Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 162, 2006

A NEW ARRANGEMENT INEQUALITY

MOHAMMAD JAVAHERI
University of Oregon
Department of Mathematics
Fenton Hall, Eugene, OR 97403
javaheri@uoregon.edu
URL: http://www.uoregon.edu/~javaheri
Received 29 April, 2006; accepted 17 November, 2006
Communicated by G. Bennett

AbSTRACT. In this paper, we discuss the validity of the inequality

$$
\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b} \leq\left(\sum_{i=1}^{n} x_{i}^{(1+a+b) / 2}\right)^{2}
$$

where $1, a, b$ are the sides of a triangle and the indices are understood modulo n. We show that, although this inequality does not hold in general, it is true when $n \leq 4$. For general n, we show that any given set of nonnegative real numbers can be arranged as $x_{1}, x_{2}, \ldots, x_{n}$ such that the inequality above is valid.

Key words and phrases: Inequality, Arrangement.

2000 Mathematics Subject Classification. 26Dxx.

1. Main Statements

Let $a, b, x_{1}, x_{2}, \ldots, x_{n}$ be nonnegative real numbers. If $a+b=1$ then, by the Rearrangement inequality [1], we have

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b} \leq \sum_{i=1}^{n} x_{i}, \tag{1.1}
\end{equation*}
$$

where throughout this paper, the indices are understood to be modulo n. In an attempt to generalize this inequality, we consider the following

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b} \leq\left(\sum_{i=1}^{n} x_{i}^{c}\right)^{2} \tag{1.2}
\end{equation*}
$$

[^0]where $c=(a+b+1) / 2$. It turns out that if $a+b \neq 1$ then the inequality 1.2 is false for n large enough (cf. Prop. 2.2). However, we show that if
\[

$$
\begin{equation*}
b \leq a+1, \quad a \leq b+1, \quad 1 \leq a+b, \tag{1.3}
\end{equation*}
$$

\]

then the inequality (1.2) is true in the case of $n=4$ (cf. Prop. 2.1). Moreover, under the same conditions on a, b as in (1.3), we show that one can always find a permutation μ of $\{1,2, \ldots, n\}$ such that (cf. Prop. 2.4)

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{\mu(i)}^{a} x_{\mu(i+1)}^{b} \leq\left(\sum_{i=1}^{n} x_{i}^{c}\right)^{2} \tag{1.4}
\end{equation*}
$$

The conditions in (1.3) cannot be compromised in the sense that if for all nonnegative $x_{1}, x_{2}, \ldots, x_{n}$ there exists a permutation μ such that the conclusion (1.4) holds, then a, b must satisfy (1.3). To see this, let $x_{1}=x>0$ be arbitrary and $x_{i}=1, i=2, \ldots, n$. Then, for any permutation μ, the inequality (1.4) reads the same as:

$$
\begin{equation*}
(x+n-1)\left(x^{a}+x^{b}+n-2\right) \leq\left(x^{c}+n-1\right)^{2} . \tag{1.5}
\end{equation*}
$$

If the above inequality is true for all x and n, by comparing the coefficients of n on both sides of the inequality (1.5), we should have $x^{a}+x^{b}+x-3 \leq 2 x^{c}-2$. Since $x>0$ is arbitrary, $1, a, b \leq c$ and conditions (1.3) follow.

The case of $a=b=1$ of (1.2) is particularly interesting:

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} x_{i+1} \leq\left(\sum_{i=1}^{n} x_{i}^{3 / 2}\right)^{2} . \tag{1.6}
\end{equation*}
$$

There is a counterexample to (1.6) when $n=9$, e.g. take

$$
\begin{align*}
& x_{1}=x_{9}=8.5, \quad x_{2}=x_{8}=9, \quad x_{3}=x_{7}=10, \tag{1.7}\\
& x_{4}=x_{6}=11.5, \quad x_{5}=12,
\end{align*}
$$

and subsequently the inequality (1.6) is false for all $n \geq 9$ (cf. prop. (2.2). Proposition 2.1 shows that the inequality (1.6) is true for $n \leq 4$, and there seems to be a computer-based proof [2] for the cases $n=5,6,7$ which, if true, leaves us with the only remaining case $n=8$.

