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ABSTRACT. Solutions of two slightly more general problems than those posed by Kenneth B.
Stolarsky in [10] are presented. The latter deal with a shape preserving approximation, in the
uniform norm, of two functions(1/x) log coshx and (1/x) log(sinhx/x), x ≥ 0, by ratios
of exponomials. The main mathematical tools employed include Gini means and the Stolarski
means.
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1. I NTRODUCTION

The purpose of this note is to present solutions of two problems posed by Professor Kenneth
B. Stolarsky in [10, p. 817]. They are formulated as follows:

“Call (as is sometimes done) a polynomial inx, exp(c1x), . . . , exp(cnx) anex-
ponomial. Alternatively, an exponomial is a solution of the constant coeffi-
cient linear differential equation. Is there a sequence of functionsfn(x), n =
1, 2, 3, . . ., each a ratio of exponomials and each increasing from 0 to 1 asx
increases from 0 to∞, such that

(1) f ′′n(x) ≤ 0 for all x ≥ 0,
(2) eitherfn(x) ≤ fm(x) for all x ≥ 0 or fm(x) ≤ fn(x) for all x ≥ 0,
(3) assertion (2) remains valid iffm(x) is replaced by(1/x) log cosh x (or by(1/x) log(sinh x/x)),

and
(4) in some neighborhood of the graphy = (1/x) log cosh x (or of (1/x) log(sinh x/x)) the

graphs of thefn(x) are dense with respect to the uniform (supremum) norm?”
Let us note that both functions(1/x) log cosh x and(1/x) log(sinh x/x) are concave func-

tions onR+− the nonnegative semi-axis and they increase from zero to one asx increases from
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2 EDWARD NEUMAN

zero to infinity. Thus these problems can be regarded as the approximation problems, in the
uniform norm, with the shape constraints imposed on the approximating functions. In what
follows we will refer to these problems as the first Stolarsky problem and the second Stolarsky
problem, respectively.

This paper is organized as follows. In Section 2 we recall definitions and basic properties
of two families of the bivariate means. They are employed in solutions of two slightly more
general problems than those mentioned earlier in this section. The main results are contained in
Sections 3 and 4.

2. GINI M EANS AND STOLARSKY M EANS

Let p, q ∈ R and leta, b ∈ R> – the positive semi-axis. The Gini meanGp,q(a, b) of order
(p, q) of a andb is defined as

(2.1) Gp,q(a, b) =



(
ap + bp

aq + bq

) 1
p−q

, p 6= q

exp

(
ap log a + bp log b

ap + bp

)
, p = q

(see [1]). For later use, let us record some properties of this two-parameter family of means:

(P1) Gp,q increases with an increase in eitherp andq (see [7]).
(P2) If p > 0 andq > 0, thenGp,q is log-concave in bothp andq. If p < 0 andq < 0, then

Gp,q is log-convex in bothp andq (see [6]).
(P3) If p 6= q, then

log Gp,q(a, b) =
1

p− q

∫ p

q

log Jt(a, b) dt,

where

(2.2) Jt(a, b) = Gt,t(a, b) (t ∈ R).

Let us note thatGp,0(a, b) = Ap(a, b), p 6= 0, where

(2.3) Ap(a, b) =

(
ap + bp

2

) 1
p

is the Hölder mean (power mean) of orderp of a andb.

A second family of means used here has been introduced by K.B. Stolarsky in [9]. Through-
out the sequel we will denote them byDp,q(a, b) where againp, q ∈ R anda, b ∈ R>. Fora 6= b
they are defined as

(2.4) Dp,q(a, b) =



(
q

p

ap − bp

aq − bq

) 1
p−q

, pq(p− q) 6= 0

exp

(
−1

p
+

ap log a− bp log b

ap − bp

)
, p = q 6= 0

[
ap − bp

p(log a− log b)

] 1
p

, p 6= 0, q = 0

√
ab, p = q = 0

andDp,q(a, a) = a.
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ON TWO PROBLEMS POSED BY KENNETH STOLARSKY 3

They have the monotonicity and concavity (convexity) properties analogous to those listed in
(P1) and (P2) (see [3], [8], [9]). Also, ifp 6= q, then

(2.5) log Dp,q(a, b) =
1

p− q

∫ p

q

log It(a, b) dt,

where

(2.6) It(a, b) = Dt,t(a, b)

is the identric mean of ordert (t ∈ R) of a andb (see [9]). Let us note thatAp(a, b) = D2p,p(a, b)
andLp(a, b) = Dp,0(a, b) is the logarithmic mean of orderp (p ∈ R) of a andb.

