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ABSTRACT. We show that certain properties of positive solutions of disconjugate second order
differential expressions/[y] = —(py’)’ + qy imply the separation of the minimal and maximal
operators determined by in L?(I,) wherel, = [a,), a > —o0, i.e., the property that

Mly] € L3(1,) = qy € L?(1,). This result will allow the development of several new sufficient
conditions for separation and various inequalities associated with separation. Some of these
allow for rapidly oscillatingg. Itis shown in particular that expressiohs with W K B solutions

are separated, a property leading to a new proof and generalization of a 1971 separation criterion
due to Everitt and Giertz. A final result shows that the disconjugady ef Ag? for some) > 0

implies the separation a¥/.
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1. INTRODUCTION
Consider the symmetric second order differential expression

(1.1) Myl = —(py') + qy

wherep > 0, p’ andq are continuous on the interva] = [a, ), a > —oo. M is said to be
disconjugate if every nontrivial real solution has at most one zerg irA sufficient condition
(from Sturm’s comparison theorem) for disconjugacy is that 0, and in this case one can
show existence of two positive solutiongs andu, of M[y] = 0 on I,, called theprincipal and
nonprincipal solution respectively, such thaf < 0 andu), > 0 on I,. More generally,M
is disconjugate od, if and only if there exists a positive solutianon the interior ofl,. For
proofs of these facts and additional discussion see Hartman [15, Corollaries 6.1 and 6.4].
Recall also thai\/ determines several differential operators in the Hilbert sga¢é,). In
particular the “preminimal” and “maximal” operatofg and L are given byM [y| for y in the
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2 BROWN

domainsD;, = C§°(1,,), the space of infinitely differentiable functions with compact support in
the interior of/, and

D= {y e L*(I,) N ACi(1,) : py’ € ACc(1,); My] € L*(1,)},

where AC), stands for the real locally absolutely continuous functiond pand L?(1,) de-
notes the usual Hilbert space associated with equivalence classes of Lebesgue square integrable
functionsf, g having norm and inner product

HfH=( / mz)z, = [ 1o

The “minimal operator’Z, with domainD is then defined as the closure 4.

With the above definitions one can show that

(i) C°(1,) c Dy C Dy C D,
(i) Ly =Li=1L,

(i) L* = Ly,

(iv) D}, Dy, andD are dense iL?(1,).

The regularity assumptions made in this paperpoend ¢ are stronger than necessary to
properly definely, L. In general one needs only to assume the so-called “minimal conditions”
thatp—' andq are locally integrable offa, ). In this case’5°(1,) may not be contained in
D but the properties (ii)—(iv) will still hold. The maximal and minimal operatbrand L, can
also be defined relative to an arbitrary inter¢@lb) where—oco < a < b < oco. If p~1, g are
Lebesgue integrable on some intery@lc) or (¢,b) for a < ¢ < b thena or b are said to be
“regular"; otherwise they are “singular”. (Infinite endpoints however are considered singular
even ifp~!, ¢ are integrable oria, b).) Thus in our setting: is regular andx is singular—we
signal this by writing/,, = [a, oo) rather thar(a, b).

M is limit-point or LP at oo if there is at most one solution af/[y] = 0 which is in
L*(1,), andlimit-circle or LC at the point if both solutions are so integrable. This can be shown
equivalent to each of the following properties

() {y, z}(00) :=lim, . (ypz’ — py'z)(xz) = O0forall y, z € D.
(i) D =Dy @ sparigs, ¢2), wheregp,, ¢, € D and have compact supportip. ThusD is
a two dimensional extension @f,.

Itis clear that ifM is disconjugate it id. P atoco since the nonprincipal solution, ¢ L*(1,,).
A stronger condition ato than L P is strong limit-pointor S L P which means

lim (pyz)(z) = 0

Yy, z € D. Forathorough development of these operator theoretic ideas see Naimark, [17, 817].
Discussion of the SLP concept may be found in Evefiit, [7].
We turn now to the central concern of this paper.

Definition 1.1. M is said to beseparatecn D, or onD—equivalentlyL, or L is separated—if
qy € L*(1,). (Obviously also by application of the triangle inequality/)’ € L*(1,).)

The following is an exercise in the Closed Graph Theorem (see elg. [16]).

