Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 4, Issue 1, Article 11, 2003

EXTENSIONS OF POPOVICIU'S INEQUALITY USING A GENERAL METHOD

A. McD. MERCER
Department of Mathematics and Statistics
University of Guelph
Guelph, Ontario, N1G 1J4, Canada;
Box 12, RR 7. Belleville, Ontario, K8N 4Z7, Canada. amercer@reach.net

Received 23 July 2002; accepted 22 November 2002
Communicated by P.S. Bullen
This note is dedicated to my wife Mari - a very brave lady.

AbStract. A lemma of considerable generality is proved from which one can obtain inequalities of Popoviciu's type involving norms in a Banach space and Gram determinants.

Key words and phrases: Aczel's inequality, Popoviciu's inequality, Inequalities for Grammians.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

Let x_{k} and $y_{k}(1 \leq k \leq n)$ be non-negative real numbers. Let $\frac{1}{p}+\frac{1}{q}=1, p, q>1$, and suppose that $\sum x_{k}^{p} \leq 1$ and $\sum y_{k}^{q} \leq 1$. Then an inequality due to Popoviciu reads:

$$
\begin{equation*}
\left(1-\sum x_{k} y_{k}\right) \geq\left(1-\sum x_{k}^{p}\right)^{\frac{1}{p}}\left(1-\sum y_{k}^{q}\right)^{\frac{1}{q}} . \tag{1.1}
\end{equation*}
$$

When we make the substitutions

$$
\begin{equation*}
x_{k}^{p} \rightarrow w_{k}\left(\frac{a_{k}}{a}\right)^{p} \text { and } y_{k}^{q} \rightarrow w_{k}\left(\frac{b_{k}}{b}\right)^{q} \tag{1.2}
\end{equation*}
$$

in (1.1) and then multiply throughout by $a b$ we get the more usual, but no more general, form of the inequality; (see [1, p.118], or [2, p.58], for example). The case $p=q=2$ is called Aczèl's Inequality [1, p.117] or [2, p.57].

[^0]Our purpose here is to present a general inequality, (see lemma below), whose proof is short but which yields many generalizations of (1.1).

We shall present all our results in a 'reduced form' like (1.1) but it would be a simple matter to rescale them in the spirit of (1.2) to obtain inequalities of more apparent generality.

2. The Basic Result

Lemma 2.1. Let f be a real-valued function defined and continuous on $[0,1]$ that is positive, strictly decreasing and strictly log-concave on the open interval $(0,1)$. Let $x, y, z \in[0,1]$ and $z \leq x y$ there. Then with p and q defined as above we have:

$$
\begin{equation*}
f(z) \geq f(x y) \geq\left[f\left(x^{p}\right)\right]^{\frac{1}{p}}\left[f\left(y^{q}\right)\right]^{\frac{1}{q}} \tag{2.1}
\end{equation*}
$$

Proof. Write $L(x)=\log f(x)$. The properties of f imply that L is a strictly decreasing and strictly concave function on $(0,1)$. Hence if $x, y, z \in(0,1)$ and $z \leq x y$ we have

$$
\begin{equation*}
L(z) \geq L(x y) \geq L\left(\frac{1}{p} x^{p}+\frac{1}{q} y^{q}\right) \geq \frac{1}{p} L\left(x^{p}\right)+\frac{1}{q} L\left(y^{q}\right) . \tag{2.2}
\end{equation*}
$$

The second step here uses the arithmetic mean-geometric mean inequality and the third uses the strict concavity of L; these inequalities are strict if $x \neq y$.
Taking exponentials we get

$$
\begin{equation*}
f(z) \geq f(x y) \geq\left[f\left(x^{p}\right)\right]^{\frac{1}{p}}\left[f\left(y^{q}\right)\right]^{\frac{1}{q}} \tag{2.3}
\end{equation*}
$$

Appealing to the continuity of f we now extend this to the case in which $x, y, z \in[0,1]$ and $z \leq x y$ there. This completes the proof of the lemma.

Note: The conditions in Lemma 2.1 are satisfied if f is twice differentiable on $(0,1)$ and on that open interval $f>0, f^{\prime}<0, f f^{\prime \prime}-\left(f^{\prime}\right)^{2}<0$. Our reason for working in $(0,1)$ and then proceeding to $[0,1]$ via continuity is because our main specialization below will be $f(x)=1-x$.

