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Abstract

In this paper, using Leibnitz’s formula and pre-Grüss inequality we prove some
inequalities involving Taylor’s remainder.
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1. Introduction
Recently, H. Gauchman ([1] – [2]) derived new types of inequalities involving
Taylor’s remainder.

In this paper, we apply Leibnitz’s formula and pre-Grüss inequality [3] to
create several integral inequalities involving Taylor’s remainder.

The present work may be considered as an continuation of the results ob-
tained in [1] – [2].

Let Rn,f (c, x) andrn,f (a, b) denote thenth Taylor’s remainder of function
f with centerc, and the integral Taylor’s remainder, respectively, i.e.

Rn,f (c, x) = f(x)−
n∑

k=0

f (n)(c)

n!
(x− c)k,

and

rn,f (a, b) =

∫ b

a

(b− x)n

n!
f (n+1)(x)dx.

Lemma 1.1.Letf be a function defined on[a, b]. Assume thatf ∈ Cn+1([a, b]).
Then, ∫ b

a

Rn,f (a, x)dx =

∫ b

a

(b− x)n+1

(n + 1)!
f (n+1)(x)dx,(1.1)

(−1)n+1

∫ b

a

Rn,f (b, x)dx =

∫ b

a

(x− a)n+1

(n + 1)!
f (n+1)(x)dx.(1.2)

Proof. See [1].
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Lemma 1.2.Letf be a function defined on[a, b]. Assume thatf ∈ Cn+1([a, b]).
Then

(1.3) rn,f (a, b) = f(b)− f(a)− (b− a)f (1)(a)− · · · − (b− a)n

n!
f (n)(a).
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2. Results Based on the Leibnitz’s Formula
We prove the following theorem based on the Leibnitz’s formula.

Theorem 2.1.Letf be a function defined on[a, b]. Assume thatf ∈ Cn+1([a, b]).

Then∣∣∣∣∣
p∑

k=0

(−1)kCk
p Rn−k,f (a, x)

∣∣∣∣∣ ≤
p−1∑
k=0

Ck
p−1

∣∣f (n−k)(a)
∣∣ (b− a)n−k+1

(n− k + 1)!
,(2.1) ∣∣∣∣∣

p∑
k=0

Ck
p Rn−k,f (b, x)

∣∣∣∣∣ ≤
p−1∑
k=0

Ck
p−1

∣∣f (n−k)(b)
∣∣ (b− a)n−k+1

(n− k + 1)!
,(2.2)

whereCk
p = p!

(p−k)!k!
.

Proof. We apply the following Leibnitz’s formula

(FG)(p) = F (p)G + C1
pF

(p−1)G(1) + · · ·+ Cp−1
p F (1)G(p−1) + FG(p),

provided the functionsF, G ∈ Cp([a, b]).

Let F (x) = f (n−p+1)(x), G(x) = (b−x)n+1

(n+1)!
. Then

(
f (n−p+1)(x)

(b− x)n+1

(n + 1)!

)(p)

=

p∑
k=0

(−1)kCk
p f (n−k+1)(x)

(b− x)n−k+1

(n− k + 1)!
.

Integrating both sides of the preceding equation with respect tox from a to b
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gives us[(
f (n−p+1)(x)

(b− x)n+1

(n + 1)!

)(p−1)
]x=b

x=a

=

p∑
k=0

(−1)kCk
p

∫ b

a

f (n−k+1)(x)
(b− x)n−k+1

(n− k + 1)!
dx.

The integral on the right is
∫ b

a
Rn−k,f (a, x)dx,and to evaluate the term on the

left hand side, we must again apply Leibnitz’s formula, obtaining

−
p−1∑
k=0

(−1)kCk
p−1f

(n−k)(a)
(b− a)n−k+1

(n− k + 1)!
=

p∑
k=0

(−1)kCk
p

∫ b

a

Rn−k,f (a, x)dx.

Consequently,∣∣∣∣∣
p∑

k=0

(−1)kCk
p Rn−k,f (a, x)

∣∣∣∣∣ ≤
p−1∑
k=0

Ck
p−1

∣∣f (n−k)(a)
∣∣ (b− a)n−k+1

(n− k + 1)!
,

which proves (2.1).

To prove (2.2), setF (x) = f (n−p+1)(x), G(x) = (x−a)n+1

(n+1)!
, and continue as

in the proof of (2.1).
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3. Results based on the Grüss Type inequality
We prove the following theorem based on the pre-Grüss inequality.

Theorem 3.1.Letf(x) be a function defined on[a, b] such thatf ∈ Cn+1([a, b])
andm ≤ f (n+1)(x) ≤ M for eachx ∈ [a, b], wherem andM are constants.
Then

(3.1)

∣∣∣∣rn,f (a, b)− f (n)(b)− f (n)(a)

(n + 1)!
(b− a)n

∣∣∣∣
≤ M −m

2
· n

(2n + 1)
1
2

· (b− a)n+1

(n + 1)!
.

Proof. We apply the following pre-Grüss inequality [3]

(3.2) T (F, G)2 ≤ T (F, F ) · T (G, G),

whereF, G ∈ L2(a, b) andT (F, G) is the Chebyshev’s functional:

T (F, G) =
1

b− a

∫ b

a

F (x)G(x)dx− 1

b− a

∫ b

a

F (x)dx · 1

b− a

∫ b

a

G(x)dx.

If there exists constantsm, M ∈ R such thatm ≤ F (x) ≤ M on [a, b], spe-
cially, we have [3]

T (F, F ) ≤ (M −m)2

4
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and

(3.3)

∣∣∣∣ 1

b− a

∫ b

a

F (x)G(x)dx− 1

b− a

∫ b

a

F (x)dx · 1

b− a

∫ b

a

G(x)dx

∣∣∣∣
≤ 1

2
(M −m)

[
1

b− a

∫ b

a

G2(x)dx−
(

1

b− a

∫ b

a

G(x)dx

)2
] 1

2

.

In formula (3.3) replacingF (x) by f (n+1)(x), andG(x) by (b−x)n

n!
, we obtain

(3.1).

Remark 3.1. It is possible to define the similar expressionr′n,f (a, b) by

r′n,f (a, b) =

∫ b

a

(x− a)n

n!
f (n+1)(x)dx.

In exactly the same way as inequality (3.1) was obtained, one can obtain the
following inequality

(3.4)

∣∣∣∣r′n,f (a, b)− f (n)(b)− f (n)(a)

(n + 1)!
(b− a)n

∣∣∣∣
≤ M −m

2
· n

(2n + 1)
1
2

· (b− a)n+1

(n + 1)!
.
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