ON SUBORDINATIONS FOR CERTAIN MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTION
 JIN-LIN LIU

Department of Mathematics
Yangzhou University
Yangzhou 225002, JiANGSU
People's Republic of China.
jlliu@yzu.edu.cn
Received 05 May, 2006; accepted 04 August, 2006
Communicated by N.E. Cho

AbSTRACT. The main object of the present paper is to investigate several interesting properties of a linear operator $H_{p, q, s}\left(\alpha_{i}\right)$ associated with the generalized hypergeometric function.

Key words and phrases: Analytic functions; The generalized hypergeometric function; Differential subordination; Univalent functions; Hadamard product (or convolution).

2000 Mathematics Subject Classification. 30C45, 26A33.

1. Introduction

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad(p \in N=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$.
Let $f(z)$ and $g(z)$ be analytic in U. Then we say that the function $g(z)$ is subordinate to $f(z)$ if there exists an analytic function $w(z)$ in U such that $|w(z)|<1$ (for $z \in U$) and $g(z)=f(w(z))$. This relation is denoted $g(z) \prec f(z)$. In case $f(z)$ is univalent in U we have that the subordination $g(z) \prec f(z)$ is equivalent to $g(0)=f(0)$ and $g(U) \subset f(U)$.

For analytic functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

[^0]by $f * g$ we denote the Hadamard product or convolution of f and g, defined by
\[

$$
\begin{equation*}
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{1.2}
\end{equation*}
$$

\]

Next, for real parameters A and B such that $-1 \leq B<A \leq 1$, we define the function

$$
\begin{equation*}
h(A, B ; z)=\frac{1+A z}{1+B z} \quad(z \in U) . \tag{1.3}
\end{equation*}
$$

It is well known that $h(A, B ; z)$ for $-1 \leq B \leq 1$ is the conformal map of the unit disk onto the disk symmetrical with respect to the real axis having the center $(1-A B) /\left(1-B^{2}\right)$ and the radius $(A-B) /\left(1-B^{2}\right)$ for $B \neq \mp 1$. The boundary circle cuts the real axis at the points $(1-A) /(1-B)$ and $(1+A) /(1+B)$.
For complex parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \neq 0,-1,-2, \ldots ; j=1, \ldots, s\right)$, we define the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ by

$$
\begin{gather*}
{ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{s}\right)_{n}} \cdot \frac{z^{n}}{n!} \\
\left(q \leq s+1 ; q, s \in N_{0}=N \cup\{0\} ; z \in U\right), \tag{1.4}
\end{gather*}
$$

where $(x)_{n}$ is the Pochhammer symbol, defined, in terms of the Gamma function Γ, by

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}= \begin{cases}1 & (n=0) \\ x(x+1) \cdots(x+n-1) & (n \in N)\end{cases}
$$

Corresponding to a function $\mathscr{F}_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ defined by

$$
\mathscr{F}_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z^{p}{ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right),
$$

we consider a linear operator

$$
H_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right): A(p) \rightarrow A(p),
$$

defined by the convolution

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z)=\mathscr{F}_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) * f(z) \tag{1.5}
\end{equation*}
$$

For convenience, we write

$$
\begin{equation*}
H_{p, q, s}\left(\alpha_{i}\right)=H_{p}\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) \quad(i=1,2, \ldots, q) . \tag{1.6}
\end{equation*}
$$

Thus, after some calculations, we have

$$
z\left(H_{p, q, s}\left(\alpha_{i}\right) f(z)\right)^{\prime}=\alpha_{i} H_{p, q, s}\left(\alpha_{i}+1\right) f(z)-\left(\alpha_{i}-p\right) H_{p, q, s}\left(\alpha_{i}\right) f(z)
$$

$$
\begin{equation*}
(i=1,2, \ldots, q) \tag{1.7}
\end{equation*}
$$

It should be remarked that the linear operator $H_{p, q, s}\left(\alpha_{i}\right)(i=1,2, \ldots, q)$ is a generalization of many operators considered earlier. For $q=2$ and $s=1$ Carlson and Shaffer studied this operator under certain restrictions on the parameters α_{1}, α_{2} and β_{1} in [1]. A more general operator was studied by Ponnusamy and Rønning [13]. Also, many interesting subclasses of analytic functions, associated with the operator $H_{p, q, s}\left(\alpha_{i}\right)(i=1,2, \ldots, q)$ and its many special cases, were investigated recently by (for example) Dziok and Srivastava [2, 3, 4], Gangadharan et al. [5], Liu [7], Liu and Srivastava [8, 9] and others (see also [6, 12, 15, 16, 17]).

In the present sequel to these earlier works, we shall use the method of differential subordination to derive several interesting properties and characteristics of the operator $H_{p, q, s}\left(\alpha_{i}\right)$ $(i=1,2, \ldots, q)$.

2. Main Results

We begin by recalling each of the following lemmas which will be required in our present investigation.

