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ABSTRACT. In this paper, we discuss the validity of the inequality

n∑
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i

)2

,

where1, a, b are the sides of a triangle and the indices are understood modulon. We show that,
although this inequality does not hold in general, it is true whenn ≤ 4. For generaln, we show
that any given set of nonnegative real numbers can be arranged asx1, x2, . . . , xn such that the
inequality above is valid.
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1. M AIN STATEMENTS

Let a, b, x1, x2, . . . , xn be nonnegative real numbers. Ifa+ b = 1 then, by the Rearrangement
inequality [1], we have

(1.1)
n∑

i=1

xa
i x

b
i+1 ≤

n∑
i=1

xi,

where throughout this paper, the indices are understood to be modulon. In an attempt to
generalize this inequality, we consider the following

(1.2)
n∑

i=1
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i=1
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i x
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i

)2

,
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2 MOHAMMAD JAVAHERI

wherec = (a + b + 1)/2. It turns out that ifa + b 6= 1 then the inequality (1.2) is false forn
large enough (cf. Prop. 2.2). However, we show that if

(1.3) b ≤ a + 1, a ≤ b + 1, 1 ≤ a + b,

then the inequality (1.2) is true in the case ofn = 4 (cf. Prop. 2.1). Moreover, under the same
conditions ona, b as in (1.3), we show that one can always find a permutationµ of {1, 2, . . . , n}
such that (cf. Prop. 2.4)

(1.4)
n∑

i=1

xi

n∑
i=1

xa
µ(i)x

b
µ(i+1) ≤

(
n∑

i=1

xc
i

)2

.

The conditions in (1.3) cannot be compromised in the sense that if for all nonnegativex1, x2, . . . , xn

there exists a permutationµ such that the conclusion (1.4) holds, thena, b must satisfy (1.3). To
see this, letx1 = x > 0 be arbitrary andxi = 1, i = 2, . . . , n. Then, for any permutationµ, the
inequality (1.4) reads the same as:

(1.5) (x + n− 1)(xa + xb + n− 2) ≤ (xc + n− 1)2.

If the above inequality is true for allx andn, by comparing the coefficients ofn on both sides
of the inequality (1.5), we should havexa + xb + x − 3 ≤ 2xc − 2. Sincex > 0 is arbitrary,
1, a, b ≤ c and conditions (1.3) follow.

The case ofa = b = 1 of (1.2) is particularly interesting:

(1.6)
n∑

i=1

xi

n∑
i=1

xixi+1 ≤

(
n∑

i=1

x
3/2
i

)2

.

There is a counterexample to (1.6) whenn = 9, e.g. take

x1 = x9 = 8.5, x2 = x8 = 9, x3 = x7 = 10,(1.7)

x4 = x6 = 11.5, x5 = 12,

and subsequently the inequality (1.6) is false for alln ≥ 9 (cf. prop. (2.2)). Proposition 2.1
shows that the inequality (1.6) is true forn ≤ 4, and there seems to be a computer-based proof
[2] for the casesn = 5, 6, 7 which, if true, leaves us with the only remaining casen = 8.

2. PROOFS

Applying Jensen’s inequality [1, § 3.14] to the concave functionlog x gives

(2.1) urvswt ≤ ru + sv + tw,

whereu, v, w, r, s, t are nonnegative real numbers andr + s + t = 1. If, in addition, we have
r, s, t > 0 then the equality occurs iffu = v = w. However, ift = 0 andr, s, w > 0 then the
equality occurs iffu = v. We use this inequality in the proof of the proposition below.

Proposition 2.1. Let a, b ≥ 0 such thata + 1 ≥ b, b + 1 ≥ a and a + b ≥ 1. Then for all
nonnegative real numbersx, y, z, t,

(2.2) (x + y + z + t)(xayb + yazb + zatb + taxb) ≤ (xc + yc + zc + tc)2,

wherec = (a + b + 1)/2. The equality occurs if and only if{a, b} = {0, 1} or x = y = z = t.

