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ABSTRACT. We show that certain properties of positive solutions of disconjugate second order
differential expressionsM [y] = −(py′)′ + qy imply the separation of the minimal and maximal
operators determined byM in L2(Ia) whereIa = [a,∞), a > −∞, i.e., the property that
M [y] ∈ L2(Ia) ⇒ qy ∈ L2(Ia). This result will allow the development of several new sufficient
conditions for separation and various inequalities associated with separation. Some of these
allow for rapidly oscillatingq. It is shown in particular that expressionsM with WKB solutions
are separated, a property leading to a new proof and generalization of a 1971 separation criterion
due to Everitt and Giertz. A final result shows that the disconjugacy ofM −λq2 for someλ > 0
implies the separation ofM .
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1. I NTRODUCTION

Consider the symmetric second order differential expression

(1.1) M [y] := −(py′)′ + qy

wherep > 0, p′ andq are continuous on the intervalIa = [a,∞), a > −∞. M is said to be
disconjugate if every nontrivial real solution has at most one zero inIa . A sufficient condition
(from Sturm’s comparison theorem) for disconjugacy is thatq ≥ 0, and in this case one can
show existence of two positive solutionsu1 andu2 of M [y] = 0 on Ia, called theprincipal and
nonprincipalsolution respectively, such thatu′1 ≤ 0 andu′2 > 0 on Ia. More generally,M
is disconjugate onIa if and only if there exists a positive solutionu on the interior ofIa. For
proofs of these facts and additional discussion see Hartman [15, Corollaries 6.1 and 6.4].

Recall also thatM determines several differential operators in the Hilbert spaceL2(Ia). In
particular the “preminimal” and “maximal” operatorsL′0 andL are given byM [y] for y in the
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2 BROWN

domainsD′0 ≡ C∞
0 (Ia), the space of infinitely differentiable functions with compact support in

the interior ofIa and

D = {y ∈ L2(Ia) ∩ ACloc(Ia) : py′ ∈ ACloc(Ia); M [y] ∈ L2(Ia)},
whereACloc stands for the real locally absolutely continuous functions onIa andL2(Ia) de-
notes the usual Hilbert space associated with equivalence classes of Lebesgue square integrable
functionsf, g having norm and inner product

‖f‖ =

(∫
Ia

|f |2
) 1

2

, [f, g] :=

∫
Ia

fḡ.

The “minimal operator”L0 with domainD0 is then defined as the closure ofL′0.
With the above definitions one can show that

(i) C∞
0 (Ia) ⊂ D′0 ⊂ D0 ⊂ D,

(ii) L′ ∗0 = L∗0 = L,
(iii) L∗ = L0,
(iv) D′0,D0, andD are dense inL2(Ia).
The regularity assumptions made in this paper onp and q are stronger than necessary to

properly defineL0, L. In general one needs only to assume the so-called “minimal conditions"
thatp−1 andq are locally integrable on(a,∞). In this caseC∞

0 (Ia) may not be contained in
D′0 but the properties (ii)–(iv) will still hold. The maximal and minimal operatorsL andL0 can
also be defined relative to an arbitrary interval(a, b) where−∞ ≤ a < b ≤ ∞. If p−1, q are
Lebesgue integrable on some interval(a, c) or (c, b) for a < c < b thena or b are said to be
“regular"; otherwise they are “singular". (Infinite endpoints however are considered singular
even ifp−1, q are integrable on(a, b).) Thus in our settinga is regular and∞ is singular–we
signal this by writingIa = [a,∞) rather than(a, b).

M is limit-point or LP at ∞ if there is at most one solution ofM [y] = 0 which is in
L2(Ia), andlimit-circle or LC at the point if both solutions are so integrable. This can be shown
equivalent to each of the following properties

(i) {y, z}(∞) := limx→∞(ypz̄′ − py′z̄)(x) = 0 for all y, z ∈ D.
(ii) D = D0 ⊕ span(φ1, φ2), whereφ1, φ2 ∈ D and have compact support inIa. ThusD is

a two dimensional extension ofD0.
It is clear that ifM is disconjugate it isLP at∞ since the nonprincipal solutionu2 /∈ L2(Ia).

A stronger condition at∞ thanLP is strong limit-pointor SLP which means

lim
x→∞

(pyz̄)(x) = 0

∀ y, z ∈ D. For a thorough development of these operator theoretic ideas see Naimark, [17, §17].
Discussion of the SLP concept may be found in Everitt, [7].

We turn now to the central concern of this paper.

Definition 1.1. M is said to beseparatedonD0 or onD—equivalentlyL0 or L is separated—if
qy ∈ L2(Ia). (Obviously also by application of the triangle inequality(py′)′ ∈ L2(Ia).)

The following is an exercise in the Closed Graph Theorem (see e.g. [16]).

Proposition 1.1. Separation onD0 or D is equivalent to the inequality

(1.2) A‖(py′)′‖+ C‖qy‖ ≤ K‖M [y]‖+ L‖y‖.
for nonnegative constantsA, C,K andL.

The next result shows some connections betweenLP or SLP at∞ and separation. Its proof
may be found in [2].
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SEPARATION AND DISCONJUGACY 3

Proposition 1.2. If M is separated onD0 then it is separated onD if M is LP at∞. On the
other hand, ifM is separated onD then it isSLP at∞.