Proposition 1.1. Separation orD, or D is equivalent to the inequality

(1.2) All(py' )l + Cllayll < KM [y]ll + Lyl
for nonnegative constant$, C', K and L.

The next result shows some connections betweRror S L P atoo and separation. Its proof
may be found in([2].
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Proposition 1.2. If M is separated orD, then it is separated o® if M is LP at co. On the
other hand, ifM is separated orD then it isSLP at co.

Remark 1.3. Two immediate consequences of Proposifion 1.2 are (i iis LC' at oo then it
is not separated, (i) if/ is LP but notSLP atoo thenM is not separated oB.

Several criteria for separation éff given by Everitt and Giertz in a series of pioneering
papers([3] —[[12], also see Everitt, Giertz, and Weidmann [13], and Atkinson [1]. More recent
results (that include weighted cases) may be found in Brown and Hintonl [2],[3]. We quote three
typical results.

Theorem A (Brown and Hinton[[2]) If p~! is locally integrable on/,, pg > 0, ¢(z) is locally
absolutely continuous, and

p'?q ()

(1.3) 72(x)

‘§0<2,

on I, thenM is separated orD.

Remark 1.4. The original version of Theorem|A with = 1 andq > 0 is due to Everitt and
Giertz [11]. The case of nontriviglbutd < 1 is given in [9].

Theorem B (Brown and Hinton[[3]) Suppose that~! is locally integrable o/, pg > 0, and
q, p are twice differentiable or,. Then)M is separated orD, if

1\/
(pqig)§9<2.

(1.4) lim sup
Remark 1.5. Note that in the case = 1 both Theorems A arnld|B work for a wide class of in-
creasing; such ag(z) = exp(z), g(x) = exp(z") forn > 0, ¢(x) = exp(exp(- - -exp(x)) - - - ),
etc. On the other hand, both theorems fai} i rapidly oscillatory, e.g.q(x) = exp(z)(1 +
sin(exp(z)). Note also that a consequence of Theofem B is thatif1 andq¢” < 0 (i.e., ¢ is
concave down) then/ is separated.

Theorem C (Brown and Hinton[[2]) Suppose ! € L .(1,), pg > 0, ¢ is differentiable. Then
M is separated oD, if either

oo q/ 1
15 - 4 _ g <=
= e [t
or
(1.6) sup(z — a)/ (¢) = Ky < <.
{L‘Ela X

Remark 1.6. In this theorem we see that separation holdsafoyp satisfying weak conditions
provided that; is of slow enough growth. For exampjér) = 2°, 8 < % satisfiesS) and
q(z) = K log(z) satisfies[(1)6). These facts should not be particularly surprising sigce if
then M would be separated for any consequently one can conjecture that the same ought to
be true ifg has slow enough growth.

Recently Chernyavskaya and Schuster,[4] have given necessary and sufficient conditions us-
ing averaging techniques due to Otelbaev for the inequalities

(1.7) KMylllpr = 1" [lpr + llqyllyr
(1.8) > lryllpr;

where the norms aré” norms onR, ¢ > 1 and is locally integrabley > 0 is locally p
integrable,M[y] = —y” + qy € LP(R), andl < p < oco. Note that[(1.]7) o[ (1]8) can hold on
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the LP analog ofD only if M has noL? or r-weightedL? solutions. Although the conditions in
[4] seem challenging to implement they can be applied to rapidly oscillating potentials such as

(1.9) q(z) = exp(|z|) + exp(|z[)(1 + sin(exp(|z|))

for which both TheorenisJA ard B fail.

In this paper we show that certain pointwise properties of a positive solution of a disconjugate
expressionV/ imply that M is separated ofv. This means in particular that separation occurs
if M has a fundamental set of solutions, sometimes calldd B solutions, with a particular
asymptotic behavior at. Since the existence ¥ K B solutions follows from certain integral
conditions satisfied by andq, we are led to a test for separation that includes a well-known
1971 result of Everitt and Giertz as a special case. We also show that our approach leads to
several other sufficient conditions for separation which do not require verification of properties
of positive solutions of\/. Some of these will work for rapidly oscillating potentials similar to
(1.9). We look also at conditions that ensure that the mapping associated with the inequality

(1.10) |y < K2zl + Ll

is compact whereé is a weight, i.e., a positive locally integrable function, which in turn will lead

to a more general inequality (s¢e (4.17) below) than {1.10). We also investigate “perturbation”
results: if M, [y] = —(py')’ + quy is separated, when is the same truésfy] = —(py')’ + g2y

when in some sensg is “close” tog; ?