Comparison results for the Gini means and Stolarsky means are discussed in a recent paper
[5].

3. A GENERALIZATION OF THE FIRST STOLARSKY PROBLEM AND I TS SOLUTION

In this section we deal with a generalization of the first Stolarsky problem. Its solution is also
included here.

For (p, q) ∈ R2
+ let

(3.1) f(p, q) =


1

p− q
log

(
cosh p

cosh q

)
, p 6= q

tanh p, p = q.

A function to be approximated in the first Stolarsky problem is equal tof(x, 0) (see Section 1).
Making use of (2.1) we see that

(3.2) f(p, q) = log Gp,q(e, e
−1).

It follows from (P1)–(P3), (3.1), and (3.2) that

(i) 0 ≤ f(p, q) < 1,
(ii) f(p, q) increases along any rayd = λ(α, β), whereλ ≥ 0, (α, β) ∈ R2

+ (α + β > 0),
(iii) function f(p, q) is concave in both variablesp andq, and

(iv) f(p, q) =
1

p− q

∫ p

q

tanh t dt

providedp 6= q.

For later use we define functions

(3.3) gn(p, q) =
1

n

n∑
k=1

tanh(αkp + βkq) (n = 1, 2, . . .),

where

(3.4) αk =
2k − 1

2n
, βk = 1− αk (1 ≤ k ≤ n).

One can easily verify that the functiongn(p, q) is a ratio of two exponomials,0 ≤ gn(p, q) < 1,
andgn(p, q) increases along any rayd = λ(α, β), whereλ, α, andβ are the same as in (ii).
Moreover,gn(p, q) is a concave function onR2

+. In order to prove the last statement, let

φk(p, q) = tanh t,

wheret = αkp + βkq (1 ≤ k ≤ n). An easy computation shows that the HessianHφk of φk is
equal to

Hφk = −2 tanh(t) sech2(t)

[
α2

k αkβk

αkβk β2
k

]
.
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4 EDWARD NEUMAN

The eigenvaluesλ1 andλ2 of Hφk satisfyλ2 < λ1 = 0. This in turn implies that the function
φk(p, q) is concave onR2

+. The same conclusion is valid for the functiongn(p, q) because of
(3.3).

We are in a position to prove the main result of this section.

Theorem 3.1.Let0 ≤ p, q < ∞ and let

(3.5) fm(p, q) = g2m(p, q) (m = 0, 1, . . .).

Then

(a) fm(p, q) is a ratio of two exponomials.
(b) 0 ≤ fm(p, q) < 1.
(c) fm(p, q) increases along any rayd = λ(α, β), whereλ, α, andβ are the same as in (ii).
(d) fm(p, q) is a concave function onR2

+.
(e) lim

m→∞
‖f − fm‖∞ = 0, where‖ · ‖∞ stands for the uniform norm onR2

+.

(f) The inequalitiesf(p, q) ≤ fm+1(p, q) ≤ fm(p, q) are valid for allm = 0, 1, . . . .

Proof. Statements (a)–(d) follow from the properties of the functiongn(p, q), established earlier
in this section, and from (3.5). For the proof of (e) it suffices to show that

(3.6) lim
n→∞

‖f − gn‖∞ = 0.

To this aim we recall the Composite Midpoint Rule (see e.g., [2])

(3.7)
∫ 1

0

h(t) dt =
1

n

n∑
k=1

h(αk) +
1

24n2
h′′(ξ) (n ≥ 1),

where the numbersαk are defined in (3.4) and0 < ξ < 1. Application of (3.7) to (iv), with
h(t) = tanh t, gives

f(p, q) =

∫ 1

0

tanh(up + (1− u)q) du

= gn(p, q)− 1

12

(
p− q

n

)2
tanh(ξp + (1− ξ)q)

cosh2(ξp + (1− ξ)q)
.