Remark 1.3. Two immediate consequences of Proposition 1.2 are (i) ifM is LC at∞ then it
is not separated, (ii) ifM is LP but notSLP at∞ thenM is not separated onD0.

Several criteria for separation ofM given by Everitt and Giertz in a series of pioneering
papers [8] – [12], also see Everitt, Giertz, and Weidmann [13], and Atkinson [1]. More recent
results (that include weighted cases) may be found in Brown and Hinton [2],[3]. We quote three
typical results.

Theorem A (Brown and Hinton [2]). If p−1 is locally integrable onIa, pq ≥ 0, q(x) is locally
absolutely continuous, and

(1.3)

∣∣∣∣p1/2q′(x)

q3/2(x)

∣∣∣∣ ≤ θ < 2,

on Ia thenM is separated onD.

Remark 1.4. The original version of Theorem A withp = 1 andq > 0 is due to Everitt and
Giertz [11]. The case of nontrivialp but θ < 1 is given in [9].

Theorem B (Brown and Hinton [3]). Suppose thatp−1 is locally integrable onIa, pq ≥ 0, and
q, p are twice differentiable onIa. ThenM is separated onD0 if

(1.4) lim sup
x→∞

(pq′)′

q2
≤ θ < 2.

Remark 1.5. Note that in the casep = 1 both Theorems A and B work for a wide class of in-
creasingq such asq(x) = exp(x), q(x) = exp(xn) for n > 0, q(x) = exp(exp(· · · exp(x)) · · · ),
etc. On the other hand, both theorems fail ifq is rapidly oscillatory, e.g.,q(x) = exp(x)(1 +
sin(exp(x)). Note also that a consequence of Theorem B is that ifp = 1 andq′′ ≤ 0 (i.e., q is
concave down) thenM is separated.

Theorem C (Brown and Hinton [2]). Supposep−1 ∈ L1
loc(Ia), pq ≥ 0, q is differentiable. Then

M is separated onD0 if either

(1.5) sup
x∈Ia

(x− a)

∫ ∞

x

q′

q2
= K1 <

1

4
or

(1.6) sup
x∈Ia

(x− a)

∫ ∞

x

(q′)2 = K2 < ∞.

Remark 1.6. In this theorem we see that separation holds foranyp satisfying weak conditions
provided thatq is of slow enough growth. For exampleq(x) = xβ, β < 1

2
, satisfies (1.5) and

q(x) = K log(x) satisfies (1.6). These facts should not be particularly surprising since ifq = 1
thenM would be separated for anyp; consequently one can conjecture that the same ought to
be true ifq has slow enough growth.

Recently Chernyavskaya and Schuster,[4] have given necessary and sufficient conditions us-
ing averaging techniques due to Otelbaev for the inequalities

K‖M [y]‖p,R ≥ ‖y′′‖p,R + ‖qy‖p,R(1.7)

≥ ‖ry‖p,R,(1.8)

where the norms areLp norms onR, q ≥ 1 and is locally integrable,r > 0 is locally p
integrable,M [y] = −y′′ + qy ∈ Lp(R), and1 ≤ p ≤ ∞. Note that (1.7) or (1.8) can hold on
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4 BROWN

theLp analog ofD only if M has noLp or r-weightedLp solutions. Although the conditions in
[4] seem challenging to implement they can be applied to rapidly oscillating potentials such as

(1.9) q(x) = exp(|x|) + exp(|x|)(1 + sin(exp(|x|))

for which both Theorems A and B fail.
In this paper we show that certain pointwise properties of a positive solution of a disconjugate

expressionM imply thatM is separated onD. This means in particular that separation occurs
if M has a fundamental set of solutions, sometimes calledWKB solutions, with a particular
asymptotic behavior at∞. Since the existence ofWKB solutions follows from certain integral
conditions satisfied byp andq, we are led to a test for separation that includes a well-known
1971 result of Everitt and Giertz as a special case. We also show that our approach leads to
several other sufficient conditions for separation which do not require verification of properties
of positive solutions ofM . Some of these will work for rapidly oscillating potentials similar to
(1.9). We look also at conditions that ensure that the mapping associated with the inequality

(1.10)
∥∥∥√hy

∥∥∥ ≤ K‖M [y]‖+ L‖y‖

is compact whereh is a weight, i.e., a positive locally integrable function, which in turn will lead
to a more general inequality (see (2.17) below) than (1.10). We also investigate “perturbation”
results: ifM1[y] = −(py′)′ + q1y is separated, when is the same true ofM2[y] = −(py′)′ + q2y
when in some senseq2 is “close” toq1?

Although our tests for separation hold only inL2(Ia) and are sufficient but not necessary,
they are easy to apply. Moreover we consider nontrivialp and on occasion allowq to be neg-
ative or even unbounded below which is a more general setting than in [4]. Finally, as already
mentioned, the inequalities (such as (2.17) below) associated with separation may be more
complicated than (1.7)–(1.8).