Although our tests for separation hold only irff(I,) and are sufficient but not necessary,
they are easy to apply. Moreover we consider nontriwiahd on occasion allowy to be neg-
ative or even unbounded below which is a more general setting thah in [4]. Finally, as already
mentioned, the inequalities (such as (2.17) below) associated with separation may be more
complicated tharj (1} 7)=(1.8).

We use the following notational conventions in the paper. Positive constants will be denoted
by capital letters with or without subscripts such(gdsi(, K, etc. The value of a constant may
change from line to line without a change in the symbol denoting it éhdg are functions
f ~ g denotes the asymptotic equivalencefadndg, i.e.,lim, ., f/g = 1. L*(w; 1,) is the
standardv-weighted Hilbert space with norm and inner product

_ )\ * _ =
nﬂu—(éwm), f. gl A@m,

wherew is a weight. The class of Lebesgue integrable or locally Lebesgue integrable functions
on I, will be denoted byl.(1,) or Lioc(1,)-

Remark 1.7. The Hilbert space theory (see e.d. [[17] of the operafgreand L is usually
developed on complex domains. THRgs the space of locally absolutely continuous complex
valued functionsf on I, such thatf and M|[f] belong toL?(1,) with similar changes in the
definitions of D, andD,. All the standard closure and adjoint properties_gfand L remain

true in both cases. Since the chief tool in our development is the concept of disconjugacy which
is defined only for real-valued solutions &f, we will derive conditions for the separation of

M only for realD, andD. However all our results go over to the complex case. This is seen
from observation that if = f; +if; € D then

IMfI1P = IMf])1? + IM[f]]),
lafll* = llafill® + llafl*.
ThereforeM (f), qf € L*(I,) — M|f1], M[fs), ¢f1,qf> € L2(1,).
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2. MAIN RESULTS

Theorem 2.1.Letp > 0, ¢ be C* functions. Suppos#/[y] = —(py’)’ + qy has a positive
solution on the interior of , such that

(2.1) (pu')u = qu? < 2p(u')?,
(2.2) (1—=68)(u)* <u'u, §€]0,1/3),
(2.3) pu’ > 0.

Theng > 0 and M is separated orD.

Proof. We need only show thal/ is separated o®,. Becausé\/ is disconjugate and as will
be seen below (sefe (2.9 0, M is LP atoo and separation of? will follow by Proposition
[1.7; in this case by Propositipn 1yiwill satisfy an inequality of the form

lgyll* < Cllyll* + DIM[y)]I*

for certain positive constants, D.
Let z(t) = —u'/u. Thenz satisfies the Riccati-type equation

(2.4) (p2) =pz" —q
Since

o5 = M) 10
(2.7) - [2.3) is equivalent to the properties

(2.6) —pz* < (p2),

(2.7) 2 <822,

(2.8) p'z <0.

To see this, note that from the definitiono&nd [2.5)

pu')* _ —u(pu')
R1) e 275 <—35
P _ —u(py +plu)?
e uz u?
& (pz) > —p2t

Also

22 < -(1-9)

(u/)2 - —uu’ + (u/)2

=)

02
=822 > .

Finally, the definition of: and [2.B) clearly implies thatz < 0.
Next define the operators

L(y) =y + 2y,
L*(y) = —y + zy
wherey € C5°(1,).
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We now derive sufficient conditions for the “separation”Iétf We have
IZ*(W)II* = [L"(y), L (y)]
= [LL(y),y]
— [_yl/ 4 (22 + Z/)y,y]
— [y
I
Sincep’z < 0 we see that
(p2) =Pz +p2' = p2' > (p2)) > —p2?
= /> 22
Because’ + z? is nonnegative the inequality
1L W) > [1y[1?
holds. By the triangle inequality it also follows that
lzyll* < 4/ L* ()]

The remaining step is use the separatiorLbto show that)/ restricted toC3°(1,) is also
separated. We first observe that

L*(pL(y)) = —(py' + pzy) + 2(py’ + pzy)
= —(py) + [—(p2) + p2*ly
=—(py") + qv.