3. Specializations

We now state some inequalities which result by specializing (2.1).
(1) Suppose that B is a Banach space whose dual is B^{*}. Let $g \in B$ and $F \in B^{*}$. Recalling that $|F(g)| \leq\|F\|\|g\|$ we read this as $z \leq x y$ and then (2.1) reads:

$$
\begin{equation*}
f(|F(g)|) \geq f(\|F\|\|g\|) \geq\left[f\left(\|F\|^{p}\right)\right]^{\frac{1}{p}}\left[f\left(\|g\|^{q}\right)\right]^{\frac{1}{q}}, \tag{3.1}
\end{equation*}
$$

provided that $\|F\|,\|g\| \leq 1$.
(2) Taking $f(t)=(1-t)$ specializes (3.1) further to:

$$
\begin{equation*}
(1-|F(g)|) \geq(1-\|F\|\|g\|) \geq\left(1-\|F\|^{p}\right)^{\frac{1}{p}}\left(1-\|g\|^{q}\right)^{\frac{1}{q}} \tag{3.2}
\end{equation*}
$$

provided that $\|F\|,\|g\| \leq 1$.
(3) Examples of (3.1) and 3.2) are afforded by taking B to be the sequence space $B=l_{q}^{(n)}$ in which case B^{*} is the space $l_{p}^{(n)}$. Then the outer inequalities of 3.1) and 3.2 yield:

$$
\begin{equation*}
f\left(\left|\sum x_{k} y_{k}\right|\right) \geq\left[f\left(\sum\left|x_{k}^{p}\right|\right)\right]^{\frac{1}{p}}\left[f\left(\sum\left|y_{k}^{q}\right|\right)\right]^{\frac{1}{q}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\left|\sum x_{k} y_{k}\right|\right) \geq\left(1-\sum\left|x_{k}^{p}\right|\right)^{\frac{1}{p}}\left(1-\sum\left|y_{k}^{q}\right|\right)^{\frac{1}{q}} \tag{3.4}
\end{equation*}
$$

provided that, in each case, $\left(\sum\left|x_{k}^{p}\right|\right)^{\frac{1}{p}} \leq 1$ and $\left(\sum\left|y_{k}^{q}\right|\right)^{\frac{1}{q}} \leq 1$.
The inequality (3.4) is a slightly stronger form of (1.1).
Taking other interpretations of B and B^{*} we give two more examples of the outer inequalities of (3.2) as follows:
(4)

$$
\left(1-\left|\int_{E} u v\right|\right) \geq\left(1-\int_{E}|u|^{p}\right)^{\frac{1}{p}}\left(1-\int_{E}|v|^{q}\right)^{\frac{1}{q}}
$$

provided that $\left(\int_{E}|u|^{p}\right)^{\frac{1}{p}} \leq 1$ and $\left(\int_{E}|v|^{q}\right)^{\frac{1}{q}} \leq 1$. The integrals are Lebesgue integrals and E is a bounded measurable subset of the real numbers.
(5) When we take $B \equiv C[0,1]$ and $B^{*} \equiv B V[0,1]$ in (3.2) we get the somewhat exotic result:

$$
\left(1-\left|\int_{0}^{1} h(t) d \alpha(t)\right|\right) \geq\left[1-(\operatorname{Max}|h|)^{p}\right]^{\frac{1}{p}}\left[1-(\operatorname{Var}(\alpha))^{q}\right]^{\frac{1}{q}},
$$

where the maximum and total variation are taken over $[0,1]$ and each is less than or equal to 1 .

4. Inequalities for Grammians

Let $\Gamma(\mathbf{x}, \mathbf{y}), \Gamma(\mathbf{x})$ and $\Gamma(\mathbf{y})$ denote the determinants of size n whose (i, j) th elements are respectively the inner products $\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right),\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ and $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ where the x's and \mathbf{y} 's are vectors in a Hilbert space. Then it is known, see [1, p.599], that

$$
\begin{equation*}
[\Gamma(\mathbf{x}, \mathbf{y})]^{2} \leq \Gamma(\mathbf{x}) \Gamma(\mathbf{y}) \tag{4.1}
\end{equation*}
$$

It is also well-known that the two factors on the right side of (3.3) are each non-negative so that we have

$$
\begin{equation*}
|\Gamma(\mathbf{x}, \mathbf{y})|^{2 \alpha} \leq[\Gamma(\mathbf{x})]^{\alpha}[\Gamma(\mathbf{y})]^{\alpha} \quad \text { if } \quad \alpha>0 . \tag{4.2}
\end{equation*}
$$