We use the following notational conventions in the paper. Positive constants will be denoted
by capital letters with or without subscripts such asC, K, K1, etc. The value of a constant may
change from line to line without a change in the symbol denoting it. Iff andg are functions
f ∼ g denotes the asymptotic equivalence off andg, i.e., limx→∞ f/g = 1. L2(w; Ia) is the
standardw-weighted Hilbert space with norm and inner product

‖f‖w =

(∫
Ia

w|f |2
) 1

2

, [f, g]w =

∫
Ia

wfḡ,

wherew is a weight. The class of Lebesgue integrable or locally Lebesgue integrable functions
on Ia will be denoted byL(Ia) or Lloc(Ia).

Remark 1.7. The Hilbert space theory (see e.g. [17] of the operatorsL0 and L is usually
developed on complex domains. ThusD is the space of locally absolutely continuous complex
valued functionsf on Ia such thatf andM [f ] belong toL2(Ia) with similar changes in the
definitions ofD′0 andD0. All the standard closure and adjoint properties ofL0 andL remain
true in both cases. Since the chief tool in our development is the concept of disconjugacy which
is defined only for real-valued solutions ofM , we will derive conditions for the separation of
M only for realD0 andD. However all our results go over to the complex case. This is seen
from observation that iff = f1 + if2 ∈ D then

‖M [f ]‖2 = ‖M [f1]‖2 + ‖M [f2]‖2,

‖qf‖2 = ‖qf1‖2 + ‖qf2‖2.

ThereforeM(f), qf ∈ L2(Ia) ↔ M [f1], M [f2], qf1, qf2 ∈ L2(Ia).
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SEPARATION AND DISCONJUGACY 5

2. M AIN RESULTS

Theorem 2.1. Let p > 0, q be C1 functions. SupposeM [y] = −(py′)′ + qy has a positive
solution on the interior ofIa such that

(pu′)′u ≡ qu2 ≤ 2p(u′)2,(2.1)

(1− δ)(u′)2 ≤ u′′u, δ ∈ [0, 1/3),(2.2)

p′u′ ≥ 0.(2.3)

Thenq ≥ 0 andM is separated onD.

Proof. We need only show thatM is separated onD0. BecauseM is disconjugate and as will
be seen below (see (2.9))q ≥ 0, M is LP at∞ and separation onD will follow by Proposition
1.2; in this case by Proposition 1.1y will satisfy an inequality of the form

‖qy‖2 ≤ C‖y‖2 + D‖M [y]‖2

for certain positive constantsC, D.
Let z(t) = −u′/u. Thenz satisfies the Riccati-type equation

(2.4) (pz)′ = pz2 − q.

Since

(2.5) (pz)′ =
−u(pu′)′ + p(u′)2

u2

(2.1) – (2.3) is equivalent to the properties

−pz2 ≤ (pz)′,(2.6)

z′ ≤ δz2,(2.7)

p′z ≤ 0.(2.8)

To see this, note that from the definition ofz and (2.5)

(2.1) ⇔ −2
p(u′)2

u2
≤ −u(pu′)′

u2

⇔ −p(u′)2

u2
≤ −u(pu′)′ + p(u′)2

u2

⇔ (pz)′ ≥ −pz2.

Also

(2.2) ⇔ −(1− δ)
(u′)2

u2
≥ −uu′′

u2

⇔ δ
(u′)2

u2
≥ −uu′′ + (u′)2

u2

⇔ δz2 ≥ z′.

Finally, the definition ofz and (2.3) clearly implies thatp′z ≤ 0.
Next define the operators

L(y) = y′ + zy,

L∗(y) = −y′ + zy

wherey ∈ C∞
0 (Ia).
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6 BROWN

We now derive sufficient conditions for the “separation” ofL∗. We have

‖L∗(y)‖2 = [L∗(y), L∗(y)]

= [LL∗(y), y]

= [−y′′ + (z2 + z′)y, y]

=

∫
Ia

(y′)2 + (z2 + z′)y2.

Sincep′z ≤ 0 we see that

(pz)′ = p′z + pz′ ⇒ pz′ ≥ (pz)′ ≥ −pz2

⇒ z′ ≥ −z2.

Becausez′ + z2 is nonnegative the inequality

‖L∗(y)‖2 ≥ ‖y′‖2

holds. By the triangle inequality it also follows that

‖zy‖2 ≤ 4‖L∗(y)‖2.

The remaining step is use the separation ofL∗ to show thatM restricted toC∞
0 (Ia) is also

separated. We first observe that

L∗(pL(y)) = −(py′ + pzy)′ + z(py′ + pzy)

= −(py′)′ + [−(pz)′ + pz2]y

= −(py′)′ + qy.

A consequence of (2.7) – (2.8) is that

−(pz)′ + pz2 = −pz′ − p′z + pz2

≥ −pz′ + pz2

≥ pz2(1− δ)

≥ 0.

Therefore both

(2.9) q ≥ 0 and (pz)′ ≤ δpz2.

