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In this paper, we provide some Feng Qi tygdéntegral Inequalities, by using

analytic and elementary methods in Quantum Calculus.
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1. Introduction

In [9], F. Qi studied an interesting integral inequality and proved the following result:

Theorem 1.1. For a positive integer and ann'* order continuous derivative func-
tion £ on an intervala, b] such thatf"(a) > 0,0 < i < n —1and f™(a) > nl,
we have

(L.1) / o > { / b f(t)dt] "

Then, he proposed the following open problem:

Under what condition is the inequality (1) still true if n is replaced by any
positive real numbep?

In view of the interest in this type of inequality, much attention has been paid to
the problem and many authors have extended the inequality to more general cases
(see [, 8]). In this paper, we shall discussjeanalogue of the Feng Qi problem and
we will generalize the inequalities given if][[7] and [8].

This paper is organized as follows: In Sectigrwe present definitions and facts
from g-calculus necessary for understanding this paper. In Seétiove discuss
some generalizations of the so-called Feng Qi inequality.
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2. Notations and Preliminaries

Throughout this paper, we will fix € (0,1). For the convenience of the reader, we
provide a summary of the mathematical notations and definitions used in this paper

(see B] and [B]). We write fora € C,

1-¢ . T k
[a]qzl_q, (G,Q)nzn(l—aq), n=172 ...
k=0
[0],! =1, [nlg! = [1g[2]g--[n]g, n=1,2,...
and
1 it n=20
(o= a)y =

(x—a)(x—qa)---(x—¢"ta) if n#0
Theg-derivativeD,, f of a functionf is given by
f(x) — flgz)

(I—qz

(Dqf)(0) = f'(0) providedf’(0) exists.
The ¢-Jackson integral frorf to a is defined by (seed])

(2.1)

(Dyf)(z) = if ©#0,

(2.2) / @ = (1-g)a’y Flag")q",
0 n=0

provided the sum converges absolutely.
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Theg-Jackson integral in a generic interyal b| is given by (see4])

b b a
(2.3) [ 1@ = [ r@ae= [ s
We recall that for any functiorf, we have (se€q])
(2.4) D, ( | f(t>dqt> = f(x).

Finally, forb > 0 anda = bg", n a positive integer, we write

[aa b]q - {bqk 0 0 S k S TL} and (a:b]q - [q_laab](I‘
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3. g¢-Integral Inequalities of Feng Qi type

Let us begin with the following useful result:

Lemma 3.1. Letp > 1 be a real number ang be a nonnegative and monotone
function on|a, b],. Then

P (g2) Dag(2) < Dylg(2))" < pg" (@) Dag(@), @ € (a,]y. T eqites
Kamel Braﬂim, Néji Bettaibi

and Mouna Sellami

Proof. We have

gp<x) _ gp(qx) 1 g(x) . vol. 9, iss. 2, art. 43, 2008
(3.1) D,[¢")(z) = = P P dt.
. . . . Title Page
Sinceg is a nonnegative and monotone function, we have
o) Contents
9" (qz) [9(x) — g(q2)] < / - tr=ldt < g~ () [g(x) — g(q)]. « S
glqxr
. . . < >
Therefore, according to the relatiof. {), we obtain
. . Page 6 of 16
pg" " (qz)Dyg(x) < Dylg"|(z) < pg" (x) Dyg(z).
Go Back
O]
Full Screen
Proposition 3.2. Let f be a function defined oja, b], satisfying o
ose
f(a)>0 and D,f(x)>(t—2)(x—a)"? for =€ (ab], and t>3.
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Proof. Putg(z) = [ f(qu)d,u and

Fo) = [t~ ([ staan) o

DyF(x) = f'(x) — Dylg"")(2).
Sincef andg increase orja, b|,, we obtain from Lemma.1,
D F(x) > f'(x) — (t = 1)g'*(x) f(qx)
> fix) = (t = 1)g"*(2) f(x) = f(x)h(z),

We have
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(32 Dyhle) > (1 = VF*(a2)Dyf (x) = (¢ = 1t ~2)g"(x) Dya(x) PG
(3.3) > (t—1)f(qx) [ft_3(qx)qu(x) —(t— 2)gt_3(x)} . Go Back
Since the functiory increases, we have Full Screen
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and from the fach(a) = f*"*(a) > 0, we geth(z) > 0, x € [a,b],.
FromF(a) = 0 andD,F(z) = f(x)h(z) > 0, it follows that F'(z) > 0 for all
x € [a, b],, in particular

t—1

F(b) = / b[f(u)]tdqu . ( / ’ f(qu)dqu) > 0.

