matrices. The power U^{t} for $t>0$ of a non-negative matrix U can be calculated easily with help of the spectral decomposition of U.
Example 3.1. Inequality (MS) is violated for $0<p<c<\infty$ by

$$
F:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad R:=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad S:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Proof. From $U^{t}=U$ for $U \in\{R, S, R+S\}$ and $t \in(0, \infty)$ we get

$$
\left|F U^{\frac{1}{c}}\right|_{p}=|U|_{p}=\left(\operatorname{tr} U^{p}\right)^{\frac{1}{p}}=(\operatorname{tr} U)^{\frac{1}{p}},
$$

yielding

$$
\left|F R^{\frac{1}{c}}\right|_{p}=1, \quad\left|F S^{\frac{1}{c}}\right|_{p}=1, \quad\left|F(R+S)^{\frac{1}{c}}\right|_{p}=2^{\frac{1}{p}}
$$

and using $p<c$,

$$
\left|F R^{\frac{1}{c}}\right|_{p}^{c}+\left|F S^{\frac{1}{c}}\right|_{p}^{c}=2<2^{\frac{c}{p}}=\left|F(R+S)^{\frac{1}{c}}\right|_{p}^{c} .
$$

The second example makes use of an inequality which is interesting in its own right. Seeming simple, it is surprisingly fiddly to prove:
Lemma 3.1. For $x \in(0,1) \cup(2, \infty)$ we have

$$
\left(1+\frac{1}{\sqrt{5}}\right)\left(\frac{3+\sqrt{5}}{2}\right)^{x}+\left(1-\frac{1}{\sqrt{5}}\right)\left(\frac{3-\sqrt{5}}{2}\right)^{x}<1+3^{x} .
$$

Proof. Setting $r:=\sqrt{5}, \alpha_{1}:=1+\frac{1}{r}, \alpha_{2}:=1-\frac{1}{r}$, and $\omega:=\frac{3+r}{2}$, we have to show

$$
\alpha_{1} \omega^{x}+\alpha_{2} \omega^{-x}<1+3^{x} .
$$

The case $x \in(2, \infty):$ Set $f(x):=\alpha_{1} \omega^{x}, g(x):=\alpha_{2} \omega^{-x}, h(x):=1+3^{x}$ for $x \in(0, \infty)$. Because $\alpha_{2}>0$ and $\omega>1, g$ is strictly decreasing, thus $f(x)+g(x)<f(x)+g(2)$ for $x>2$. We will show $f(x)+g(2)<h(x)$ for $x>2$. Because $f(2)+g(2)=h(2)$, this is done if we prove $f^{\prime}(x)<h^{\prime}(x)$ for $x>2$, which is equivalent to $\alpha_{1}\left(\frac{\omega}{3}\right)^{x} \ln \omega<\ln 3$. This inequality is true for $x=2$. All factors of its left side are positive, and $\omega<3$, so the left side is strictly decreasing for $x \geq 2$. Hence the inequality is true for $x>2$ as well.

The case $x \in(0,1)$: After substituting $s:=\omega^{x}$ and setting $\delta:=\frac{\ln 3}{\ln \omega}$, we have to prove the equivalent inequality

$$
s+\frac{1}{s}+\frac{1}{r}\left(s-\frac{1}{s}\right)<1+s^{\delta}
$$

for $s \in(1, \omega)$, which can be done by building a sandwich with a suitable polynomial function inside: Set

$$
\begin{gathered}
\varphi(s):=s+\frac{1}{s}+\frac{1}{r}\left(s-\frac{1}{s}\right), \quad p(s):=2\left(1+\frac{s-1}{\omega-1}\right), \\
q(s):=\frac{(s-1)(s-\omega)}{(3-1)(3-\omega)}(\varphi(3)-p(3))
\end{gathered}
$$

for $s>0$. The claim is

$$
\varphi(s)<p(s)+q(s)<1+s^{\delta}
$$

for $s \in(1, \omega)$. The left inequality is verified by the fact that $s \cdot(p(s)+q(s)-\varphi(s))$ defines a polynomial of degree 3 with three zeros $\{1, \omega, 3\}$, where $1<\omega<3$, and with positive leading coefficient $\lambda:=\frac{1}{2}(\varphi(3)-p(3)) /(3-\omega)$. To prove the second inequality, we inspect

$$
\psi(s):=1+s^{\delta}-p(s)-q(s)
$$

for $s>0$ and get $\psi^{\prime \prime}(s)=\delta(\delta-1) s^{\delta-2}-2 \lambda$. Because $1<\delta<2$, $\psi^{\prime \prime}$ has a unique zero