2. Proofs

Applying Jensen's inequality [1, § 3.14] to the concave function $\log x$ gives

$$
\begin{equation*}
u^{r} v^{s} w^{t} \leq r u+s v+t w \tag{2.1}
\end{equation*}
$$

where u, v, w, r, s, t are nonnegative real numbers and $r+s+t=1$. If, in addition, we have $r, s, t>0$ then the equality occurs iff $u=v=w$. However, if $t=0$ and $r, s, w>0$ then the equality occurs iff $u=v$. We use this inequality in the proof of the proposition below.
Proposition 2.1. Let $a, b \geq 0$ such that $a+1 \geq b, b+1 \geq a$ and $a+b \geq 1$. Then for all nonnegative real numbers x, y, z, t,

$$
\begin{equation*}
(x+y+z+t)\left(x^{a} y^{b}+y^{a} z^{b}+z^{a} t^{b}+t^{a} x^{b}\right) \leq\left(x^{c}+y^{c}+z^{c}+t^{c}\right)^{2}, \tag{2.2}
\end{equation*}
$$

where $c=(a+b+1) / 2$. The equality occurs if and only if $\{a, b\}=\{0,1\}$ or $x=y=z=t$.
Proof. We apply the inequality (2.1) to

$$
\begin{align*}
& u=(y z)^{c}, \quad v=(x z)^{c}, \quad w=(x y)^{c}, \tag{2.3}\\
& r=1-\frac{a}{c}, \quad s=1-\frac{b}{c}, \quad t=1-\frac{1}{c},
\end{align*}
$$

and obtain:

$$
\begin{equation*}
x^{a} y^{b} z \leq\left(1-\frac{a}{c}\right)(y z)^{c}+\left(1-\frac{b}{c}\right)(x z)^{c}+\left(1-\frac{1}{c}\right)(x y)^{c} . \tag{2.4}
\end{equation*}
$$

Notice that the assumptions on a, b in the lemma are made exactly so that r, s, t are nonnegative. Similarly, by replacing z with t in (2.4), we have:

$$
\begin{equation*}
x^{a} y^{b} t \leq\left(1-\frac{a}{c}\right)(y t)^{c}+\left(1-\frac{b}{c}\right)(t x)^{c}+\left(1-\frac{1}{c}\right)(x y)^{c} . \tag{2.5}
\end{equation*}
$$

Next, apply (2.1) to

$$
\begin{equation*}
u=x^{2 c}, \quad v=(x y)^{c}, \quad w=1, \quad r=1-\frac{b}{c}, \quad s=\frac{b}{c}, \quad t=0 \tag{2.6}
\end{equation*}
$$

and get

$$
\begin{equation*}
x^{a+1} y^{b} \leq\left(1-\frac{b}{c}\right) x^{2 c}+\frac{b}{c}(x y)^{c} . \tag{2.7}
\end{equation*}
$$

Similarly, by interchanging a and b, one has

$$
\begin{equation*}
x^{a} y^{b+1} \leq\left(1-\frac{a}{c}\right) x^{2 c}+\frac{a}{c}(x y)^{c} . \tag{2.8}
\end{equation*}
$$

Adding the inequalities (2.4), (2.5), (2.7) and (2.8) gives:

$$
\begin{align*}
& S x^{a} y^{b} \leq \frac{1}{c} x^{2 c}+\left(4-\frac{3}{c}\right)(x y)^{c}+\left(1-\frac{a}{c}\right)(y z)^{c}+\left(1-\frac{b}{c}\right)(t x)^{c} \tag{2.9}\\
& +\left(1-\frac{a}{c}\right)(y t)^{c}+\left(1-\frac{b}{c}\right)(x z)^{c}
\end{align*}
$$

where $S=x+y+z+t$. There are three more inequalities of the form above that are obtained by replacing the pair (x, y) by $(y, z),(z, t)$ and (t, x). By adding all four inequalities (or by taking the cyclic sum of (2.9) we have

$$
\begin{equation*}
S T \leq \frac{1}{c} \sum x^{2 c}+\left(4-\frac{2}{c}\right)\left(x^{c}+z^{c}\right)\left(y^{c}+t^{c}\right)+\frac{2}{c}\left\{(x z)^{c}+(y t)^{c}\right\}, \tag{2.10}
\end{equation*}
$$

where $S T$ stands for the left hand side of the inequality (2.2). The right hand side of the above inequality is equal to

$$
\begin{equation*}
\left(\sum x^{c}\right)^{2}+\left(\frac{1}{c}-1\right)\left\{\left(x^{c}+z^{c}\right)^{2}+\left(y^{c}+t^{c}\right)^{2}-2\left(x^{c}+z^{c}\right)\left(y^{c}+t^{c}\right)\right\} \tag{2.11}
\end{equation*}
$$

which is less than or equal to $\left(\sum x^{c}\right)^{2}$, since $c \geq 1$. This concludes the proof of the inequality (2.2).

