ON SOME FENG QI TYPE q-INTEGRAL INEQUALITIES

KAMEL BRAHIM, NÉJI BETTAIBI, AND MOUNA SELLAMI

Institut Préparatoire aux Études d'Ingénieur de Tunis
Kamel.Brahim@ipeit.rnu.tn
Institut Préparatoire aux Études d'Ingénieur de Monastir, 5000 Monastir, TUNISIA.
Neji.Bettaibi@ipein.rnu.tn
Institut Préparatoire aux Études d’Ingénieur de El Manar, Tunis, Tunisia
sellami_mouna@yahoo.fr
Received 03 May, 2008; accepted 30 May, 2008
Communicated by F. Qi

AbStract. In this paper, we provide some Feng Qi type q-Integral Inequalities, by using analytic and elementary methods in Quantum Calculus.

Key words and phrases: q-series, q-integral, Inequalities.
2000 Mathematics Subject Classification. 26D10, 26D15, 33D05, 33D15.

1. Introduction

In [9], F. Qi studied an interesting integral inequality and proved the following result:
Theorem 1.1. For a positive integer n and an $n^{\text {th }}$ order continuous derivative function f on an interval $[a, b]$ such that $f^{(i)}(a) \geq 0,0 \leq i \leq n-1$ and $f^{(n)}(a) \geq n!$, we have

$$
\begin{equation*}
\int_{a}^{b}[f(t)]^{n+2} d t \geq\left[\int_{a}^{b} f(t) d t\right]^{n+1} \tag{1.1}
\end{equation*}
$$

Then, he proposed the following open problem:
Under what condition is the inequality (1.1) still true if n is replaced by any positive real number p ?
In view of the interest in this type of inequality, much attention has been paid to the problem and many authors have extended the inequality to more general cases (see [1, 8]). In this paper, we shall discuss a q-analogue of the Feng Qi problem and we will generalize the inequalities given in [1], [7] and [8].

This paper is organized as follows: In Section 2, we present definitions and facts from q calculus necessary for understanding this paper. In Section 3, we discuss some generalizations of the so-called Feng Qi inequality.

2. Notations and Preliminaries

Throughout this paper, we will fix $q \in(0,1)$. For the convenience of the reader, we provide a summary of the mathematical notations and definitions used in this paper (see [3] and [5]). We write for $a \in \mathbb{C}$,

$$
\begin{gathered}
{[a]_{q}=\frac{1-q^{a}}{1-q}, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), n=1,2, \ldots, \infty,} \\
{[0]_{q}!=1, \quad[n]_{q}!=[1]_{q}[2]_{q} \ldots[n]_{q}, \quad n=1,2, \ldots}
\end{gathered}
$$

and

$$
(x-a)_{q}^{n}=\left\{\begin{array}{ll}
1 & \text { if } n=0 \\
(x-a)(x-q a) \cdots\left(x-q^{n-1} a\right) & \text { if } n \neq 0
\end{array} \quad x \in \mathbb{C}, n \in \mathbb{N} .\right.
$$

The q-derivative $D_{q} f$ of a function f is given by

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad \text { if } x \neq 0 \tag{2.1}
\end{equation*}
$$

$\left(D_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists.
The q-Jackson integral from 0 to a is defined by (see [4])

$$
\begin{equation*}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n} \tag{2.2}
\end{equation*}
$$

provided the sum converges absolutely.
The q-Jackson integral in a generic interval $[a, b]$ is given by (see [4])

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x . \tag{2.3}
\end{equation*}
$$

We recall that for any function f, we have (see [5])

$$
\begin{equation*}
D_{q}\left(\int_{a}^{x} f(t) d_{q} t\right)=f(x) \tag{2.4}
\end{equation*}
$$

Finally, for $b>0$ and $a=b q^{n}, n$ a positive integer, we write

$$
[a, b]_{q}=\left\{b q^{k}: 0 \leq k \leq n\right\} \quad \text { and } \quad(a, b]_{q}=\left[q^{-1} a, b\right]_{q} .
$$