$$
s_{0}:=\left(\frac{\delta(\delta-1)}{2 \lambda}\right)^{\frac{1}{2-\delta}}, \quad 1<s_{0}<\omega
$$

with $\psi^{\prime \prime}(s)>0$ for $s \in\left(0, s_{0}\right)$ and $\psi^{\prime \prime}(s)<0$ for $s \in\left(s_{0}, \infty\right)$. Now $\psi(1)=0, \psi^{\prime}(1)>0$, and $\psi^{\prime \prime}(s)>0$ for $s \in\left(1, s_{0}\right)$ show $\psi(s)>0$ for $s \in\left(1, s_{0}\right]$, while $\psi\left(s_{0}\right)>0, \psi(\omega)=0$, $\psi^{\prime}(\omega)<0$, and $\psi^{\prime \prime}(s)<0$ for $s \in\left(s_{0}, \omega\right)$ show $\psi(s)>0$ for $s \in\left[s_{0}, \omega\right)$.
Example 3.2. Inequality (MS) is violated for $0<p \leq \infty$ and $c<1$ as well as $c>2$ by

$$
F:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad R:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad S:=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) .
$$

Proof. Evaluation of the matrix powers for $t \in(0, \infty)$ gives

$$
\begin{gathered}
R^{t}=R, S^{t}=\left(\begin{array}{cc}
\frac{1}{2}\left(\alpha_{1} \omega^{t}+\alpha_{2} \omega^{-t}\right) & \frac{1}{r}\left(\omega^{-t}-\omega^{t}\right) \\
\frac{1}{r}\left(\omega^{-t}-\omega^{t}\right) & \frac{1}{2}\left(\alpha_{2} \omega^{t}+\alpha_{1} \omega^{-t}\right)
\end{array}\right), \\
(R+S)^{t}=\frac{1}{2}\left(\begin{array}{cc}
1+3^{t} & 1-3^{t} \\
1-3^{t} & 1+3^{t}
\end{array}\right)
\end{gathered}
$$

with $r:=\sqrt{5}, \alpha_{1}:=1+\frac{1}{r}, \alpha_{2}:=1-\frac{1}{r}, \omega:=\frac{3+r}{2}$. For $U \in\{R, S, R+S\}$ we get in case of $p<\infty$

$$
\left|F U^{t}\right|_{p}=\left(\operatorname{tr}\left(F U^{2 t} F^{*}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}}=\sqrt{u_{t}}
$$

with u_{t} being the top left entry of $U^{2 t}$. Using $\left|F U^{t}\right|_{\infty}^{2}=\left|F U^{2 t} F^{*}\right|_{\infty}$, the case $p=\infty$ yields the same result, thus for all p :

$$
\begin{aligned}
\left|F R^{\frac{1}{c}}\right|_{p}=0, \quad\left|F S^{\frac{1}{c}}\right|_{p} & =\sqrt{\frac{1}{2}\left(\alpha_{1} \omega^{2 / c}+\alpha_{2} \omega^{-2 / c}\right)} \\
\left|F(R+S)^{\frac{1}{c}}\right|_{p} & =\sqrt{\frac{1}{2}\left(1+3^{2 / c}\right)}
\end{aligned}
$$

Substituting $\frac{2}{c}$ by x, we have to prove $\alpha_{1} \omega^{x}+\alpha_{2} \omega^{-x}<1+3^{x}$ for $x \in(2, \infty)$ and for $x \in(0,1)$, which is the statement of Lemma 3.1 .

4. Some Numerical Evidence

To justify Conjecture 2.2, we present the results of a numerical study performed with 2×2 matrices.

From functional calculus it is known: For an operator $T \geq 0$ on a complex Hilbert space the powers T^{α}, T^{β} for $\alpha, \beta \in(0, \infty)$ obey the rule $T^{\alpha} T^{\beta}=T^{\alpha+\beta}$. If T is invertible, then T^{α} can be defined for $\alpha \leq 0$ as well, and $T^{\alpha} T^{\beta}=T^{\alpha+\beta}$ is true for all $\alpha, \beta \in \mathbb{R}$.

Before turning to the matrix case, we note the following general lemma.
Lemma 4.1. Let H, K, F be as above and $\alpha \in(0, \infty)$.
(a) Let $T \in L(H)_{+}$. Then $F T^{\alpha}=0$ if and only if $F T=0$.
(b) Let $R, S \in L(H)_{+}$. Then $F(R+S)^{\alpha}=0$ if and only if $F R^{\alpha}=0$ and $F S^{\alpha}=0$.