Lemma 2.1 (see [10]). Let $h(z)$ be analytic and convex univalent in $U, h(0)=1$ and let $g(z)=1+b_{1} z+b_{2} z^{2}+\cdots$ be analytic in U. If

$$
\begin{equation*}
g(z)+z g^{\prime}(z) / c \prec h(z) \quad(z \in U ; c \neq 0), \tag{2.1}
\end{equation*}
$$

then for $\operatorname{Re} c \geq 0$,

$$
\begin{equation*}
g(z) \prec \frac{c}{z^{c}} \int_{0}^{z} t^{c-1} h(t) d t . \tag{2.2}
\end{equation*}
$$

Lemma 2.2 (see [14]). The function $(1-z)^{\gamma} \equiv e^{\gamma \log (1-z)}, \gamma \neq 0$, is univalent in U if and only if γ is either in the closed disk $|\gamma-1| \leq 1$ or in the closed disk $|\gamma+1| \leq 1$.

Lemma 2.3 (see [11]). Let $q(z)$ be univalent in U and let $\theta(w)$ and $\phi(w)$ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z)=z q^{\prime}(z) \phi(q(z))$, $h(z)=\theta(q(z))+Q(z)$ and suppose that
(1) $Q(z)$ is starlike (univalent) in U;
(2) $\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\operatorname{Re}\left(\frac{\theta^{\prime}(q(z))}{\phi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in U)$.

If $p(z)$ is analytic in U, with $p(0)=q(0), p(U) \subset D$, and

$$
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z))=h(z),
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
We now prove our first result given by Theorem 2.4 below.
Theorem 2.4. Let $\alpha_{i}>0(i=1,2, \ldots, q), \lambda>0$, and $-1 \leq B<A \leq 1$. If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
(1-\lambda) \frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}+\lambda \frac{H_{p, q, s}\left(\alpha_{i}+1\right) f(z)}{z^{p}} \prec h(A, B ; z), \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(\left(\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\frac{1}{m}}\right)>\left(\frac{\alpha_{i}}{\lambda} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda}-1}\left(\frac{1-A u}{1-B u}\right) d u\right)^{\frac{1}{m}} \quad(m \geq 1) \tag{2.4}
\end{equation*}
$$

The result is sharp.
Proof. Let

$$
\begin{equation*}
g(z)=\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}} \tag{2.5}
\end{equation*}
$$

for $f(z) \in A(p)$. Then the function $g(z)=1+b_{1} z+\cdots$ is analytic in U. By making use of (1.7) and (2.5), we obtain

$$
\begin{equation*}
\frac{H_{p, q, s}\left(\alpha_{i}+1\right) f(z)}{z^{p}}=g(z)+\frac{z g^{\prime}(z)}{\alpha_{i}} . \tag{2.6}
\end{equation*}
$$

From (2.3), (2.5) and (2.6) we get

$$
\begin{equation*}
g(z)+\frac{\lambda}{\alpha_{i}} z g^{\prime}(z) \prec h(A, B ; z) . \tag{2.7}
\end{equation*}
$$

Now an application of Lemma 2.1 leads to

$$
\begin{equation*}
g(z) \prec \frac{\alpha_{i}}{\lambda} z^{-\frac{\alpha_{i}}{\lambda}} \int_{0}^{1} t^{\frac{\alpha_{i}}{\lambda}-1}\left(\frac{1+A t}{1+B t}\right) d t \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}=\frac{\alpha_{i}}{\lambda} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda}-1}\left(\frac{1+A u w(z)}{1+\operatorname{Buw}(z)}\right) d u \tag{2.9}
\end{equation*}
$$

where $w(z)$ is analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$.
In view of $-1 \leq B<A \leq 1$ and $\alpha_{i}>0$, it follows from (2.9) that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)>\frac{\alpha_{i}}{\lambda} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda}-1}\left(\frac{1-A u}{1-B u}\right) d u \quad(z \in U) . \tag{2.10}
\end{equation*}
$$

Therefore, with the aid of the elementary inequality $\operatorname{Re}\left(w^{1 / m}\right) \geq(\operatorname{Re} w)^{1 / m}$ for $\operatorname{Re} w>0$ and $m \geq 1$, the inequality (2.4) follows directly from (2.10).

To show the sharpness of 2.4 , we take $f(z) \in A(p)$ defined by

$$
\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}=\frac{\alpha_{i}}{\lambda} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda}-1}\left(\frac{1+A u z}{1+B u z}\right) d u .
$$

For this function, we find that

$$
(1-\lambda) \frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}+\lambda \frac{H_{p, q, s}\left(\alpha_{i}+1\right) f(z)}{z^{p}}=\frac{1+A z}{1+B z}
$$

and

$$
\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}} \rightarrow \frac{\alpha_{i}}{\lambda} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda}-1}\left(\frac{1-A u}{1-B u}\right) d u \quad \text { as } z \rightarrow-1 .
$$