Proof. We apply the inequality (2.1) to

u = (yz)c, v = (xz)c, w = (xy)c,(2.3)

r = 1− a

c
, s = 1− b

c
, t = 1− 1

c
,
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and obtain:

(2.4) xaybz ≤
(
1− a

c

)
(yz)c +

(
1− b

c

)
(xz)c +

(
1− 1

c

)
(xy)c.

Notice that the assumptions ona, b in the lemma are made exactly so thatr, s, t are nonnegative.
Similarly, by replacingz with t in (2.4), we have:

(2.5) xaybt ≤
(
1− a

c

)
(yt)c +

(
1− b

c

)
(tx)c +

(
1− 1

c

)
(xy)c.

Next, apply (2.1) to

(2.6) u = x2c, v = (xy)c, w = 1, r = 1− b

c
, s =

b

c
, t = 0,

and get

(2.7) xa+1yb ≤
(

1− b

c

)
x2c +

b

c
(xy)c.

Similarly, by interchanginga andb, one has

(2.8) xayb+1 ≤
(
1− a

c

)
x2c +

a

c
(xy)c.

Adding the inequalities (2.4), (2.5), (2.7) and (2.8) gives:

(2.9) Sxayb ≤ 1

c
x2c +

(
4− 3

c

)
(xy)c +

(
1− a

c

)
(yz)c +

(
1− b

c

)
(tx)c

+
(
1− a

c

)
(yt)c +

(
1− b

c

)
(xz)c,

whereS = x + y + z + t. There are three more inequalities of the form above that are obtained
by replacing the pair(x, y) by (y, z), (z, t) and(t, x). By adding all four inequalities (or by
taking the cyclic sum of (2.9)) we have

(2.10) ST ≤ 1

c

∑
x2c +

(
4− 2

c

)
(xc + zc)(yc + tc) +

2

c

{
(xz)c + (yt)c

}
,

whereST stands for the left hand side of the inequality (2.2). The right hand side of the above
inequality is equal to

(2.11)
(∑

xc
)2

+

(
1

c
− 1

){
(xc + zc)2 + (yc + tc)2 − 2(xc + zc)(yc + tc)

}
,

which is less than or equal to(
∑

xc)2, sincec ≥ 1. This concludes the proof of the inequality
(2.2).

Next, suppose the equality occurs in (2.2) and so the inequalities (2.4) – (2.8) are all equal-
ities. If a = 0 then we have

∑
x
∑

xb = (
∑

xc)2 and so, by the equality case of Cauchy-
Schwarz, the two vectors(x, y, z, t) and (xb, yb, zb, tb) have to be proportional. Then either
b = c = 1 or x = y = z = t. Thus supposea, b 6= 0. Sincec = a = b is impossible,
without loss of generality suppose thatc 6= b. Since the inequality (2.7) must be an equality,
x2c = xcyc (cf. the discussion on the equality case of (2.1)). Similarlyy2c = yczc, z2c = zctc

andt2c = tcxc. It is then not difficult to see thatx = y = z = t. �

Let N(a, b) denote the largest integern for which the inequality (1.2) holds for all nonnega-
tive x1, x2, . . . , xn. By the above proposition, we haveN(a, b) ≥ 4.
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4 MOHAMMAD JAVAHERI

Proposition 2.2.Leta, b ≥ 0 such thata+b 6= 1. ThenN(a, b) < ∞. Moreover, ifn ≤ N(a, b)
then the inequality (1.2) is valid for all nonnegativex1, . . . , xn.

Proof. The proof is divided into two parts. First we show that the inequality (1.2) cannot be
true for alln. Proof is by contradiction. Ifa = b = 0 then (1.2) is false forn = 2 (e.g. take
x1 = 1, x2 = 2). Thus, supposea + b > 0 and that the inequality (1.2) is true for alln. Let f
be a non-constant positive continuous function on the intervalI = [0, 1] such thatf(0) = f(1).
Let

(2.12) xi = f

(
i− 1

n

)
, yi = (xa

i x
b
i+1)

1/(a+b), i = 1, . . . , n.