Now also

‖M [y]‖2 = [L∗(pL)(y), L∗(pL)(y)]

= ‖L∗(pL(y))‖2

≥ 1

4
‖z(pL(y))‖2

=
1

4
[L∗((zp)2L(y)), y]

=
1

4

[
−((zp)2y′)′ + (z4p2 − (z3p2)′y, y

]
=

1

4

∫
Ia

[(zp)2(y′)2 + (z4p2 − (z3p2)′)y2].(2.10)
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SEPARATION AND DISCONJUGACY 7

Hence sincep′z ≤ 0 andz′ ≤ δz2,

z4p2 − (z3p2)′ = z4p2 − 3z2z′p2 − 2z2p(p′z)

≥ (1− 3δ)z4p2.(2.11)

But (pz)′ ≥ −pz2, so
pz2 = q + (pz)′ ≥ q − pz2.

Hence alsopz2 ≥ q/2. Combining this with (2.10) and (2.11) gives the inequality

(2.12) ‖M [y]‖2 ≥ 1

8
‖√pqy′‖2

+
1− 3δ

4
‖qy‖2,

which immediately yields the separation inequality

(2.13)
16

1− 3δ
‖M [y]‖2 ≥ ‖qy‖2.

A closure argument (cf. [2, Lemma 1]) shows that the same inequalities are true on the minimal
domainD0. �

Remark 2.2.

(i) It is well-known that the existence of a positive solutionu, the existence of a contin-
uously differentiable solutionz of the inequalityz′ + z2/p + q ≤ 0, or the identity
M [y] = L∗(pL(y)) for y having a continuous second derivative are each equivalent
to the disconjugacy ofM on I; see e.g. [15, Corollary 6.1, Theorem 7.2] or Coppel
[5, p.6].

(ii) We may require that both the conditionsq ≥ 0 and (2.1) – (2.3) hold “eventually”, i.e. on
Ia′ for sufficiently largea′ > a. In this case the restriction ofM to Ia′ will be separated
on its maximal domain. Sinceq is bounded on(a, a′] it is immediate that separation
holds also forIa (cf. [2, Remark 1 and Proposition 2]) although the corresponding
inequality may be of the form (1.1) rather than (2.13).

(iii) If we retrace the proof of Theorem 2.1 withp = 1 (2.1) – (2.3) becomes

(2.14) (1− δ)(u′)2 ≤ u′′u ≤ 2(u′)2 ⇔ (1− δ)(u′)2 ≤ qu2 ≤ 2(u′)2, δ ∈ [0, 1/3) ,

with a corresponding change in (2.6) – (2.8).
(iv) If q is positive andu satisfies (2.1) or (2.2) thenu′ is strictly positive or negative, for

if u′(x0) = 0 eitheru(x0) = 0 or one of(pu′)′ or u vanishes atx0. In either case
q > 0 ⇒ u(x0) = 0, implying thatu ≡ 0.

In the remainder of the paper “separated” means separated onD unless the restriction toD0

is stated. Also, in proving separation inequalities onD0 such as (1.2) we will generally start
with y ∈ C∞

0 (Ia) and omit the routine closure argument which extends the inequality toD0.
We now show that information about the asymptotic behavior of positive solutions ofM [y] =

0 can yield criteria for separation based on the stable conditions ofp andq.

Theorem 2.3. Suppose thatp, q are positive and twice differentiable withp′ nonnegative or
nonpositive. Set

t(x) :=

∫ x

a

√
q

p
,

µ(x) := (pq)−1/4,

and assume thatlimx→∞ t(x) = ∞, µ(pµ′)′ ∈ L1(Ia), and lim supx→∞ |p′|/
√

pq = δ < 1
3
.

ThenM is separated.
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8 BROWN

Proof. By Coppel [6, Theorem 13],M has fundamental solutionsu such that forx →∞

u ∼= µ exp(±t(x)), u′ ∼= ±(pµ)−1 exp(±t(x)).

It follows that(pu′)′ ∼ qy1 and so

u(pu′)′ ∼ qu2 ∼
√

p

q
exp(±2t(x)) ∼ p(u′)2.

Clearly (2.1) is satisfied onIa′ for sufficiently largea′ > a. To derive (2.2) observe that the
asymptotic equivalence ofp(u′)2 and(pu′)′ implies that

(u′)2 ∼ u′′u +
p′

p
u′u.

But

(p′/p)(u′u/(u′)2) =
p′u

pu′
∼ p′

u

p
√

q/pu2

∼ p′µ2 ≤ |p′|
√

pq
≤ δ + ε <

1

3

asx →∞. Thus forε > 0 and on someIa′ with a′ sufficiently large we have that

(u′)2 ≤ (u′′u + (δ + ε)(1 + ε)(u′)2) ⇒ (1− (δ + ε)(1 + ε))(u′)2 ≤ u′′u

which obviously implies (2.2) ifε is small enough. Finally, ifp′ ≥ 0 we choosey1 =
µ(x) exp(t(x)) and if p′ ≤ 0 we choosey1 = µ exp(−t(x)). In either case (2.3) holds. By
Remark 2.2 (ii), the fact thatM is LP at∞, and Theorem 2.1, separation follows. �

In 1970 [8] Everitt and Giertz showed:

Corollary 2.4. If p = 1, q ≥ d > 0, and∫
Ia

q−1/4
∣∣(q−1/4)′′

∣∣ < ∞,

thenM is separated.