A consequence of (2.7) £ (2.8) is that

—(p2) +pz* = —p2 — p'z + p2?

> —p2 + p2?
> pz*(1 —0)
>0
Therefore both
(2.9) ¢>0 and (pz) < épz*.
Now also
IMyllI* = [L*(pL)(y), L* (pL)(y)]
= | L*(pL(y)|I?
> 1=L)?
= L1 () D),
—~ i [—((z0)*y) + (2P = (z°p*)'y, 9]
(2.10) = ] P+ (= )
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Hence since’z < 0 andz’ < §22,

2'p? — (%) = 2 — 322 p? — 22%p(p'2)

(2.11) > (1 —36)z"p*.
But (pz)’ > —p2?, so
2 / 2
pz =q+ (p2) = q—pz".
Hence als@z? > ¢/2. Combining this with[(2.10) andl (2.11) gives the inequality
— 36

1 1
(2.12) IMEIP > 2 lveay I+ —llayl,
which immediately yields the separation inequality

16

2.13 ——|My]|* > 2
(2.13) s 1M = llay]
A closure argument (cf_[2, Lemma 1]) shows that the same inequalities are true on the minimal
domainD,. O
Remark 2.2.

() It is well-known that the existence of a positive solutionthe existence of a contin-
uously differentiable solution of the inequalityz’ + 2%/p + ¢ < 0, or the identity
Mly] = L*(pL(y)) for y having a continuous second derivative are each equivalent
to the disconjugacy of/ on I; see e.g.[[15, Corollary 6.1, Theorem 7.2] or Coppel
[5l p.6].

(i) We may require that both the conditiops> 0 and [2.1) —{(2.3) hold “eventually”, i.e. on
1, for sufficiently largex’ > a. In this case the restriction @f/ to 7, will be separated
on its maximal domain. Sinceis bounded or{a, '] it is immediate that separation
holds also forl, (cf. [2, Remark 1 and Proposition 2]) although the corresponding

inequality may be of the fornj (1.1) rather than (2.13).
(iii) If we retrace the proof of Theorefn 2.1 with= 1 (2.1) — [2.3) becomes

(2.14) (1—-0)(u) <u'u<2) < (1-0)W) <qu* <2)? 6€]0,1/3),

with a corresponding change [n (R.6)— (2.8).

(iv) If ¢ is positive andu satisfies[(2]1) of (2]2) ther is strictly positive or negative, for
if u'(z9) = 0 eitheru(xy) = 0 or one of(pu’)" or u vanishes at,. In either case
q > 0= u(xy) = 0, implying thatu = 0.

In the remainder of the paper “separated” means separat@dumbess the restriction t®,
is stated. Also, in proving separation inequalitiesansuch as[(1]2) we will generally start
with y € C§°(1,) and omit the routine closure argument which extends the inequaliy.to
We now show that information about the asymptotic behavior of positive solutiahggf=
0 can yield criteria for separation based on the stable conditiopgntlq.

Theorem 2.3. Suppose thap, ¢ are positive and twice differentiable wifi nonnegative or

nonpositive. Set
* g
t(z) = -,
D=L\
) == (pq)

M@ —1/4

and assume thaim, ... t(z) = oo, u(py') € L'(1,), andlimsup, . |p'|/\/Pq = 6 < 3.
Then) is separated.

Y
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Proof. By Coppel [6, Theorem 13J}/ has fundamental solutionssuch that forr — oo

u~= pexp(£t(z)), u' ~=£(pp)t exp(£t(z)).
It follows that (pu')" ~ qy; and so

ulpu')’ ~ qul ~ \/g exp(24(z)) ~ p(u)?.

Clearly (2.1) is satisfied o, for sufficiently largea’ > a. To derive [2.R) observe that the
asymptotic equivalence gfv’)? and(pu’)’ implies that
/
(u')? ~ u"u + —u'u.