Sinceyi is a number betweenxi andxi+1 (possibly equal to one of them), by the Intermediate-
value theorem [3, Th 3.3], there existsti ∈ Ii such thatf(ti) = yi. By the definition of integral
we have: ∫

I

f(x)dx

∫
I

fa+b(x)dx = lim
n→∞

1

n2

n∑
i=1

xi

n∑
i=1

ya+b
i(2.13)

= lim
n→∞

1

n2

n∑
i=1

xi

n∑
i=1

xa
i x

b
i+1

≤ lim
n→∞

1

n2

(
n∑

i=1

xc
i

)2

=

(∫
I

f c(x)dx

)2

,

where we have applied the inequality (1.2) to thexi’s. On the other hand, by the Cauchy-
Schwarz inequality for integrals, we have

(2.14)
∫

I

f(x)dx

∫
I

fa+b(x)dx ≥
(∫

I

f
1
2 (x)f

a+b
2 (x)dx

)2

=

(∫
I

f c(x)dx

)2

,

with equality iff f andfa+b are proportional. The statements (2.13) and (2.14) imply that the
equality indeed occurs. Sincea + b 6= 1 andf is not a constant function, the two functionsf
andfa+b cannot be proportional. This contradiction implies that (1.2) could not be true for all
n i.e. N(a, b) < ∞.

Next, we show that (1.2) is valid for alln ≤ N . It is sufficient to show that if the inequality
(1.2) is true for all ordered sets ofk + 1 nonnegative real numbers, then it is true for all ordered
sets ofk nonnegative real numbers.

Let y1, . . . , yk be nonnegative real numbers and set

(2.15) S =
k∑

i=1

yi, A =
k∑

i=1

ya
i y

b
i+1, P =

k∑
i=1

yc
i .

Without loss of generality we can assumeP = 1. For each1 ≤ i ≤ k, define an ordered set of
k + 1 nonnegative real numbers by setting:

xj =

 yj 1 ≤ j ≤ i + 1

yj−1 i + 2 ≤ j ≤ k + 1

Applying the inequality (1.2) tox1, . . . , xk+1 gives

(2.16) (S + yi)(A + ya+b
i ) ≤ (P + yc

i )
2 = 1 + y2c

i + 2yc
i .
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Adding these inequalities fori = 1, . . . , k, yields:

(2.17) kSA + S
∑

i

ya+b
i + AS ≤ k + 2.

On the other hand, by the Rearrangement inequality [1] we have

(2.18)
k∑

i=1

ya
i y

b
i+1 ≤

k∑
i=1

ya+b
i ,

and the lemma follows by putting together the inequalities (2.17) and (2.18). �

The inequality (1.1) translates toN(a, b) = ∞ whena+b = 1. We expect thatN(a, b) →∞
asa + b → 1. The following proposition supports this conjecture. We define

(2.19) An(a, b) = sup


n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 −

(
n∑

i=1

xc
i

)2
∣∣∣∣∣∣ max

1≤i≤n
xi = 1

 .

This number roughly measures the validity of the inequality (1.2). Also let

(2.20) σt =
1

n

n∑
i=1

xt
i.

By the Hölder inequality [1], ifα, β > 0 andα + β = 1 then for anys, t > 0 we have:

(2.21) σα
s σβ

t ≥ σαs+βt.

Proposition 2.3. N(u, u) is a non-increasing function ofu ≥ 1/2. Moreover, for alln and
a, b ≥ 0

(2.22) lim
a+b→1

An(a, b) = 0.

Proof. Supposeu > v > 1/2. We show thatN(u, u) ≤ N(v, v). Without loss of generality we
can assume:

(2.23) u− v <
1

4
.