Proof. Evidently this condition is a special case of Theorem 2.1 withp = 1, cf. [6, Theorem
14]. �

Remark 2.5. The hypothesis of Corollary 2.4 can be shown to be equivalent to (see [6, p. 122]∫
Ia

∣∣q−3/2q′′
∣∣ < ∞,

unlessq(x) ∼ cx−4 andq′(x) ∼ −4cx−5 for c a positive constant. But in this caseM is trivially
separated onIa if a > 0.

A similar result using the asymptotic properties of solutions but requiring less smoothness on
q is given by:

Theorem 2.6.Suppose thatp = 1, q ≥ d > 0 is differentiable, and∫
Ia

|q′|
q3r/2−1/2

< ∞

for somer, 1 ≤ r ≤ 2. ThenM is separated.
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SEPARATION AND DISCONJUGACY 9

Proof. By a result of Hartman and Winter [15, p. 320]M has solutionsu such that

u ∼ q−1/4 exp(±t(x)),

u′ ∼ ±q1/2u,

wheret(x) =
∫ x

a

√
q. Sinceu′′ ∼ q3/4 exp(±

∫ x

a
q1/2), it is clear that (2.14) is satisfied on some

Ia′, a′ > a. �

In most cases however it is difficult to verify (2.1) – (2.3) or (2.14) directly, which motivates
us to seek an equivalent formulation of Theorem 2.1 for which knowledge of properties of
positive solutions ofM [y] = 0 is not required.

Theorem 2.7.Letp > 0 andz beC1(I) functions. Then if (2.6) – (2.8) hold andq = pz2−(pz)′.
M [y] is separated and the inequality (2.13) holds.

Proof. The fact that Theorem 2.1 implies Theorem 2.7 is clear. On the other hand, if we set
u = e−

∫
z, thenu is a positive solution ofM [y] = 0. z = −u′/u, and the conditions (2.1) –

(2.3) hold as they are equivalent to (2.6) – (2.8). Thus all the assumptions of Theorem 2.1 are
satisfied. �

Theorem 2.8.Suppose thatM is separated,q ≥ d > 0, and thath is a weight. Assume further
that either

(2.15) lim
x→∞

q2

h
= ∞

or limx→∞ h = ∞, and

(2.16) K ‖√py′‖ ≥
∥∥hθ/2y

∥∥
for someθ > 1 and all y ∈ C∞

0 . LetGM(y) := {(y, M [y]), y ∈ D}, equipped with the graph
norm. Then the mappingλ : GM → L2(h; I) given byλ(GM(y) = y is compact, andM
satisfies an inequality of the form

(2.17) ε‖M [y]‖+ K(ε)‖y‖ ≥
∥∥∥√hy

∥∥∥
onD for ε > 0.

Proof. If (2.15) holds andM is separated, then by (1.2) of Proposition 1.1 there is an inequality
of the form

L

C
‖y‖+

K

C
‖M [y]‖ ≥ ‖qy‖

=

(∫
Ia

(
q2

h

)
hy2

) 1
2

≥ n

(∫ ∞

xn

hy2

) 1
2

.(2.18)

for any positive integer and where the sequence{xn} → ∞. Let λn : GM → L2(In
a ) be

given by the characteristic function onIn
a composed withλ, whereIn

a = [a, xn]. Since the
solutions ofM [y] = 0 andq are continuous onIn

a , a Green’s function argument shows that the
mapsλn : GM → L2(h; In

a ) are compact. By (2.18) theλn converge in operator norm to a
compact limitλ. Also sinceq ≥ d > 0, q is closed, considered as a multiplication operator
q̃ : L2(Ia) → L2(Ia), and sinceM is separatedD ⊂ D(q̃). In this situation Corollary V.3.8 of
Goldberg [14, p. 123] applies and gives (2.17).
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Under the second set of conditions we have from the Cauchy-Schwartz inequality, integration
by parts, and sincelimx→∞ h = ∞ that on someIa′, a′ > a, and fory ∈ C∞

0 (Ia′) that

‖(py′)′‖ ‖hθ/2y‖ ≥ ‖(py′)′‖ ‖y‖
≥ [(py′)′, y]

= ‖√py′‖2

≥ K−2‖hθ/2y‖2.

Hence

‖(py′)′‖ ≥ K−2‖hθ/2y‖

≥ K−2‖h(θ−1)/2
√

hy‖

≥ K−2n‖
√

hy‖(xn,∞).

SinceM is separated we obtain from (1.2) the inequality

L

C
‖y‖+

K

C
‖M [y]‖ ≥ ‖(py′)′‖ ≥ K−1n

∥∥∥√hy
∥∥∥

(xn,∞)

on theC∞
0 (Ia) functions and therefore also onD0; the proof thatλ restricted toD0 is compact

continues as in the first part. But sinceD is a finite dimensional extension ofD0, λ is also
compact. �

Remark 2.9. Following Everitt and Giertz [8] we say thatq is in the classP (γ) or q ∈ P (γ) if
whenevery ∈ D then|q|γ ∈ L2(Ia). Thus the separation ofM onD is equivalent toq ∈ P (1).
It is also easy to verify by thinking ofq = q1 + q2 whereq1(x) ≤ 1 and q2(x) > 1 that
q ∈ P (γ) ⇒ q ∈ P (β) for any β ∈ (0, γ]. Suppose nowq ∈ P (1) and limx→∞ q = ∞.
Then from the first part of Theorem 2.8 not only willq ∈ P (θ), θ < 1, but the “compactness”
inequality (2.17) will hold ifh = qθ. If M is separated,q → ∞, and (2.16) holds forh = q2

andθ > 1 thenq ∈ P (θ), and we have the interesting consequence that the mappingλ : GM →
L2(q; Ia) is compact. In general, ifq ∈ P (γ) andq →∞ thenλ : GM → L2(qβ; Ia) is compact.