Corollary 3.3. Letn be a positive integer ang be a function defined ofu, ],
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Proof. It suffices to také = n + 2 in Proposition3.2 and the result follows. [ ah >
Corollary 3.4. Letn be a positive integer ang be a function defined ofu, ], ¢ >
satisfying Page 8 of 16

D;f(a) >0, 0<i<n—1 and D;f(xr)>nn—1]! =z € (a,b,. Go Back

Then, i . - Full Screen

[ ez ([ sanae) Close
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Proposition 3.5. Letp > 1 be a real number ang be a function defined ofa, b],
satisfying

(3.4) fla) =0, Dyf(z) =p, Vué€/a,b

Then we have
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1 Full Screen
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where

h(t) = [f(t)]7H — (p+1)g"(t).

(b —a)p~t
On the other hand, we have
Dyh(t) = Dyff")(0) = G0+ DD,le")0).

. . Feng Qi Type g-Integral
By using LemmeB.1, we obtain Inequalities
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_ p -1
> (p+ 1 f(qt) | fPHqt) Dy f(t) — ————g" ()| .
0+ D10 | P DI0 - G0 —
Sincef increases, then fare [a, b],, Contents
t
@.7) [ sty < 0 a)fa) « »
“ < >
therefore,
Page 10 of 16
(3.8) Dyh(t) > (p+ 1) (g)[ Dy f () — 7] —
. . k
We deduce, from the relatiof ¢), thath increases off, b|,. G0 Bac
Finally, sinceh(a) = fP*(a) > 0, thenH increases and (b) > H(a) > 0, Full Screen
which completes the proof. ] Sl
Corollary 3.6. Letp > 1 be a real number and be a nonnegative function g, 1| . _ »
such thatD, f(z) > 1. Then !ournql of mequo]nhes
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Proof. Replacing, in the previous propositiofi(z) by pf(x), b by 1 anda by ¢V
(N =1,2,...), we obtain then the result by tendingto oco. ]

In what follows, we will adopt the terminology of the following definition.

Definition 3.7. Letb > 0 anda = bq", wheren is a positive integer. For each real
numberr, we denote byv, ,.([a, b]) the set of functions defined ¢n b], such that

Feng Qi Type g-Integral
| liti
f(a) >0 and D,f(x) > [r]y, Vo € (a,b],. Kamel Brahim, N&ji Bettaii
and Mouna Sellami
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Proof. Fort € [a, b],, we put Contents
. . ) . « »
F(t) = / [f(2))*d,x — [/ (f(x))pdqx] and ¢(t) :/ [f(2)]Pdy. < >

Page 11 of 16
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0 Back
D,F(t) = [FOF* = [F(OP (9(t) + g(at)) Fjl SB
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On the other hand, we have

p,c) - L (2 = ";C: =

— fP(t) — qf"(qt)

f) —(1—q) flgt) +q(1—q)t
(1—q)t L—qt
By using the relatiorD, f(t) > [2],, we obtainf(¢) > f(qt) + (1 — ¢*)t, therefore

0 L

(3.11) Dun)zquwqu—qmm te (a8,

Hence G is strictly increasing offu, b],. Moreover, we have
G(a) = [f(@)"" + (1 = g)af(a) = 0,

forall ¢t € (a,b],, G(t) > G(a) > 0, which proves thaD,F(t) > 0, for all t
(a,bl,. Thus,F is strictly increasing offu, b],. In particular,F'(b) > F(a) =0. O

Corollary 3.9. Leta > 0and f € E,([a,b]). Then for all positive integers:, we
have

b b
312) [ s | i
Proof. We suggest here a proof by induction. For this purpose, we put:

Pm(a) = (@ +1)2™ — 1.

2m

We have

(3.13) Pm(@) >0 and  ppyi(a) = 2py(a) + 1.
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From Propositiors.8, we deduce that the inequality.(2) is true form = 1.

Suppose that3(12) holds for an integem and let us prove it forn + 1.
By using the relationi. 13 and Propositiors.8, we obtain

2

(3.14) / b[f ()] T2 e > [ / b[f (x)]("“)zm_ldqx]

And, by assumption, we have

om

(3.15) / @) [ / b[f(x)]@dqx]

Finally, the relations.14) and (.15 imply that the inequality {.12) is true for

m + 1. This completes the proof.

Corollary 3.10. Let f € E,5([a,b]) anda > 0. For m € N, we have

1
om~+1

(3.16) { / b[ f(x)}(a“pmﬂldqx} >

Proof. Since, from Propositiofi.§,

[t

2

G [ s | [ i)

then

b ST b
(3.18) { / [f(:r)}(““m“‘ldqx] > { / [f ()]t dx}

M
3

]
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Corollary 3.11. Let f € E,»([a,b]). For all integersm > 2, we have

[ @]
/a ’ f(x)dqx] "

Proof. By using Propositior8.8 and the two previous corollaries far = 1, we
obtain the required result. O

2m—1

b
(3.19) [ 1@P g >

(3.20) -
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