D
But
/ ! ! p/u / Uu
p/p)uu/(u =— ~p
(p'/p)(W'u/(u)?) o N
/2 ’p/| 1
~ppt < —<d04+e< -
VP4 3

asx — oo. Thus fore > 0 and on somd, with «’ sufficiently large we have that
(W) < (W'u+@+e)(1+e)(u)) = (1-(0+e)(1+6) () <u'u

which obviously implies[(2]2) ife is small enough. Finally, i’ > 0 we choosey, =
p(z) exp(t(z)) and if p’ < 0 we choosey; = pexp(—t(z)). In either case[(2]3) holds. By
RemarK 2.P (ii), the fact that/ is LP atoo, and Theorerp 2|1, separation follows. O

In 1970 [8] Everitt and Giertz showed:
Corollary2.4. If p=1,¢ > d > 0, and

/ q—1/4 ‘(q—1/4)//| < 00,
I
thenM is separated.

Proof. Evidently this condition is a special case of Theofem 2.1 with 1, cf. [6, Theorem
14]. O

Remark 2.5. The hypothesis of Corollafy 3.4 can be shown to be equivalent tol(see [6, p. 122]

/‘q3/2q//‘<oo7
I,

unlessy(z) ~ cx=* andq'(x) ~ —4cz = for ¢ a positive constant. But in this cadéis trivially
separated of, if a > 0.

A similar result using the asymptotic properties of solutions but requiring less smoothness on
q is given by:

Theorem 2.6. Suppose thgt = 1, ¢ > d > 0 is differentiable, and

d
/I £/ < @

for somer, 1 < r < 2. ThenM is separated.
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Proof. By a result of Hartman and Winter [15, p. 320] has solutions: such that
u~ g exp(£t(x)),
ul ~ :l:ql/2u,

wheret(z) = [ /q. Sinceu” ~ ¢*/* exp(+ [ ¢'/?), itis clear that[(2.14) is satisfied on some
Iy, d > a. O

In most cases however it is difficult to verify (2.1)[— (2.3) [or (2.14) directly, which motivates
us to seek an equivalent formulation of Theorem 2.1 for which knowledge of properties of
positive solutions of\/[y] = 0 is not required.

Theorem 2.7.Letp > 0 andz beC*(I) functions. Thenif (2]6) { (2.8) hold agd= pz*—(pz)".
MTy] is separated and the inequali 13) holds.

Proof. The fact that Theoremn 3.1 implies Theorgm|2.7 is clear. On the other hand, if we set
u = e~/ %, thenu is a positive solution of\/[y] = 0. z = —u'/u, and the condition.l) -

(2.3) hold as they are equivalent {o (2.6] —[2.8). Thus all the assumptions of THeofem 2.1 are
satisfied. O

Theorem 2.8. Suppose that/ is separatedg > d > 0, and thath is a weight. Assume further

that either

2
(2.15) hm%:m

or lim, .., h = oo, and

(2.16) K |lyvpy'|| > [|n*2y]|

for somef > 1 and ally € Cg°. LetGy(y) == {(y, M|y]),y € D}, equipped with the graph
norm. Then the mapping : Gy, — L*(h;I) given byA(Gy(y) = y is compact, andV/
satisfies an inequality of the form

(2.17) iyl + (@) lyl > |[Vy|
onD fore > 0.

Proof. If (2.15) holds andV/ is separated, then by (1.2) of Proposifion] 1.1 there is an inequality
of the form

Zllyll+ S IMBII > oy
NURTATHL
-(/. (%))
(2.18) Zn(/mhﬁ>2

for any positive integer and where the sequefieg} — oo. Let\, : Gy — L*(I7) be
given by the characteristic function dif composed with\, wherel” = [a,z,]. Since the
solutions ofM[y] = 0 andgq are continuous o, a Green'’s function argument shows that the
maps)\, : Gy — L*(h; I") are compact. B8) th&, converge in operator norm to a
compact limitA. Also sinceq > d > 0, ¢ is closed, considered as a multiplication operator
q: L*(I,) — L*(I,), and sincel is separate@® C D(g). In this situation Corollary V.3.8 of
Goldberg[14, p. 123] applies and givés (2.17).
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Under the second set of conditions we have from the Cauchy-Schwartz inequality, integration
by parts, and sinckm,. .., h = oo that on somd,, a’ > a, and fory € C§°(I,/) that

1) IRyl > 1 (py)' | 1y
> [(py),y]

= Ivpy'II*

> K72(|h*%y)1%.
Hence
Iyl = K2|h7%y|
> K72||h0 D2y |
> K70 Vhy| o, 00)-
Since)M is separated we obtain frofn (IL.2) the inequality

L K ~ _
Syl + FIME = 11y Y1) = K| vVay

(zn,00)

on theC§(1,) functions and therefore also dm; the proof that\ restricted toD, is compact
continues as in the first part. But sinZeis a finite dimensional extension @&,, A is also
compact. 0

Remark 2.9. Following Everitt and Giertz [8] we say thatis in the classP(«y) or ¢ € P(y) if
whenevery € D then|qg|” € L?(I,). Thus the separation dff on D is equivalent to; € P(1).