Proof. (a) Suppose $F T^{\alpha}=0$. Then $\left|F T^{\alpha / 2}\right|^{2}=\left|F T^{\alpha} F^{*}\right|=0$, hence $F T^{\alpha / 2}=0$. Repeated application yields $\beta \in(0,1)$ with $F T^{\beta}=0$, thus $F T=F T^{\beta} T^{1-\beta}=0$.

Now suppose $F T=0$. There is nothing to prove in the case of $\alpha=1$, so assume $\alpha \neq 1$. If T is invertible, then $F T^{\alpha}=F T T^{\alpha-1}=0$. If T is not invertible, then we have $0 \in \sigma(T)$, the spectrum of T. Choose polynomials $f_{n} \in \mathbb{R}[t]$ for $n \in \mathbb{N}$ such that $f_{n}(x) \rightarrow x^{\alpha}$ for $n \rightarrow \infty$ uniformly for $x \in \sigma(T)$. Then $f_{n}(T) \rightarrow T^{\alpha}$ and $F f_{n}(T) \rightarrow F T^{\alpha}$ for $n \rightarrow \infty$, hence $F f_{n}(T)=f_{n}(0) F \rightarrow 0$ for $n \rightarrow \infty$, thus $F T^{\alpha}=0$.
(b) Part (a) shows:

$$
\begin{aligned}
F R^{\alpha}=0 \wedge F S^{\alpha}=0 & \Longleftrightarrow F R=0 \wedge F S=0 \\
& \Longleftrightarrow F(R+S)=0 \\
& \Longleftrightarrow F(R+S)^{\alpha}=0 .
\end{aligned}
$$

To prove the missing implication, suppose $F(R+S)=0$. Then $F R F^{*}+F S F^{*}=0$. Because $F R F^{*} \geq 0$ and $F S F^{*} \geq 0$, we get $F R F^{*}=0$, thus $\left|F R^{1 / 2}\right|^{2}=\left|F R F^{*}\right|=0$ and $F R^{1 / 2}=0$. Applying (a) again gives $F R=0$. Symmetry shows $F S=0$.

We will also use the following well-known property of 2×2 matrices:
Lemma 4.2. A complex 2×2 matrix M is positive semidefinite if and only if there exist $a, b \in$ $[0, \infty)$ and $\gamma \in \mathbb{C}$ with $|\gamma|^{2} \leq a b$ such that

$$
M=\left(\begin{array}{ll}
a & \gamma \\
\bar{\gamma} & b
\end{array}\right) .
$$

Lemma 4.1(b) shows that, when checking Conjecture 2.2, one may assume the denominator to be non-zero, or setting $\frac{0}{0}:=0$, in

$$
q_{c, p}(F, R, S):=\frac{\left|F(R+S)^{\frac{1}{c}}\right|_{p}^{c}}{\left|F R^{\frac{1}{c}}\right|_{p}^{c}+\left|F S^{\frac{1}{c}}\right|_{p}^{c}} .
$$

We are searching for the supremum of $q_{c, p}(F, R, S)$ over all complex 2×2 matrices F, R, S with $R, S \geq 0$. For $r \in[0, \infty)$ and $x \in \mathbb{C}$ define $r \wedge x:=x$ if $|x| \leq r$ and $r \wedge x:=(r /|x|) x$ otherwise. Lemma 4.2 shows that R has the structure

$$
R=\left(\begin{array}{cc}
\alpha^{2} & |\alpha \beta| \wedge \gamma \\
|\alpha \beta| \wedge \bar{\gamma} & \beta^{2}
\end{array}\right)=: P(\alpha, \beta, \gamma)
$$

with $\alpha, \beta \in \mathbb{R}$ and $\gamma \in \mathbb{C}$, and a corresponding representation is valid for the matrix S. This means that we have to deal with six complex and four real variables, resulting in a 16dimensional real optimisation problem: For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{16}\right) \in \mathbb{R}^{16}$ we set

$$
\begin{aligned}
F_{\lambda} & :=\left(\begin{array}{ll}
\lambda_{1}+\lambda_{2} i & \lambda_{3}+\lambda_{4} i \\
\lambda_{5}+\lambda_{6} i & \lambda_{7}+\lambda_{8} i
\end{array}\right) \\
R_{\lambda} & :=P\left(\lambda_{9}, \lambda_{10}, \lambda_{11}+\lambda_{12} i\right) \\
S_{\lambda} & :=P\left(\lambda_{13}, \lambda_{14}, \lambda_{15}+\lambda_{16} i\right)
\end{aligned}
$$

and are asking for

$$
\sigma(c, p):=\sup _{\lambda \in \mathbb{R}^{16}} q_{c, p}\left(F_{\lambda}, R_{\lambda}, S_{\lambda}\right) .
$$