Next, suppose the equality occurs in (2.2) and so the inequalities $(2.4)-(2.8)$ are all equalities. If $a=0$ then we have $\sum x \sum x^{b}=\left(\sum x^{c}\right)^{2}$ and so, by the equality case of CauchySchwarz, the two vectors (x, y, z, t) and $\left(x^{b}, y^{b}, z^{b}, t^{b}\right)$ have to be proportional. Then either $b=c=1$ or $x=y=z=t$. Thus suppose $a, b \neq 0$. Since $c=a=b$ is impossible, without loss of generality suppose that $c \neq b$. Since the inequality (2.7) must be an equality, $x^{2 c}=x^{c} y^{c}$ (cf. the discussion on the equality case of 2.1). Similarly $y^{2 c}=y^{c} z^{c}, z^{2 c}=z^{c} t^{c}$ and $t^{2 c}=t^{c} x^{c}$. It is then not difficult to see that $x=y=z=t$.

Let $N(a, b)$ denote the largest integer n for which the inequality 1.2$)$ holds for all nonnegative $x_{1}, x_{2}, \ldots, x_{n}$. By the above proposition, we have $N(a, b) \geq 4$.

Proposition 2.2. Let $a, b \geq 0$ such that $a+b \neq 1$. Then $N(a, b)<\infty$. Moreover, if $n \leq N(a, b)$ then the inequality (I.2) is valid for all nonnegative x_{1}, \ldots, x_{n}.

Proof. The proof is divided into two parts. First we show that the inequality (1.2) cannot be true for all n. Proof is by contradiction. If $a=b=0$ then (1.2) is false for $n=2$ (e.g. take $x_{1}=1, x_{2}=2$). Thus, suppose $a+b>0$ and that the inequality (1.2) is true for all n. Let f be a non-constant positive continuous function on the interval $I=[0,1]$ such that $f(0)=f(1)$. Let

$$
\begin{equation*}
x_{i}=f\left(\frac{i-1}{n}\right), \quad y_{i}=\left(x_{i}^{a} x_{i+1}^{b}\right)^{1 /(a+b)}, \quad i=1, \ldots, n . \tag{2.12}
\end{equation*}
$$

Since y_{i} is a number between x_{i} and x_{i+1} (possibly equal to one of them), by the Intermediatevalue theorem [3, Th 3.3], there exists $t_{i} \in I_{i}$ such that $f\left(t_{i}\right)=y_{i}$. By the definition of integral we have:

$$
\begin{align*}
\int_{I} f(x) d x \int_{I} f^{a+b}(x) d x & =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}^{a+b} \tag{2.13}\\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}^{c}\right)^{2}=\left(\int_{I} f^{c}(x) d x\right)^{2}
\end{align*}
$$

where we have applied the inequality (1.2) to the x_{i} 's. On the other hand, by the CauchySchwarz inequality for integrals, we have

$$
\begin{equation*}
\int_{I} f(x) d x \int_{I} f^{a+b}(x) d x \geq\left(\int_{I} f^{\frac{1}{2}}(x) f^{\frac{a+b}{2}}(x) d x\right)^{2}=\left(\int_{I} f^{c}(x) d x\right)^{2} \tag{2.14}
\end{equation*}
$$

with equality iff f and f^{a+b} are proportional. The statements 2.13 and 2.14 imply that the equality indeed occurs. Since $a+b \neq 1$ and f is not a constant function, the two functions f and f^{a+b} cannot be proportional. This contradiction implies that 1.2 could not be true for all n i.e. $N(a, b)<\infty$.
Next, we show that (1.2) is valid for all $n \leq N$. It is sufficient to show that if the inequality (1.2) is true for all ordered sets of $k+1$ nonnegative real numbers, then it is true for all ordered sets of k nonnegative real numbers.