It is also easy to verify by thinking of = ¢; + ¢2 whereg;(z) < 1 andgy(z) > 1 that
q € P(v) = q € P(B) foranyg € (0,v]. Suppose now € P(1) andlim, ..,q¢ = oo.
Then from the first part of Theorejn 2.8 not only wjlle P(6), § < 1, but the “compactness”
inequality [2.1%) will hold if,. = ¢°. If M is separated; — oo, and [2.16) holds foh = ¢
andd > 1thenq € P(#), and we have the interesting consequence that the mappitg, —
L*(q; 1,) is compact. In general, if € P(y) andq — cothen\ : Gy — L?(¢°; 1,) is compact.

A disadvantage of Theore@.? is that althoughas the formpz? — (pz)’, since M is
disconjugate, it may be difficult to determineand to verify [2.6) —[(2]8). We attempt to
remedy this problem in the next three corollaries and obtain additional usable tests.

Corollary 2.10. If Mi[y] = —(py') +q1y Whereg (1) = (pz7 — (pz1)') satisfies the hypotheses
of Theorem 2]7 and/; .[y] = —(py')' + ¢1..y Whereq, .(21) = (pc?zi — (pcz1)')y, wherec > 1
then M, .[y] is separated. More generally, ifis a differentiable function such thgtg’ > 0
and

(2.19) g;((:; ))‘Z <1

then ifgo = 22 — 2}, wherez, = g(z;) M, is separated. Conversely, iff;[y] satisfies the
hypotheses of Theor¢gm .7 and

(2.20) g

thenM; is separated.

Proof. Let z, = cz;. Then since: > 1, 2, satisfies[(2J6) {(2]8) angh = pz3 — (pz»)’. Also
p'zy < 0. Separation follows by Theorem 2.7.
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For the second part, sinee satisfies[(2)6) -{ (2]8) and by (2]19) we have that

2 =g (2)2 > —¢'(21)7] > —g(21)* = —23

<89 (z1)z7 < 6g(21)° = 623
Thus z, satisfies[(2)6) { (2]8) and we can again apply Thegrein 2.7. On the other hand, using
(2.20)

O

Example 2.1.Letp = 1, z(z) = z, andqi(z) = = — (3) 272 Ifa > (%)% , then ) —
(2.9) is satisfied for somé < 1. If g(z) = exp(a?), (2.19) is satisfied for say > 2. Taking
29(x) = g(z1) = exp(z) we get thaiy (x) = exp(2z) — exp(x) and there is an inequality of the
form

K| M[y]l| = [la2yll
onD, defined orn/,. That)M, is separated of, also follows from TheorefmA, but the inequal-
ity seems new.

The next two lemmas are useful.

Lemma 2.11. Suppose that/,[y| = —(py’)’ + q1y is separated ofD,. If

hmsup@ <147,

z—oo (1

lim inf 22 >1—7,

where~ is sufficiently small, the/;[y] is also separated of,.
Proof. Choose:’ large enough so that afy

@—1’<’y.
Q1

SinceM,[y] = Mi(y) + (g2 — ¢1)y by the triangle inequality and inequalify (1.2) we have that

q
Llyll + KM + K ' " (q—j _ 1) yH > KMl + Lilyl

fory € C§°. Hence onl,,
Lilyll + K[ Maly][| + Krllary]l = Cllary|
> C(1+7) gyl

Thus

Lyl + K[|Mz[y]l| = dllg2y]l;
whered = (1 +~)~'(C — K~), which is positive for small enough. O
Lemma 2.12. Suppose thad/;[y] = —(py')’ + q1y satisfies the separation inequality (2/17)
with h = ¢? for anye > 0 on D,. If also there are constant&’;, K, > 0 such thatk; <

lq1/q2] < Ky thenMsly] = —(py') + ¢oy satisfies the same separation inequalityZanwith
h = q3 for sufficiently smalk > 0.
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Proof. Since
Msly] = Mily] + ¢ (1 — %) Y
fory € C5°(1,), we arrive at the inequality
q
ﬂMmm+e@Q—é)ﬂ+K@mmﬁmmm+K@mu