A disadvantage of Theorem 2.7 is that althoughq has the formpz2 − (pz)′, sinceM is
disconjugate, it may be difficult to determinez and to verify (2.6) – (2.8). We attempt to
remedy this problem in the next three corollaries and obtain additional usable tests.

Corollary 2.10. If M1[y] = −(py′)′+q1y whereq1(z1) = (pz2
1−(pz1)

′) satisfies the hypotheses
of Theorem 2.7 andM1,c[y] = −(py′)′+ q1,cy whereq1,c(z1) = (pc2z2

1 − (pcz1)
′)y, wherec > 1

thenM1,c[y] is separated. More generally, ifg is a differentiable function such thatg, g′ ≥ 0
and

(2.19)
g′(x)x2

g(x)2
≤ 1

then if q2 = z2
2 − z′2 wherez2 = g(z1) M2 is separated. Conversely, ifM2[y] satisfies the

hypotheses of Theorem 2.7 and

(2.20)
g′(x)x2

g(x)2
≥ 1,

thenM1 is separated.

Proof. Let z2 = cz1. Then sincec > 1, z2 satisfies (2.6) – (2.8) andq2 = pz2
2 − (pz2)

′. Also
p′z2 ≤ 0. Separation follows by Theorem 2.7.
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For the second part, sincez2 satisfies (2.6) – (2.8) and by (2.19) we have that

z′2 = g′(z1)z
′
1 ≥ −g′(z1)z

2
1 ≥ −g(z1)

2 = −z2
2

≤ δg′(z1)z
2
1 ≤ δg(z1)

2 = δz2
2 .

Thusz2 satisfies (2.6) – (2.8) and we can again apply Theorem 2.7. On the other hand, using
(2.20)

z′2 ≥ −z2
2 ⇔ z′1 ≥ −

g(z1)
2

g′(z1)
≥ −z2

1 ,

z′2 ≤ δz2
2 ⇔ z′1 ≤

δg(z1)
2

g′(z1)
≤ δz2

1 .

�

Example 2.1. Let p = 1, z1(x) =
√

x, andq1(x) = x −
(

1
2

)
x−

1
2 . If a >

(
3
2

) 2
3 , then (2.6) –

(2.8) is satisfied for someδ < 1
3
. If g(x) = exp(x2), (2.19) is satisfied for saya > 2. Taking

z2(x) = g(z1) = exp(x) we get thatq2(x) = exp(2x)− exp(x) and there is an inequality of the
form

K‖M2[y]‖ ≥ ‖q2y‖
onD0 defined onIa. ThatM2 is separated onD0 also follows from Theorem A, but the inequal-
ity seems new.

The next two lemmas are useful.

Lemma 2.11.Suppose thatM1[y] = −(py′)′ + q1y is separated onD0. If

lim sup
x→∞

q2

q1

< 1 + γ,

lim inf
x→∞

q2

q1

> 1− γ,

whereγ is sufficiently small, thenM2[y] is also separated onD0.

Proof. Choosea′ large enough so that onIa′∣∣∣∣q2

q1

− 1

∣∣∣∣ < γ.

SinceM2[y] = M1(y) + (q2 − q1)y by the triangle inequality and inequality (1.2) we have that

L‖y‖+ K‖M2[y]‖+ K

∥∥∥∥q1

(
q2

q1

− 1

)
y

∥∥∥∥ ≥ K‖M1[y]‖+ L‖y‖

for y ∈ C∞
0 . Hence onIa′

L‖y‖+ K‖M2[y]‖+ Kγ‖q1y‖ ≥ C‖q1y‖
≥ C(1 + γ)−1‖q2y‖.

Thus
L‖y‖+ K‖M2[y]‖ ≥ d‖q2y‖,

whered = (1 + γ)−1(C −Kγ), which is positive for small enoughγ. �

Lemma 2.12. Suppose thatM1[y] = −(py′)′ + q1y satisfies the separation inequality (2.17)
with h = q2

1 for any ε > 0 onD0. If also there are constantsK1, K2 > 0 such thatK1 ≤
|q1/q2| ≤ K2 thenM2[y] = −(py′)′ + q2y satisfies the same separation inequality onD0 with
h = q2

2 for sufficiently smallε > 0.
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Proof. Since

M2[y] = M1[y] + q2

(
1− q1

q2

)
y

for y ∈ C∞
0 (Ia), we arrive at the inequality

ε‖M2[y]‖+ ε

∥∥∥∥q2

(
1− q1

q2

)
y

∥∥∥∥+ K(ε)‖y‖ ≥ ε‖M1[y]‖+ K(ε)‖y‖

≥ ‖q1y‖ ≥ K1‖q2y‖
for anyε > 0. Hence also

ε‖M2[y]‖+ K(ε)‖y‖ ≥ d1‖q2y‖,
whered1 = (K1 − (1 + K2)ε > 0 for small enoughε. �

Remark 2.13. Takingq2 = −q1 andK1 = K2 = 1 in Lemma 2.12, we see that ifM1 satisfies
(2.17) then so doesM2 which means that we can have separation for a potentialq which is
negative and unbounded below provided the expression constructed with potential|q| satisfies
(2.17).