To attack this problem, GNU Octave [5], version 2.1.57, was utilised. It offers a function for determining the singular values of a matrix, which can be employed for calculating the Schatten norms. For the optimisation task the implementation [6], version 2002/05/09, with standard parameters of the Downhill Simplex Method of Nelder and Mead ([7], 10.4) was used. The results are in perfect agreement with Conjecture 2.2. For visualisation, approximations for $\sigma(c, p)$ for $c \in\{1.2,1.4,1.6,1.8,2.0\}$ have been calculated and plotted with a step size of 0.01 for p, see Figure 4.1.

The apparently smooth shape of $p \mapsto \sigma(c, p)$ for $p \leq c$, together with the fact that for each p a new random starting point λ was used for the Nelder-Mead algorihm, gives some confidence in the validity of the data.

A closer inspection of some of the calculated numerical values suggests

$$
\begin{gathered}
\sigma(2,1)=2, \quad \sigma\left(\frac{3}{2}, 1\right)=\sigma\left(\frac{9}{5}, \frac{6}{5}\right)=2^{\frac{1}{2}}, \quad \sigma\left(\frac{8}{5}, \frac{6}{5}\right)=\sigma\left(2, \frac{3}{2}\right)=2^{\frac{1}{3}}, \\
\sigma\left(\frac{5}{4}, 1\right)=\sigma\left(\frac{3}{2}, \frac{5}{4}\right)=\sigma\left(\frac{7}{4}, \frac{7}{5}\right)=\sigma\left(2, \frac{8}{5}\right)=2^{\frac{1}{4}}, \quad \sigma\left(\frac{6}{5}, 1\right)=\sigma\left(\frac{9}{5}, \frac{3}{2}\right)=2^{\frac{1}{5}},
\end{gathered}
$$

which leads to the idea to look at $\log _{2} \sigma(c, p)$. It seems there is a linear dependency of $\log _{2} \sigma(c, p)$ from c if $c \geq p$. This observation will be made precise in the next section.

Figure 4.1: Experimental approximations of $\sigma(c, p)$.

5. GENERALISATION OF (MS)

It is natural to generalise (MS) and to ask for the smallest $\sigma(c, p) \in[0, \infty]$ for $c \in(0, \infty)$ and $p \in(0, \infty]$ such that

$$
\left|F(R+S)^{\frac{1}{c}}\right|_{p}^{c} \leq \sigma(c, p)\left(\left|F R^{\frac{1}{c}}\right|_{p}^{c}+\left|F S^{\frac{1}{c}}\right|_{p}^{c}\right)
$$

for all $F \in c_{p}(H, K)$ and $R, S \in L(H)_{+}$(and for all complex Hilbert spaces H and K). It is tempting to call $\sigma(c, p)$ the Schatten-Minkowski constant for (c, p). By choosing $F \neq 0$ and setting R to be the identity and $S:=0$ it can be seen that $\sigma(c, p) \geq 1$. Now Conjecture 2.2 can be re-phrased using $\sigma(c, p)$, and, motivated by the numerical results, we add another conjecture:

Conjecture 5.1. (a) For $1 \leq c \leq 2$ and $p \geq c$ we have $\sigma(c, p)=1$.
(b) For $0 \leq c \leq 2$ and $p \leq c$ we have $\sigma(c, p)=2^{\frac{c}{p}-1}$.

Again, the cases $c=1$ and $c=2$ are not too difficult to prove:
Theorem 5.2. (a) $\sigma(1, p)=\left\{\begin{array}{ll}1 & \text { for } p \geq 1 \\ 2^{\frac{1}{p}-1} & \text { for } p \leq 1\end{array} \quad\right.$ (b) $\sigma(2, p)=\left\{\begin{array}{ll}1 & \text { for } p \geq 2 \\ 2^{\frac{2}{p}-1} & \text { for } p \leq 2\end{array}\right.$.
Proof. $\sigma(1, p) \leq 1$ for $p \geq 1$ and $\sigma(2, p) \leq 1$ for $p \geq 2$ is the subject of Theorem 2.1, while $\sigma(c, p) \geq 1$ is noted above. Example 3.1 tells us that $\sigma(c, p) \geq 2^{c / p-1}$ for $0<p \leq c<\infty$, yielding

$$
\sigma(1, p) \geq 2^{\frac{1}{p}-1} \text { for } p \leq 1 \quad \text { and } \quad \sigma(2, p) \geq 2^{\frac{2}{p}-1} \text { for } p \leq 2
$$