> llayll = Killg2yll
for anye > 0. Hence also
e[ Ma[y]ll + K (e)llyll = dullazyll,
whered, = (K; — (1 + K3)e > 0 for small enouglz. O

Remark 2.13. Takinggs = —¢; andK; = K> = 1in Lemmd 2.1R, we see thatif/; satisfies
(2.17) then so does/, which means that we can have separation for a potemptiethich is
negative and unbounded below provided the expression constructed with pdtgraisfies

@.1D).

Example 2.2. Supposep(z) = 1 andg;(z) = exp(z). Then by Theorem A of [BV; is
separated. Let,(x) = exp(exp(---exp(x))---) be an-fold iteration of exp(z) and set
g2(z) = exp(x)(1 + esin(t,(z)), € > 0. Then Theorems A ar[d|B do not apply becalise| (1.3)
and [1.4) are unbounded. However, by Lenimal2\Llis separated it is sufficiently small.
Clearlyt, (x) can be replaced by any other rapidly increasing function.

Example 2.3.Let p, (z) = exp(z) andg; (z) = ='/* on I,. By Theoren) €M, is separated. It
is easy to verify thap; andq; satisfy the Muckenhoupt condition

sup/ pll/ ¢ <oo, 0>1,
€l Jx a

and therefore (cf. Opiand Kufner[[18, Theorem 6.2]) the Hardy inequalify| exp(x/2)y'|| >

]|qf/2y|| holds onCg°. Therefore from the second part of Theo@ 2.8 we obtain an inequality

of the form [2.1F). If nowg,(z) = —¢i(z)(2 + sin(exp(z™)) we will have from Lemma 2.72
the same kind of inequality but with

Moly] = —(exp(x)y) — 2'/%(2 + sin(exp(z"))y.
Theorem 2.14.1f p > 0, z is aC' function,p’> < 0 and
—K122 < < KyZ?
for positive constant®;, K, then the operators
Myl = —(py) + a1y,
My o[yl = —(py) + q2.cy,
whereq; . = ¢*pz® — ¢(pz)’ andqe. = ¢*pz? are separated for sufficiently large> 1.
Proof. To prove thaf\/, . is separated we retrace the proof of Thedrem 2.17L6f) = y/'+czy
andLi(y) = —y' + czy, wherey € C§°(I). Then
LI = [P+ (e 2
If ¢ > K, thencz’ + ¢*2%? > 0 and as before,
ezl < 4|2 (g1
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Likewise L* (pL.(y)) = M, .[y] and

Q1. = —pcz' —plez + pc*2®
—pcz’ + pc*2?
pez’(c — Ka)
0

(\VARAVARLYS

if ¢ > K,. From the definition ofj; . we also have thapz)’ < Kypz?. And so

I BIP > 5 [ P + (@2 = (e

Ia

Z / [6424]72 3032221p2]y
'

3K
|:1 . 2:| / C4p224y2
C I,
for ¢ > 3K5. Now also

[(pe2)'yl| + | Mac[yll| = | Micly)ll > Ks || Pp2y||

whereK; = /1 — 3K, /¢, so that

[ Ma [yl > Ks ||p22y|| — [[(pez)yl)

> (V-2 e

Since the constant is positive for large enougdhe inequality|(2.13) fo/, .[y] is established.
Since

Qe
= = (1 - (p2)/(¢*pz?)
q2,c

Lemmg 2.1l may be applied to conclude thét. is separated and satisfies an inequality like

(2.13). O

Example 2.4.1f p’ is of constant sign, let = —sgn(p’)\/q/p thenp’z < 0 as required and
¢ = c2q. A calculation shows that the hypothesis of The02.14 becomes

/ 1/2

Equivalently we can require that

/ 1/2 1
n = sup p——pg/g < 00
z€l, | /P4 q
to conclude thai\/,[y] = —(py')’ + dqy is separated for sufficiently large For example, if

p(z) = g(x) = exp(z?) both Theorenmh A anf[B fail for any/, yetn = 0 and so we have an
inequality of the form

K| — (exp(z®)y') + dexp(z?)y|| > ||d exp(z?)y|
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for large enoughl.