By the definition ofN = N(v, v), there must existN + 1 nonnegative integersx1, . . . , xN+1

such that the inequality (1.2) is false and so

(2.24)
N+1∑
i=1

xi

N+1∑
i=1

xv
i x

v
i+1 >

(
N+1∑
i=1

x
v+1/2
i

)2

.

We show that the nonnegative numbersyi = x
u/v
i , i = 1, . . . , N + 1 give a counterexample to

(1.2) whena = b = u. In light of (2.24), one just needs to show

(2.25)

(
N+1∑
i=1

x
u+1/2v
i

)2/N+1∑
i=1

x
u/v
i ≥

(
N+1∑
i=1

x
u+1/2
i

)2/N+1∑
i=1

xi.

To prove this, first let

α =
u + 1/(2v)− u/v

u + 1/(2v)− 1
, β =

u/v − 1

u + 1/(2v)− 1
,(2.26)

s = 1, t = u +
1

2v
.

J. Inequal. Pure and Appl. Math., 7(5) Art. 162, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 MOHAMMAD JAVAHERI

The numbers above are simply chosen such thatα+β = 1 andαs+βt = u/v. We briefly check
thatα, β > 0. The denominator of fractions above is positive, sinceu+1/(2v) ≥ (v+1/v)/2 ≥
1. This impliesβ > 0. Now the positivity ofα > 0 is equivalent tou(1 − v) < 1/2. If v ≥ 1
thenu(1− v) ≤ 0 < 1/2. So supposev ≤ 1. By using (2.23), we have:

(2.27) u(1− v) ≤
(

v +
1

4

)
(1− v) = −v2 +

3

4
v +

1

4
<

1

2
,

for all v ≥ 0. Now we can safely plugα, β, s, t in (2.21) and get

(2.28) σα
1 σβ

u+1/2v ≥ σu/v.

Next, letα′ = (1 − α)/2 andβ′ = 1 − β/2. Sinceα′ + β′ = 1 andα′, β′ > 0, we can use
Hölder’s inequality (2.21) withα′, β′ instead ofα andβ (and the sames, t as before) and get
(this timeα′s + β′t = u + 1/2):

(2.29) σ
(1−α)/2
1 σ

1−β/2
1+1/2v ≤ σu+1/2.

Now we square the above inequality and multiply it with (2.28) to obtain:

(2.30) σ1σ
2
1+1/2v ≤ σu/vσ

2
u+1/2,

which is equivalent to the inequality (2.25). So far we have shown the existence of a counterex-
ample to (1.2) fora = b = u whenn = N + 1. Then Prop. 2.2 givesN(u, u) ≤ N = N(v, v)
and this concludes the proof of the monotonicity ofN .

It remains to prove thatAn(a, b) converges to0 asa + b → 1. To the contrary, assume
there existsε > 0 and a sequence(aj, bj) such thatAn(aj, bj) > ε andaj + bj → 1. Then by
definition, for eachj, there exists ann-tupleXj = (x1j, . . . , xnj) such thatmax xij = 1 and

(2.31)
n∑

i=1

xij

n∑
i=1

x
aj

ij x
bj

i+1j −

(
n∑

i=1

x
cj

ij

)2

≥ ε

2
,

wherecj = (aj+bj+1)/2. SinceXj is a bounded sequence, it follows that, along a subsequence
jk, theXjk

’s converge to someX = (x1, . . . , xn). On the other hand, along a subsequence of
jk (denoted again byjk), ajk

→ a andbjk
→ b for somea, b ≥ 0. Sinceaj + bj → 1, we have

a+ b = 1. By taking the limits of the inequality (2.31) along this subsequence, we should have

(2.32)
n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 −

(
n∑

i=1

xi

)2

≥ ε

2
> 0,

which contradicts the inequality (1.1). This contradiction establishes the equation (2.22).�

The next proposition shows that the inequality (1.2) holds if one mixes up the order of the
xi’s. The proof is simple and makes use of the monotonicity of(σt)

1/t whereσt is defined by
the equation (2.20). It is well-known that(σt)

1/t is a non-decreasing function oft [1, Th. 16].