Example 2.2. Supposep(x) = 1 and q1(x) = exp(x). Then by Theorem A or BM1 is
separated. Lettn(x) = exp(exp(· · · exp(x)) · · · ) be a n-fold iteration of exp(x) and set
q2(x) = exp(x)(1 + ε sin(tn(x)), ε > 0. Then Theorems A and B do not apply because (1.3)
and (1.4) are unbounded. However, by Lemma 2.11M2 is separated ifε is sufficiently small.
Clearlytn(x) can be replaced by any other rapidly increasing function.

Example 2.3. Let p1(x) = exp(x) andq1(x) = x1/3 on Ia. By Theorem CM1 is separated. It
is easy to verify thatp1 andq1 satisfy the Muckenhoupt condition

sup
x∈Ia

∫ ∞

x

p−1
1

∫ x

a

qθ
1 < ∞, θ > 1,

and therefore (cf. Opić and Kufner [18, Theorem 6.2]) the Hardy inequalityK‖ exp(x/2)y′‖ ≥
‖qθ/2

1 y‖ holds onC∞
0 . Therefore from the second part of Theorem 2.8 we obtain an inequality

of the form (2.17). If nowq2(x) = −q1(x)(2 + sin(exp(xn)) we will have from Lemma 2.12
the same kind of inequality but with

M2[y] = −(exp(x)y′)′ − x1/3(2 + sin(exp(xn))y.

Theorem 2.14.If p > 0, z is aC1 function,p′z ≤ 0 and

−K1z
2 ≤ z′ ≤ K2z

2

for positive constantsK1, K2 then the operators

M1,c[y] = −(py′)′ + q1,cy,

M2,c[y] = −(py′)′ + q2,cy,

whereq1,c = c2pz2 − c(pz)′ andq2,c = c2pz2 are separated for sufficiently largec ≥ 1.

Proof. To prove thatM1,c is separated we retrace the proof of Theorem 2.1. LetLc(y) = y′+czy
andL∗c(y) = −y′ + czy, wherey ∈ C∞

0 (I). Then

‖L∗c(y)‖2 =

∫ ∞

1

(y′)2 + (cz′ + c2z2)y2.

If c ≥ K1, thencz′ + c2z2 ≥ 0 and as before,

‖cz‖2 ≤ 4‖L∗c [y]‖2.
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LikewiseL∗c(pLc(y)) = M1,c[y] and

q1,c = −pcz′ − p′cz + pc2z2

≥ −pcz′ + pc2z2

≥ pcz2(c−K2)

≥ 0

if c > K2. From the definition ofq1,c we also have that(pz)′ ≤ K2pz
2. And so

‖M1,c[y]‖2 ≥ 1

4

∫
Ia

[(czp)2(y′)2 + (c4z4p2 − ((cz)3p2)′y2]

≥
∫

Ia

[c4z4p2 − 3c3z2z′p2]y2

≥
[
1− 3K2

c

] ∫
Ia

c4p2z4y2

for c > 3K2. Now also

‖(pcz)′y‖+ ‖M2,c[y]‖ ≥ ‖M1,c[y]‖ ≥ K3

∥∥c2pz2y
∥∥

whereK3 =
√

1− 3K2/c, so that

‖M2,c[y]‖ ≥ K3

∥∥c2pz2y
∥∥− ‖(pcz)′y‖

≥

(√
1− 3K2

c
−
√

K2

c

)∥∥c2pz2y
∥∥ .

Since the constant is positive for large enoughc the inequality (2.13) forM2,c[y] is established.
Since

q1,c

q2,c

= (1− (pz)′(c2pz2)

≤
(

1 +
K2

c2

)
≥
(

1− K2

c2

)
,

Lemma 2.11 may be applied to conclude thatM1,c is separated and satisfies an inequality like
(2.13). �

Example 2.4. If p′ is of constant sign, letz = −sgn(p′)
√

q/p thenp′z ≤ 0 as required and
q2,c = c2q. A calculation shows that the hypothesis of Theorem 2.14 becomes

−2K1 ≥
(

p′
√

pq
− p1/2q′

q3/2

)
sgn(p′) ≤ 2K2.

Equivalently we can require that

η = sup
x∈Ia

∣∣∣∣ p′
√

pq
− p1/2q′

q3/2

∣∣∣∣ < ∞

to conclude thatMd[y] = −(py′)′ + dqy is separated for sufficiently larged. For example, if
p(x) = q(x) = exp(x2) both Theorem A and B fail for anyMd yet η = 0 and so we have an
inequality of the form

K‖ − (exp(x2)y′)′ + d exp(x2)y‖ ≥ ‖d exp(x2)y‖
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for large enoughd.