Corollary 2.15. Let p, z, h, and g be functions such thai > 0 andp, z are C!, p'z < 0,

2 < 2% ford €[0,1/3), h > d > 0, g is bounded, and

h(pz)’
pz?

thenM[y] = —(py') +q1y, whereq, = pz*—(pz)’ is separated o> and Ms[y] = —(py')' +¢a,

wheregq, = p2% + hg(pz)' is separated on at least di. If we assume additionally that

(2.22) lim pz? = oo,

T— 00

(2.21) lim

T—00

=0,

then the inequalities
ellMi [yl + K ()lyll > llajyl
holdforl <, j <2andfd <1lonDifi=1andonDifi=2.

Proof. Since
!/ !/
Mez)'| S | @2)' |
pz* || p??
(pz)'/pz* — 0 asxz — oo which implies that for/,, = [a/,00) andd’ sufficiently large,

—pz* < (pz)’. Since the assumptions of Theorem| 2.7 are satisfiédy| is separated o
relativeI,, and by Remark 2]2(ii) also oh,. Since
41

1 — / 2
lim — = lim (p2) //pz 5 =
w00 gy oo 1 —hg(pz) /pz
the separation ai/, andM; on D, follows from Lemmd 2.]1.
To prove the second claim, a calculation will show that
2

lim L = lim (p22)20 0T (2,p,0) = 00, 1<i,j <2,

whereT'(z, p, 0) is a term going td asz — oo. For example,

2
lim q_g = lim

(p22)20-0) l( 1+ g(pz)'/pz? r .

T—00 g5  x—00 1+ hg(pz)' /pz?)°
The inequalities follow from the second part of Theofenj 2.8. O
Example 2.5. Setp(x) = exp(z/3), z(z) = —exp(z/3), h(z) = exp((1 — 3¢)x/3), and

g(z) = —sin(t,(x)), wheret, () is as in Examplg 2|3. Then

1 2 1 2
pz= — 5 exXp (g) <0, 2= —5 exXp (%) < dexp (%) = 22,

and [2.21) holds. Then
Mly] == — (exp <§> y’)/ + exp(z) [1 + gexp(—ex) sin(tn(x))] Yy

is separated o®,. SinceM is L P atoo the separation actually holds @h

The final result of this paper is quite different from Theofen 2.1 but it reinforces the connec-
tion between disconjugacy and separation. In addition, the proof is quite elementary.

Theorem 2.16.Letp > 0 andq > d > 0 be continuous. Suppose thet*[y] = —(py')’ + (¢ —
A\¢*)y is disconjugate o, for some\ > 0. ThenM[y] = —(py')’ + qy is separated.
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Proof. Itis well known (see e.g[ [15, Theorem 6.2]) that the disconjugady dfs equivalent to
the positive definiteness of the functiom@t(y] = [, (ply'|* + (¢ — Ag*)|y|*) for y € C5°(1a).
In other words, we must have the inequality

(2.23) Q"ly] E/I (ply'|> + qy*) = A/ ¢ yl?

a Ia
with equality holding if and only ify = 0. Now consider the expressidd,. = ¢~?[—py’)' +qy],
wherey is an appropriate function in?(¢* 1,). If y € C5°(1,) then the Cauchy-Schwartz
inequality and[(2.23) yields that
1Melyllllylle = Q°lyl = Myllz: = Myl
It follows that the inequality

d M| = [[Meelylll 2 = Mgyl

holds on the”s° functions and also therefore @h. Becausé\/ is LP atoo we again conclude
that it is separated oP. O

Remark 2.17. (i) f pt e L(1,) and

220 s ([Tt ) (f 2 =a) <

then (cf. Exampl4) the Hardy inequaIiMy)l/Qy’H2 > ||(A¢* — ¢)*/?y|| holds on
Cs°(1,) with equality if and only ify = 0. This inequality implies the positive definite-
ness ofQ*.

(i) If w > d > is a weight and we require th&t-py') + (¢ — Aw) be disconjugate, then
the proof of Theorerp 2.16 will yield the inequality

(2.25) A Ml = X ||Vwyl] -
Substitutingw for ¢2 in (2.24) will give a sufficient condition fof (2.25).
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