3. q-Integral Inequalities of Feng Qi type

Let us begin with the following useful result:
Lemma 3.1. Let $p \geq 1$ be a real number and g be a nonnegative and monotone function on $[a, b]_{q}$. Then

$$
p g^{p-1}(q x) D_{q} g(x) \leq D_{q}[g(x)]^{p} \leq p g^{p-1}(x) D_{q} g(x), \quad x \in(a, b]_{q} .
$$

Proof. We have

$$
\begin{equation*}
D_{q}\left[g^{p}\right](x)=\frac{g^{p}(x)-g^{p}(q x)}{(1-q) x}=\frac{1}{(1-q) x} p \int_{g(q x)}^{g(x)} t^{p-1} d t \tag{3.1}
\end{equation*}
$$

Since g is a nonnegative and monotone function, we have

$$
g^{p-1}(q x)[g(x)-g(q x)] \leq \int_{g(q x)}^{g(x)} t^{p-1} d t \leq g^{p-1}(x)[g(x)-g(q x)]
$$

Therefore, according to the relation (3.1), we obtain

$$
p g^{p-1}(q x) D_{q} g(x) \leq D_{q}\left[g^{p}\right](x) \leq p g^{p-1}(x) D_{q} g(x) .
$$

Proposition 3.2. Let f be a function defined on $[a, b]_{q}$ satisfying

$$
f(a) \geq 0 \quad \text { and } \quad D_{q} f(x) \geq(t-2)(x-a)^{t-3} \quad \text { for } \quad x \in(a, b]_{q} \quad \text { and } \quad t \geq 3 .
$$

Then

$$
\int_{a}^{b}[f(x)]^{t} d_{q} x \geq\left(\int_{a}^{b} f(q x) d_{q} x\right)^{t-1}
$$

Proof. Put $g(x)=\int_{a}^{x} f(q u) d_{q} u$ and

$$
F(x)=\int_{a}^{x}[f(u)]^{t} d_{q} u-\left(\int_{a}^{x} f(q u) d_{q} u\right)^{t-1} .
$$

We have

$$
D_{q} F(x)=f^{t}(x)-D_{q}\left[g^{t-1}\right](x) .
$$

Since f and g increase on $[a, b]_{q}$, we obtain from Lemma 3.1,

$$
\begin{aligned}
D_{q} F(x) & \geq f^{t}(x)-(t-1) g^{t-2}(x) f(q x) \\
& \geq f^{t}(x)-(t-1) g^{t-2}(x) f(x)=f(x) h(x),
\end{aligned}
$$

where $h(x)=f^{t-1}(x)-(t-1) g^{t-2}(x)$.
On the other hand, we have

$$
D_{q} h(x)=D_{q}\left[f^{t-1}\right](x)-(t-1) D_{q}\left[g^{t-2}\right](x) .
$$

By using Lemma 3.1, we obtain

$$
\begin{align*}
D_{q} h(x) & \geq(t-1) f^{t-2}(q x) D_{q} f(x)-(t-1)(t-2) g^{t-3}(x) D_{q} g(x) \tag{3.2}\\
& \geq(t-1) f(q x)\left[f^{t-3}(q x) D_{q} f(x)-(t-2) g^{t-3}(x)\right] . \tag{3.3}
\end{align*}
$$

Since the function f increases, we have

$$
\int_{a}^{x} f(q u) d_{q} u \leq f(q x)(x-a) .
$$

Then, from the conditions of the proposition and inequalities (3.2) and (3.3), we get

$$
D_{q} h(x) \geq(t-1) f^{t-2}(q x)\left[D_{q} f(x)-(t-2)(x-a)^{t-3}\right] \geq 0,
$$

and from the fact $h(a)=f^{t-1}(a) \geq 0$, we get $h(x) \geq 0, \quad x \in[a, b]_{q}$.
From $F(a)=0$ and $D_{q} F(x)=f(x) h(x) \geq 0$, it follows that $F(x) \geq 0$ for all $x \in[a, b]_{q}$, in particular

$$
F(b)=\int_{a}^{b}[f(u)]^{t} d_{q} u-\left(\int_{a}^{b} f(q u) d_{q} u\right)^{t-1} \geq 0
$$