Proposition 2.4. Let a, b, c be as in Proposition 2.1. Then for any given set ofn nonnegative
real numbers there exists an arrangement of them asx1, . . . , xn such that the inequality (1.2)
holds.

Proof. Equivalently, we show that ifx1, x2, . . . , xn are nonnegative then there exists a permu-
tationµ of the set{1, 2, . . . , n} such that the inequality (1.4) holds. Let

(2.33) S =
n∑

i=1

xi, T =
n∑

i=1

∑
j 6=i

xa
i x

b
j.
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ThenST = nσ1(n
2σaσb − nσa+b) = n3σ1σaσb − n2σ1σa+b. Now by the Cauchy-Schwarz

inequality [4], σ2
c ≤ σ1σa+b. On the other hand by the monotonicity ofσ

1/t
t , we haveσ1 ≤

σ
1/c
c , σa ≤ σ

a/c
c , σb ≤ σ

b/c
c , and soσ1σaσb ≤ σ2

c . It follows from these inequalities that

(2.34) ST ≤ n2(n− 1)σ2
c .

Now for a permutationµ of 1, 2, . . . , n, let:

(2.35) Aµ =
n∑

i=1

xa
µ(i)x

b
µ(i+1).

We would like to show thatSAµ ≤ (nσc)
2 for some permutationµ. It is sufficient to show

that the average ofSAµ over all permutationsµ is less than or equal to(nσc)
2. To show this,

observe that the average ofSAµ is equal toST/(n − 1) and so the claim follows from the
inequality (2.34). �

The symmetric groupSn acts onRn in the usual way, namely forµ ∈ Sn and(x1, . . . , xn) ∈
Rn let

(2.36) µ · (x1, . . . , xn) = (xµ(1), . . . , xµ(n)).

Let R be a region inRn that is invariant under the action of permutations (i.e.µ ·R ⊆ R for all
µ). define:

(2.37) λ(R) =

(x1, . . . , xn) ∈ R

∣∣∣∣∣∣
n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 ≤

(
n∑

i=1

xc
i

)2
 .

By Proposition 2.4:

(2.38) R ⊆
⋃

µ∈Sn

µ · λ(R).

In particular, by taking the Lebesgue measure of the sides of the inclusion above, we get

(2.39) vol λ(R) ≥ vol R

n!
.

We prove a better lower bound forvol λ(R) whenn is a prime number (similar but weaker
results can be proved in general).

Proposition 2.5. Let a, b be as in Proposition 2.1 andn be a prime number. LetR ⊆ Rn
+ be a

Lebesgue-measurable bounded set that is invariant under the action of permutations. Letλ(R)
denote the set of all(x1, . . . , xn) ∈ R for which the inequality (1.2) holds. Then

(2.40) vol λ(R) ≥ vol R

n− 1
.

Proof. Form ∈ {1, 2, . . . , n− 1} let µm ∈ Sn and denote the permutation

(2.41) µm(i) = mi,

where all the numbers are understood to be modulon (in particularµm(n) = n for all m). Now
recall the definition ofAµ from the equation (2.35) and observe that:

n−1∑
m=1

Aµm =
n−1∑
m=1

n∑
i=1

xa
mix

b
mi+m =

n−1∑
m=1

n∑
j=1

xa
jx

b
j+m(2.42)

=
n∑

j=1

xa
j

n−1∑
m=1

xb
j+m =

n∑
j=1

xa
j

∑
i6=j

xb
i .
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Then, the same argument in the proof of Prop. 2.4 implies that, for somem ∈ {1, . . . , n − 1},
we haveAµm ≤ (nσc)

2. We conclude that

(2.43) R ⊆
n−1⋃
m=1

µm · λ(R),

which in turn implies the inequality (2.40). �
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