Let y_{1}, \ldots, y_{k} be nonnegative real numbers and set

$$
\begin{equation*}
S=\sum_{i=1}^{k} y_{i}, \quad A=\sum_{i=1}^{k} y_{i}^{a} y_{i+1}^{b}, \quad P=\sum_{i=1}^{k} y_{i}^{c} \tag{2.15}
\end{equation*}
$$

Without loss of generality we can assume $P=1$. For each $1 \leq i \leq k$, define an ordered set of $k+1$ nonnegative real numbers by setting:

$$
x_{j}= \begin{cases}y_{j} & 1 \leq j \leq i+1 \\ y_{j-1} & i+2 \leq j \leq k+1\end{cases}
$$

Applying the inequality (1.2) to x_{1}, \ldots, x_{k+1} gives

$$
\begin{equation*}
\left(S+y_{i}\right)\left(A+y_{i}^{a+b}\right) \leq\left(P+y_{i}^{c}\right)^{2}=1+y_{i}^{2 c}+2 y_{i}^{c} . \tag{2.16}
\end{equation*}
$$

Adding these inequalities for $i=1, \ldots, k$, yields:

$$
\begin{equation*}
k S A+S \sum_{i} y_{i}^{a+b}+A S \leq k+2 \tag{2.17}
\end{equation*}
$$

On the other hand, by the Rearrangement inequality [1] we have

$$
\begin{equation*}
\sum_{i=1}^{k} y_{i}^{a} y_{i+1}^{b} \leq \sum_{i=1}^{k} y_{i}^{a+b} \tag{2.18}
\end{equation*}
$$

and the lemma follows by putting together the inequalities (2.17) and (2.18).
The inequality (1.1) translates to $N(a, b)=\infty$ when $a+b=1$. We expect that $N(a, b) \rightarrow \infty$ as $a+b \rightarrow 1$. The following proposition supports this conjecture. We define

$$
\begin{equation*}
A_{n}(a, b)=\sup \left\{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b}-\left(\sum_{i=1}^{n} x_{i}^{c}\right)^{2} \mid \max _{1 \leq i \leq n} x_{i}=1\right\} . \tag{2.19}
\end{equation*}
$$

This number roughly measures the validity of the inequality (1.2). Also let

$$
\begin{equation*}
\sigma_{t}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{t} . \tag{2.20}
\end{equation*}
$$

By the Hölder inequality [1], if $\alpha, \beta>0$ and $\alpha+\beta=1$ then for any $s, t>0$ we have:

$$
\begin{equation*}
\sigma_{s}^{\alpha} \sigma_{t}^{\beta} \geq \sigma_{\alpha s+\beta t} \tag{2.21}
\end{equation*}
$$

Proposition 2.3. $N(u, u)$ is a non-increasing function of $u \geq 1 / 2$. Moreover, for all n and $a, b \geq 0$

$$
\begin{equation*}
\lim _{a+b \rightarrow 1} A_{n}(a, b)=0 . \tag{2.22}
\end{equation*}
$$

Proof. Suppose $u>v>1 / 2$. We show that $N(u, u) \leq N(v, v)$. Without loss of generality we can assume:

$$
\begin{equation*}
u-v<\frac{1}{4} . \tag{2.23}
\end{equation*}
$$

By the definition of $N=N(v, v)$, there must exist $N+1$ nonnegative integers x_{1}, \ldots, x_{N+1} such that the inequality (1.2) is false and so

$$
\begin{equation*}
\sum_{i=1}^{N+1} x_{i} \sum_{i=1}^{N+1} x_{i}^{v} x_{i+1}^{v}>\left(\sum_{i=1}^{N+1} x_{i}^{v+1 / 2}\right)^{2} . \tag{2.2.2}
\end{equation*}
$$

We show that the nonnegative numbers $y_{i}=x_{i}^{u / v}, i=1, \ldots, N+1$ give a counterexample to (1.2) when $a=b=u$. In light of (2.24), one just needs to show

$$
\begin{equation*}
\left(\sum_{i=1}^{N+1} x_{i}^{u+1 / 2 v}\right)^{2} / \sum_{i=1}^{N+1} x_{i}^{u / v} \geq\left(\sum_{i=1}^{N+1} x_{i}^{u+1 / 2}\right)^{2} / \sum_{i=1}^{N+1} x_{i} . \tag{2.25}
\end{equation*}
$$

To prove this, first let

$$
\begin{align*}
\alpha & =\frac{u+1 /(2 v)-u / v}{u+1 /(2 v)-1}, \quad \beta=\frac{u / v-1}{u+1 /(2 v)-1}, \tag{2.26}\\
s & =1, \quad t=u+\frac{1}{2 v} .
\end{align*}
$$