Corollary 3.3. Let n be a positive integer and f be a function defined on $[a, b]_{q}$ satisfying

$$
f(a) \geq 0 \quad \text { and } \quad D_{q} f(x) \geq n(x-a)^{n-1}, \quad x \in(a, b]_{q} .
$$

Then,

$$
\int_{a}^{b}(f(x))^{n+2} d_{q} x \geq\left(\int_{a}^{b} f(q x) d_{q} x\right)^{n+1}
$$

Proof. It suffices to take $t=n+2$ in Proposition 3.2 and the result follows.
Corollary 3.4. Let n be a positive integer and f be a function defined on $[a, b]_{q}$ satisfying

$$
D_{q}^{i} f(a) \geq 0, \quad 0 \leq i \leq n-1 \quad \text { and } \quad D_{q}^{n} f(x) \geq n[n-1]_{q}!\quad x \in(a, b]_{q} .
$$

Then,

$$
\int_{a}^{b}(f(x))^{n+2} d_{q} x \geq\left(\int_{a}^{b} f(q x) d_{q} x\right)^{n+1}
$$

Proof. Since $D_{q}^{n} f(x) \geq n[n-1]_{q}$!, then by q-integrating $n-1$ times over $[a, x]$, we get

$$
D_{q} f(x) \geq n(x-a)_{q}^{n-1} \geq n(x-a)^{n-1} .
$$

The result follows from Corollary 3.3 .
Proposition 3.5. Let $p \geq 1$ be a real number and f be a function defined on $[a, b]_{q}$ satisfying

$$
\begin{equation*}
f(a) \geq 0, \quad D_{q} f(x) \geq p, \forall x \in(a, b]_{q} . \tag{3.4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{p+2} d_{q} x \geq \frac{1}{(b-a)^{p-1}}\left[\int_{a}^{b} f(q x) d_{q} x\right]^{p+1} \tag{3.5}
\end{equation*}
$$

Proof. Put $g(t)=\int_{a}^{t} f(q x) d_{q} x$ and

$$
\begin{equation*}
H(t)=\int_{a}^{t}[f(x)]^{p+2} d_{q} x-\frac{1}{(b-a)^{p-1}}\left[\int_{a}^{t} f(q x) d_{q} x\right]^{p+1}, \quad t \in[a, b]_{q} . \tag{3.6}
\end{equation*}
$$

We have

$$
D_{q} H(t)=[f(t)]^{p+2}-\frac{1}{(b-a)^{p-1}} D_{q}\left[g^{p+1}\right](t), \quad t \in(a, b]_{q} .
$$

Since f and g increase on $[a, b]_{q}$, we obtain, according to Lemma 3.1, for $t \in(a, b]_{q}$,

$$
\begin{aligned}
D_{q} H(t) & \geq[f(t)]^{p+2}-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(t) f(q t) \\
& \geq[f(t)]^{p+2}-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(t) f(t) \\
& \geq\left([f(t)]^{p+1}-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(t)\right) f(t)=h(t) f(t)
\end{aligned}
$$

where

$$
h(t)=[f(t)]^{p+1}-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(t) .
$$

On the other hand, we have

$$
D_{q} h(t)=D_{q}\left[f^{p+1}\right](t)-\frac{1}{(b-a)^{p-1}}(p+1) D_{q}\left[g^{p}\right](t)
$$

By using Lemma 3.1, we obtain

$$
\begin{aligned}
D_{q} h(t) & \geq(p+1) f^{p}(q t) D_{q} f(t)-\frac{(p+1) p}{(b-a)^{p-1}} g^{p-1}(t) f(q t) \\
& \geq(p+1) f(q t)\left[f^{p-1}(q t) D_{q} f(t)-\frac{p}{(b-a)^{p-1}} g^{p-1}(t)\right]
\end{aligned}
$$

Since f increases, then for $t \in[a, b]_{q}$,

$$
\begin{equation*}
\int_{a}^{t} f(q x) d_{q} x \leq(b-a) f(q t) \tag{3.7}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
D_{q} h(t) \geq(p+1) f^{p}(q t)\left[D_{q} f(t)-p\right] . \tag{3.8}
\end{equation*}
$$

We deduce, from the relation (3.4), that h increases on $[a, b]_{q}$.
Finally, since $h(a)=f^{p+1}(a) \geq 0$, then H increases and $H(b) \geq H(a) \geq 0$, which completes the proof.