This in conjunction with the inequality0 ≤ tanh x/ cosh2 x ≤ 1/2 (x ≥ 0) gives

(3.8) 0 ≤ gn(p, q)− f(p, q) ≤ 1

24n2
(p− q)2

(n = 1, 2, . . .). The convergence results (3.6) and (e) now follow. Moreover, the first inequality
in (3.8) give, together with (3.5), the first inequality in (f). To complete the proof of (f) we use
(3.5), (3.3), and (3.4) to obtain

(3.9) fm+1(p, q) =
1

2m+1

2m+1∑
k=1

tanh(γkp + δkq),

where

γk =
2k − 1

2m+2
and δk = 1− γk, 1 ≤ k ≤ 2m+1.
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ON TWO PROBLEMS POSED BY KENNETH STOLARSKY 5

Sincetanh t is concave fort ≥ 0, (3.9) gives

fm+1(p, q) =
1

2m

∑
k=1,3,...,2m+1−1

1

2
[tanh(γkp + δkq) + tanh(γk+1p + δk+1q)]

≤ 1

2m

∑
k=1,3,...,2m+1−1

tanh

(
γk + γk+1

2
p +

δk + δk+1

2
q

)

=
1

2m

2m∑
k=1

tanh(αkp + βkq) = fm(p, q),

where now

αk =
2k − 1

2m+1
, βk = 1− αk, 1 ≤ k ≤ 2m.

The proof is complete. �

4. A GENERALIZATION AND A SOLUTION OF THE SECOND STOLARSKY PROBLEM

This section is devoted to the discussion of a generalization of the second Stolarsky problem.
In what follows we will use the same symbols for both, a function to be approximated and the
approximating functions, as those employed in Section 3.

For (p, q) ∈ R2
+, let

(4.1) f(p, q) =



1

p− q
log

(
q

p

sinh p

sinh q

)
, pq(p− q) 6= 0;

coth p− 1

p
, p = q 6= 0;

1

p
log

(
sinh p

p

)
, p 6= 0, q = 0;

0, p = q = 0.

Stolarsky’s function of his second problem is a particular case off(p, q), namelyf(x, 0). Mak-
ing use of (2.4) we obtain

(4.2) f(p, q) = log Dp,q(e, e
−1).

Functionf(p, q) defined in (4.1) possesses the same properties as those listed in (i)–(iii) (see
Section 3). A counterpart of the integral formula in (iv) reads as follows

(4.3) f(p, q) =
1

p− q

∫ p

q

(
coth t− 1

t

)
dt (p 6= q).

This is an immediate consequence of (2.5), (2.6), (4.2), and (4.1).
Forn = 1, 2, . . ., we define

(4.4) gn(p, q) =
1

n

n∑
k=1

[
coth(αkp + βkq)−

1

αkp + βkq

]
,

whereαk andβk are defined in (3.4). Again, one can easily verify that the functiongn(p, q) has
the same monotonicity and concavity properties as its counterpart defined in (3.3). Also, we
define functionsfm(p, q) as

fm(p, q) = g2m(p, q) (m = 0, 1, . . .).

J. Inequal. Pure and Appl. Math., 5(1) Art. 9, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 EDWARD NEUMAN

Since the main result of this section can be formulated in exactly the same way as Theo-
rem 3.1, we omit further details with the exception of the proof of uniform convergence of the
functionsfm(p, q) to the functionf(p, q).

Application of the Composite Midpoint Rule (3.7) to the integral on the right side of (4.3)
gives

(4.5) f(p, q) = gn(p, q)− 1

12

(
p− q

n

)2

φ(t),

where

φ(t) =
1

t3
− coth t

sinh2 t
, t = ξp + (1− ξ)q, 0 < ξ < 1.

Functionφ(u) is nonnegative foru ≥ 0. This follows from the Lazarević inequalitycosh u ≤
(sinh u/u)3 (see, e.g., [4, p. 270]). Moreover,

φ(u) =
1

15
u− 4

189
u3 +

1

225
u5 − · · · ≤ 1

15
u,

where the last inequality is valid providedu ≥ 0. This in conjunction with (4.5) gives

0 ≤ gn(p, q)− f(p, q) ≤ 1

180n2
(p− q)2 max(p, q) (n = 1, 2, . . .).

Sincep andq are nonnegative finite numbers, we conclude that

lim
n→∞

‖f − gn‖∞ = 0.

The uniform convergence of the sequence{fm(p, q)}∞0 to the functionf(p, q) now follows.
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