Now for the missing ' \leq ' inequalities. For the case $c=1$, recall the inequality between the power means of degrees $p \leq 1$ and 1 , see e.g. [8], 8.12 , which reads

$$
\left(\frac{\alpha^{p}+\beta^{p}}{2}\right)^{\frac{1}{p}} \leq \frac{\alpha+\beta}{2} \quad \text { or equivalently } \quad \alpha^{p}+\beta^{p} \leq 2^{1-p}(\alpha+\beta)^{p}
$$

for $\alpha, \beta \in[0, \infty)$. Together with the quasi-norm inequality of $|\cdot|_{p}$ this gives

$$
|F(R+S)|_{p}^{p} \leq|F R|_{p}^{p}+|F S|_{p}^{p} \leq 2^{1-p}\left(|F R|_{p}+|F S|_{p}\right)^{p}
$$

and thus $|F(R+S)|_{p} \leq 2^{\frac{1}{p}-1}\left(|F R|_{p}+|F S|_{p}\right)$.
For the case $c=2$, start with the power means inequality for the degrees $p \leq 2$ and 2 ,

$$
\left(\frac{\alpha^{p}+\beta^{p}}{2}\right)^{\frac{1}{p}} \leq\left(\frac{\alpha^{2}+\beta^{2}}{2}\right)^{\frac{1}{2}} \quad \text { or equivalently } \quad \alpha^{p}+\beta^{p} \leq 2^{1-\frac{p}{2}}\left(\alpha^{2}+\beta^{2}\right)^{\frac{p}{2}}
$$

for $\alpha, \beta \in[0, \infty)$. Together with the quasi-norm inequality of $|\cdot|_{\frac{p}{2}}$ this gives

$$
\begin{aligned}
\left|F(R+S)^{\frac{1}{2}}\right|_{p}^{p} & =\left|F(R+S) F^{*}\right|_{\frac{p}{2}}^{\frac{p}{2}} \\
& \leq\left|F R F^{*}\right|_{\frac{p}{2}}^{\frac{p}{2}}+\left|F S F^{*}\right|_{\frac{p}{2}}^{\frac{p}{2}} \\
& =\left|F R^{\frac{1}{2}}\right|_{p}^{p}+\left|F S^{\frac{1}{2}}\right|_{p}^{p} \leq 2^{1-\frac{p}{2}}\left(\left|F R^{\frac{1}{2}}\right|_{p}^{2}+\left|F S^{\frac{1}{2}}\right|_{p}^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

and consequently

$$
\left|F(R+S)^{\frac{1}{2}}\right|_{p}^{2} \leq 2^{\frac{2}{p}-1}\left(\left|F R^{\frac{1}{2}}\right|_{p}^{2}+\left|F S^{\frac{1}{2}}\right|_{p}^{2}\right) .
$$

6. CONCLUSION

Starting with Conjecture 2.2, which we proved for the cases $c=1$ and $c=2$ in Theorem 2.1. a numerical study of 2×2 matrices led to the generalised Conjecture 5.1 , which we also proved for $c=1$ and $c=2$ in Theorem5.2.

The given proofs make use of the (quasi-) triangle inequality of the Schatten (quasi-) norm. Another ingredient to Theorem 5.2 is the power means inequality. Presumably, a combination of these inequalities shall also be central when dealing with the case $c \neq 1,2$. However, it is unclear how to apply the triangle inequality in this situation, because there is no obvious way to get from $F(R+S)^{1 / c}$ to an expression where R and S can be separated.

References

[1] C.A. MCCARTHY, c_{p}, Israel J. Math., 5 (1967), 249-271.
[2] J. WEIDMANN, Linear Operators in Hilbert Spaces, Springer, New York 1980.
[3] R. MEISE AND D. VOGT, Introduction to Functional Analysis, Clarendon Press, Oxford 1997.
[4] M. SIGG, Zur sesquilinearen Integration Schatten-operatorwertiger Funktionen, Konstanzer Schriften in Mathematik und Informatik, 200 (2004), http://www.inf.uni-konstanz.de/ Preprints/.
[5] J.W. EATON et al, http://www.octave.org
[6] E. GROSSMANN, http://octave.sourceforge.net/index/f/nelder_mead_ min.html.
[7] W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY AND W.T. VETTERLING, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press 1992, http://www.nr.com
[8] J. HERMAN, R. KUČERA AND J. ŠIMŠA, Equations and Inequalities, Springer, New York (2000).

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 This work was supported by the Dr. Helmut Manfred Riedl Foundation.
 135-04