Corollary 3.6. Let $p \geq 1$ be a real number and f be a nonnegative function on $[0,1]$ such that $D_{q} f(x) \geq 1$. Then

$$
\begin{equation*}
\int_{0}^{1}[f(x)]^{p+2} d_{q} x \geq \frac{1}{p}\left[\int_{0}^{1} f(q x) d_{q} x\right]^{p+1} . \tag{3.9}
\end{equation*}
$$

Proof. Replacing, in the previous proposition, $f(x)$ by $p f(x), b$ by 1 and a by $q^{N}(N=$ $1,2, \ldots$), we obtain then the result by tending N to ∞.

In what follows, we will adopt the terminology of the following definition.
Definition 3.1. Let $b>0$ and $a=b q^{n}$, where n is a positive integer. For each real number r, we denote by $E_{q, r}([a, b])$ the set of functions defined on $[a, b]_{q}$ such that

$$
f(a) \geq 0 \quad \text { and } \quad D_{q} f(x) \geq[r]_{q}, \quad \forall x \in(a, b]_{q} .
$$

Proposition 3.7. Let $f \in E_{q, 2}([a, b])$. Then for all $p>0$, we have

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{2 p+1} d_{q} x>\left[\int_{a}^{b}(f(x))^{p} d_{q} x\right]^{2} . \tag{3.10}
\end{equation*}
$$

Proof. For $t \in[a, b]_{q}$, we put

$$
F(t)=\int_{a}^{t}[f(x)]^{2 p+1} d_{q} x-\left[\int_{a}^{t}(f(x))^{p} d_{q} x\right]^{2} \quad \text { and } \quad g(t)=\int_{a}^{t}[f(x)]^{p} d_{q} x .
$$

Then, we have for $t \in[a, b]_{q}$,

$$
\begin{aligned}
D_{q} F(t) & =[f(t)]^{2 p+1}-[f(t)]^{p}(g(t)+g(q t)) \\
& =[f(t)]^{p}\left([f(t)]^{p+1}-[g(t)+g(q t)]\right) \\
& =[f(t)]^{p} G(t),
\end{aligned}
$$

where $G(t)=[f(t)]^{p+1}-[g(t)+g(q t)]$.
On the other hand, we have

$$
\begin{aligned}
D_{q} G(t) & =\frac{f^{p+1}(t)-f^{p+1}(q t)}{(1-q) t}-f^{p}(t)-q f^{p}(q t) \\
& =f^{p}(t) \frac{f(t)-(1-q) t}{(1-q) t}-f^{p}(q t) \frac{f(q t)+q(1-q) t}{(1-q) t}
\end{aligned}
$$

By using the relation $D_{q} f(t) \geq[2]_{q}$, we obtain $f(t) \geq f(q t)+\left(1-q^{2}\right) t$, therefore

$$
\begin{equation*}
D_{q} G(t) \geq \frac{f^{p}(t)-f^{p}(q t)}{(1-q) t}[f(q t)+q(1-q) t]>0, \quad t \in(a, b]_{q} . \tag{3.11}
\end{equation*}
$$

Hence, G is strictly increasing on $[a, b]_{q}$. Moreover, we have

$$
G(a)=[f(a)]^{p+1}+(1-q) a f(a) \geq 0
$$

for all $t \in(a, b]_{q}, G(t)>G(a) \geq 0$, which proves that $D_{q} F(t)>0$, for all $t \in(a, b]_{q}$. Thus, F is strictly increasing on $[a, b]_{q}$. In particular, $F(b)>F(a)=0$.
Corollary 3.8. Let $\alpha>0$ and $f \in E_{q, 2}([a, b])$. Then for all positive integers m, we have