If we read this as $z \leq x y$ and we take $f(t)=1-t$ again then (2.1) gives

$$
\left(1-|\Gamma(\mathbf{x}, \mathbf{y})|^{2 \alpha}\right) \geq\left[1-(\Gamma(\mathbf{x}))^{p \alpha}\right]^{\frac{1}{p}}\left[1-(\Gamma(\mathbf{y}))^{q \alpha}\right]^{\frac{1}{q}},
$$

provided that $\Gamma(\mathbf{x}) \leq 1$ and $\Gamma(\mathbf{y}) \leq 1$.
When $p=q=2$ and $\alpha=\frac{1}{2}$ this is a result due to J. Pečarić, [4], and when $p=q=2$ and $\alpha=\frac{1}{4}$ we get a result due to S.S. Dragomir and B. Mond, [1, Theorem 2].

5. Some Final Remarks

In giving examples of the use of (2.1) we have used the function $f(t)=1-t$ since that is the source of Popoviciu's result. But interesting inequalities arise also from other suitable choices of f. For example, taking

$$
f(t)=\frac{(\alpha-t)}{(\beta-t)} \text { in }[0,1] \quad(1<\alpha<\beta)
$$

we are led to the result

$$
\left[\frac{\alpha-\left|\sum x_{k} y_{k}\right|}{\beta-\left|\sum x_{k} y_{k}\right|}\right] \geq\left[\frac{\alpha-\sum\left|x_{k}^{p}\right|}{\beta-\sum\left|x_{k}^{p}\right|}\right]^{\frac{1}{p}}\left[\frac{\alpha-\sum\left|y_{k}^{q}\right|}{\beta-\sum\left|y_{k}^{q}\right|}\right]^{\frac{1}{q}}
$$

provided that $\left(\sum\left|x_{k}^{p}\right|\right)^{\frac{1}{p}} \leq 1,\left(\sum\left|y_{k}^{q}\right|\right)^{\frac{1}{q}} \leq 1$. This reduces to Popoviciu's inequality 3.2) if we multiply throughout by β, let $\beta \rightarrow \infty$ and $\alpha \rightarrow 1$.

Next let f possess the same properties as in Lemma 2.1 above but now take $x, y, z, w \in[0,1]$ with $w \leq x y z$. Then one finds that

$$
f(w) \geq f(x y z) \geq\left[f\left(x^{p}\right)\right]^{\frac{1}{p}}\left[f\left(y^{q}\right)\right]^{\frac{1}{q}}\left[f\left(z^{r}\right)\right]^{\frac{1}{r}},
$$

where

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1(p, q, r<1)
$$

Specializing this by again taking $f(t)=1-t$ and reading the extended Hölder inequality

$$
\left|\sum x_{k} y_{k} z_{k}\right| \leq\left[\sum\left|x_{k}\right|^{p}\right]^{\frac{1}{p}}\left[\sum\left|y_{k}\right|^{q}\right]^{\frac{1}{q}}\left[\sum\left|z_{k}\right|^{r}\right]^{\frac{1}{r}}
$$

as $w \leq x y z$ we get the Popoviciu-type inequality:

$$
\left(1-\left|\sum x_{k} y_{k} z_{k}\right|\right) \geq\left(1-\sum\left|x_{k}^{p}\right|\right)^{\frac{1}{p}}\left(1-\sum\left|y_{k}^{q}\right|\right)^{\frac{1}{q}}\left(1-\sum\left|z_{k}^{r}\right|\right)^{\frac{1}{r}}
$$

$\operatorname{provided}\left(\sum\left|x_{k}^{p}\right|\right)^{\frac{1}{p}} \leq 1,\left(\sum\left|y_{k}^{q}\right|\right)^{\frac{1}{q}} \leq 1,\left(\sum\left|z_{k}^{r}\right|\right)^{\frac{1}{r}} \leq 1$.
One can also construct inequalities which involve products of four or more factors, in the same way.

References

[1] S.S. DRAGOMIR AND B. MOND, Some inequalities of Aczèl type for Grammians in inner product spaces, RGMIA. Res. Rep. Coll., 2(2) (1999), Article 10. [ONLINE: http://rgmia.vu.edu.au/v2n2.html]
[2] D.S. MITRINOVIĆ, Analytic Inequalities,(1970), Springer-Verlag.
[3] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[4] J.E. PEČARIĆ, On some classical inequalities in unitary spaces, Mat. Bilten. (Skopje), 16 (1992), 63-72.

[^0]: ISSN (electronic): 1443-5756
 (C) 2003 Victoria University. All rights reserved.

 132-02