Hence the proof of the theorem is complete.
Next we prove our second theorem.
Theorem 2.5. Let $\alpha_{i}>0(i=1,2, \ldots, q)$, and $0 \leq \rho<1$. Let γ be a complex number with $\gamma \neq 0$ and satisfy either $\left|2 \gamma(1-\rho) \alpha_{i}-1\right| \leq 1$ or $\left|2 \gamma(1-\rho) \alpha_{i}+1\right| \leq 1(i=1,2, \ldots, q)$. If $f(z) \in A(p)$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{H_{p, q, s}\left(\alpha_{i}+1\right) f(z)}{H_{p, q, s}\left(\alpha_{i}\right) f(z)}\right)>\rho \quad(z \in U ; i=1,2, \ldots, q) \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\gamma} \prec \frac{1}{(1-z)^{2 \gamma(1-\rho) \alpha_{i}}}=q(z) \quad(z \in U ; i=1,2, \ldots, q), \tag{2.12}
\end{equation*}
$$

where $q(z)$ is the best dominant.

Proof. Let

$$
\begin{equation*}
p(z)=\left(\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\gamma} \quad(z \in U ; i=1,2, \ldots, q) \tag{2.13}
\end{equation*}
$$

Then, by making use of (1.7), (2.11) and (2.13), we have

$$
\begin{equation*}
1+\frac{z p^{\prime}(z)}{\gamma \alpha_{i} p(z)} \prec \frac{1+(1-2 \rho) z}{1-z} \quad(z \in U) . \tag{2.14}
\end{equation*}
$$

If we take

$$
q(z)=\frac{1}{(1-z)^{2 \gamma(1-\rho) \alpha_{i}}}, \quad \theta(w)=1 \quad \text { and } \quad \phi(w)=\frac{1}{\gamma \alpha_{i} w},
$$

then $q(z)$ is univalent by the condition of the theorem and Lemma 2.2. Further, it is easy to show that $q(z), \theta(w)$ and $\phi(w)$ satisfy the conditions of Lemma 2.3. Since

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{2(1-\rho) z}{1-z}
$$

is univalent starlike in U and

$$
h(z)=\theta(q(z))+Q(z)=\frac{1+(1-2 \rho) z}{1-z}
$$

It may be readily checked that the conditions (1) and (2) of Lemma 2.3 are satisfied. Thus the result follows from (2.14) immediately. The proof is complete.

Corollary 2.6. Let $\alpha_{i}>0(i=1,2, \ldots, q)$ and $0 \leq \rho<1$. Let γ be a real number and $\gamma \geq 1$. If $f(z) \in A(p)$ satisfies the condition (2.11), then

$$
\operatorname{Re}\left(\frac{H_{p, q, s}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\frac{1}{2 \gamma(1-\rho) \alpha_{i}}}>2^{-1 / \gamma} \quad(z \in U ; i=1,2, \ldots, q)
$$

The bound $2^{-1 / \gamma}$ is the best possible.

REFERENCES

[1] B.C. CARLSON AND D.B. SHAFFER, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2] J. DZIOK AND H.M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[3] J. DZIOK AND H.M. SRIVASTAVA, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5 (2002), 115-125.
[4] J. DZIOK AND H.M. SRIVASTAVA, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003), 7-18.
[5] A. GANGADHARAN, T.N. SHANMUGAM AND H.M. SRIVASTAVA, Generalized hypergeometric functions associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515-1526.
[6] Y.C. KIM AND H.M. SRIVASTAVA, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Variables Theory Appl., 34 (1997), 293-312.
[7] J.-L. LIU, Strongly starlike functions associated with the Dziok-Srivastava operator, Tamkang J. Math., 35 (2004), 37-42.
[8] J.-L. LIU AND H.M.SRIVASTAVA, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 38 (2004), 21-34.
[9] J.-L. LIU And H.M. SRIVASTAVA, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput., 159 (2004), 485-493.
[10] S.S. MILLER AND P.T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[11] S.S. MILLER AND P.T. MOCANU, On some classes of first order differential subordination, Michigan Math. J., 32 (1985), 185-195.
[12] S. OWA AND H.M. SRIVASTAVA, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[13] S. PONNUSAMY AND F. RØNNING, Duality for Hadamard products applied to certain integral transforms, Complex Variables: Theory Appl., 32 (1997), 263-287.
[14] M.S. ROBERTSON, Certain classes of starlike functions, Michigan Math. J., 32 (1985), 135-140.
[15] H.M. SRIVASTAVA AND S. OWA, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J., 106 (1987), 1-28.
[16] H.M. SRIVASTAVA AND S. OWA (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Eills Horwood Limited, Chichester), John Wiley and Sons, New York,Chichester, Brisbane, and Toronto, (1989).
[17] H.M. SRIVASTAVA AND S. OWA (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (1992).

[^0]: ISSN (electronic): 1443-5756
 © 2006 Victoria University. All rights reserved.
 The present research is partly supported by Jiangsu Gaoxiao Natural Science Foundation (04KJB110154).
 132-06