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m}-1} d_{q} x>\left[\int_{a}^{b}[f(x)]^{\alpha} d_{q} x\right]^{2^{m}} . \tag{3.12}
\end{equation*}
$$

Proof. We suggest here a proof by induction. For this purpose, we put:

$$
p_{m}(\alpha)=(\alpha+1) 2^{m}-1
$$

We have

$$
\begin{equation*}
p_{m}(\alpha)>0 \quad \text { and } \quad p_{m+1}(\alpha)=2 p_{m}(\alpha)+1 \tag{3.13}
\end{equation*}
$$

From Proposition 3.7, we deduce that the inequality (3.12) is true for $m=1$.
Suppose that (3.12) holds for an integer m and let us prove it for $m+1$.
By using the relation (3.13) and Proposition 3.7, we obtain

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m+1}-1} d_{q} x>\left[\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m}-1} d_{q} x\right]^{2} \tag{3.14}
\end{equation*}
$$

And, by assumption, we have

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m}-1}>\left[\int_{a}^{b}[f(x)]^{\alpha} d_{q} x\right]^{2^{m}} \tag{3.15}
\end{equation*}
$$

Finally, the relations (3.14) and (3.15) imply that the inequality (3.12) is true for $m+1$. This completes the proof.
Corollary 3.9. Let $f \in E_{q, 2}([a, b])$ and $\alpha>0$. For $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\left[\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m+1}-1} d_{q} x\right]^{\frac{1}{2^{m+1}}}>\left[\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m}-1} d_{q} x\right]^{\frac{1}{2^{m}}} . \tag{3.16}
\end{equation*}
$$

Proof. Since, from Proposition 3.7,

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m+1}-1} d_{q} x>\left[\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m}-1} d_{q} x\right]^{2} \tag{3.17}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m+1}-1} d_{q} x\right]^{\frac{1}{2^{m+1}}}>\left[\int_{a}^{b}[f(x)]^{(\alpha+1) 2^{m}-1} d_{q} x\right]^{\frac{1}{2^{m}}} \tag{3.18}
\end{equation*}
$$

Corollary 3.10. Let $f \in E_{q, 2}([a, b])$. For all integers $m \geq 2$, we have

$$
\begin{align*}
\int_{a}^{b}[f(x)]^{2^{m+1}-1} d_{q} x & >\left[\int_{a}^{b}[f(x)]^{3} d_{q} x\right]^{2^{m-1}} \tag{3.19}\\
& >\left[\int_{a}^{b} f(x) d_{q} x\right]^{2^{m}} \tag{3.20}
\end{align*}
$$

Proof. By using Proposition 3.7 and the two previous corollaries for $\alpha=1$, we obtain the required result.

References

[1] L. BOUGOFFA, Notes on Qi type inequalities, J. Inequal. Pure and Appl. Math., 4(4) (2003), Art. 77. [ONLINE: http://jipam.vu.edu.au/article.php?sid=318].
[2] W.S. CHEUNG AND Z̆. HANJS̆ AND J. PEČARIĆ, Some Hardy-type inequalities, J. Math. Anal. Applics., 250 (2000), 621-634.
[3] G. GASPER AND M. RAHMAN, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge.
[4] F.H. JACKSON, On a q-definite integrals, Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193-203.
[5] V.G. KAC AND P. CHEUNG, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[6] T.H. KOORNWINDER, q-Special Functions, a Tutorial, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics, M. Gerstenhaber and J. Stasheff (eds.), Contemp. Math., 134, Amer. Math. Soc., (1992).
[7] S. MAZOUZI AND F. QI, On an open problem regarding an integral inequality, J. Inequal. Pure Appl. Math., 4(2) (2003), Art. 31. [ONLINE: http://jipam.vu.edu.au/article.php? sid=73.
[8] T.K. POGÁNY, On an open problem of F. Qi, J. Inequal Pure Appl. Math., 3(4) (2002), Art. 54. [ONLINE: http://jipam.vu.edu.au/article.php?sid=206].
[9] F. QI, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2002), Art. 19. [ONLINE: http://jipam.vu.edu.au/article.php?sid=113|.