Corollary 2.15. Let p, z, h, and g be functions such thatp > 0 and p, z are C1, p′z ≤ 0,
z′ ≤ δz2 for δ ∈ [0, 1/3), h ≥ d > 0, g is bounded, and

(2.21) lim
x→∞

∣∣∣∣h(pz)′

pz2

∣∣∣∣ = 0,

thenM1[y] = −(py′)′+q1y, whereq1 = pz2−(pz)′ is separated onD andM2[y] = −(py′)′+q2,
whereq2 = pz2 + hg(pz)′ is separated on at least onD0. If we assume additionally that

(2.22) lim
x→∞

pz2 = ∞,

then the inequalities
ε‖Mi[y]‖+ K(ε)‖y‖ ≥ ‖qθ

j y‖
hold for1 ≤ i, j ≤ 2 andθ < 1 onD if i = 1 and onD0 if i = 2.

Proof. Since ∣∣∣∣h(pz)′

pz2

∣∣∣∣ ≥ d

∣∣∣∣(pz)′

pz2

∣∣∣∣ ,
(pz)′/pz2 → 0 as x → ∞ which implies that forIa′ = [a′,∞) and a′ sufficiently large,
−pz2 ≤ (pz)′. Since the assumptions of Theorem 2.7 are satisfied,M1[y] is separated onD
relativeIa′ and by Remark 2.2(ii) also onIa. Since

lim
x→∞

q1

q2

= lim
x→∞

1− (pz)′/pz2

1− hg(pz)′/pz2
= 1

the separation ofM2 andM3 onD0 follows from Lemma 2.11.
To prove the second claim, a calculation will show that

lim
x→∞

q2
i

q2θ
j

= lim
x→∞

(pz2)2(1−θ)T (z, p, θ) = ∞, 1 ≤ i, j ≤ 2,

whereT (z, p, θ) is a term going to1 asx →∞. For example,

lim
x→∞

q2
3

q2
2

= lim
x→∞

(pz2)2(1−θ)

[
1 + g(pz)′/pz2

(1 + hg(pz)′/pz2)θ

]2

= ∞.

The inequalities follow from the second part of Theorem 2.8. �

Example 2.5. Set p(x) = exp(x/3), z(x) = − exp(x/3), h(x) = exp((1 − 3ε)x/3), and
g(x) = − sin(tn(x)), wheretn(x) is as in Example 2.3. Then

p′z = −1

3
exp

(
2x

3

)
≤ 0, z′ = −1

3
exp

(x

3

)
≤ δ exp

(
2x

3

)
= z2,

and (2.21) holds. Then

M [y] := −
(
exp

(x

3

)
y′
)′

+ exp(x)

[
1 +

2

3
exp(−εx) sin(tn(x))

]
y

is separated onD0. SinceM is LP at∞ the separation actually holds onD.

The final result of this paper is quite different from Theorem 2.1 but it reinforces the connec-
tion between disconjugacy and separation. In addition, the proof is quite elementary.

Theorem 2.16.Letp > 0 andq ≥ d > 0 be continuous. Suppose thatMλ[y] = −(py′)′ + (q−
λq2)y is disconjugate onIa for someλ > 0. ThenM [y] = −(py′)′ + qy is separated.
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Proof. It is well known (see e.g. [15, Theorem 6.2]) that the disconjugacy ofMλ is equivalent to
the positive definiteness of the functionalQλ[y] =

∫
Ia

(p|y′|2 + (q − λq2)|y|2) for y ∈ C∞
0 (Ia).

In other words, we must have the inequality

(2.23) Q0[y] ≡
∫

Ia

(
p|y′|2 + qy2

)
≥ λ

∫
Ia

q2|y|2

with equality holding if and only ify = 0. Now consider the expressionMq2 = q−2[−py′)′+qy],
wherey is an appropriate function inL2(q2; Ia). If y ∈ C∞

0 (Ia) then the Cauchy-Schwartz
inequality and (2.23) yields that

‖Mq2 [y]‖q2‖y‖q2 ≥ Q0[y] ≥ λ‖y‖2
q2 ≡ λ‖qy‖2.

It follows that the inequality

d−2‖M [y]‖ ≥ ‖Mq2 [y]‖
q2 ≥ λ‖qy‖

holds on theC∞
0 functions and also therefore onD0. BecauseM is LP at∞ we again conclude

that it is separated onD. �

Remark 2.17. (i) If p−1 ∈ L(Ia) and

(2.24) sup
x∈Ia

(∫ ∞

x

p−1

)(∫ x

a

λq2 − q

)
<

1

4

then (cf. Example 2.4) the Hardy inequality
∥∥p1/2y′

∥∥2 ≥
∥∥(λq2 − q)1/2y

∥∥ holds on
C∞

0 (Ia) with equality if and only ify = 0. This inequality implies the positive definite-
ness ofQλ.

(ii) If w ≥ d > is a weight and we require that(−py′)′ + (q − λw) be disconjugate, then
the proof of Theorem 2.16 will yield the inequality

(2.25) d−1‖M [y]‖ ≥ λ
∥∥√wy

∥∥ .

Substitutingw for q2 in (2.24) will give a sufficient condition for (2.25).
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