The numbers above are simply chosen such that $\alpha+\beta=1$ and $\alpha s+\beta t=u / v$. We briefly check that $\alpha, \beta>0$. The denominator of fractions above is positive, since $u+1 /(2 v) \geq(v+1 / v) / 2 \geq$ 1. This implies $\beta>0$. Now the positivity of $\alpha>0$ is equivalent to $u(1-v)<1 / 2$. If $v \geq 1$ then $u(1-v) \leq 0<1 / 2$. So suppose $v \leq 1$. By using (2.23), we have:

$$
\begin{equation*}
u(1-v) \leq\left(v+\frac{1}{4}\right)(1-v)=-v^{2}+\frac{3}{4} v+\frac{1}{4}<\frac{1}{2} \tag{2.27}
\end{equation*}
$$

for all $v \geq 0$. Now we can safely plug α, β, s, t in (2.21) and get

$$
\begin{equation*}
\sigma_{1}^{\alpha} \sigma_{u+1 / 2 v}^{\beta} \geq \sigma_{u / v} \tag{2.28}
\end{equation*}
$$

Next, let $\alpha^{\prime}=(1-\alpha) / 2$ and $\beta^{\prime}=1-\beta / 2$. Since $\alpha^{\prime}+\beta^{\prime}=1$ and $\alpha^{\prime}, \beta^{\prime}>0$, we can use Hölder's inequality (2.21) with $\alpha^{\prime}, \beta^{\prime}$ instead of α and β (and the same s, t as before) and get (this time $\alpha^{\prime} s+\beta^{\prime} t=u+1 / 2$):

$$
\begin{equation*}
\sigma_{1}^{(1-\alpha) / 2} \sigma_{1+1 / 2 v}^{1-\beta / 2} \leq \sigma_{u+1 / 2} \tag{2.29}
\end{equation*}
$$

Now we square the above inequality and multiply it with (2.28) to obtain:

$$
\begin{equation*}
\sigma_{1} \sigma_{1+1 / 2 v}^{2} \leq \sigma_{u / v} \sigma_{u+1 / 2}^{2} \tag{2.30}
\end{equation*}
$$

which is equivalent to the inequality (2.25). So far we have shown the existence of a counterexample to (1.2) for $a=b=u$ when $n=N+1$. Then Prop. 2.2 gives $N(u, u) \leq N=N(v, v)$ and this concludes the proof of the monotonicity of N.

It remains to prove that $A_{n}(a, b)$ converges to 0 as $a+b \rightarrow 1$. To the contrary, assume there exists $\epsilon>0$ and a sequence $\left(a_{j}, b_{j}\right)$ such that $A_{n}\left(a_{j}, b_{j}\right)>\epsilon$ and $a_{j}+b_{j} \rightarrow 1$. Then by definition, for each j, there exists an n-tuple $X_{j}=\left(x_{1 j}, \ldots, x_{n j}\right)$ such that max $x_{i j}=1$ and

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i j} \sum_{i=1}^{n} x_{i j}^{a_{j}} x_{i+1 j}^{b_{j}}-\left(\sum_{i=1}^{n} x_{i j}^{c_{j}}\right)^{2} \geq \frac{\epsilon}{2} \tag{2.31}
\end{equation*}
$$

where $c_{j}=\left(a_{j}+b_{j}+1\right) / 2$. Since X_{j} is a bounded sequence, it follows that, along a subsequence j_{k}, the $X_{j_{k}}$'s converge to some $X=\left(x_{1}, \ldots, x_{n}\right)$. On the other hand, along a subsequence of j_{k} (denoted again by j_{k}), $a_{j_{k}} \rightarrow a$ and $b_{j_{k}} \rightarrow b$ for some $a, b \geq 0$. Since $a_{j}+b_{j} \rightarrow 1$, we have $a+b=1$. By taking the limits of the inequality (2.31) along this subsequence, we should have

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \geq \frac{\epsilon}{2}>0 \tag{2.32}
\end{equation*}
$$

which contradicts the inequality (1.1). This contradiction establishes the equation (2.22).
The next proposition shows that the inequality 1.2 holds if one mixes up the order of the x_{i} 's. The proof is simple and makes use of the monotonicity of $\left(\sigma_{t}\right)^{1 / t}$ where σ_{t} is defined by the equation 2.20). It is well-known that $\left(\sigma_{t}\right)^{1 / t}$ is a non-decreasing function of t [1, Th. 16].

Proposition 2.4. Let a, b, c be as in Proposition 2.1 Then for any given set of n nonnegative real numbers there exists an arrangement of them as x_{1}, \ldots, x_{n} such that the inequality (1.2) holds.

Proof. Equivalently, we show that if $x_{1}, x_{2}, \ldots, x_{n}$ are nonnegative then there exists a permutation μ of the set $\{1,2, \ldots, n\}$ such that the inequality 1.4 holds. Let

$$
\begin{equation*}
S=\sum_{i=1}^{n} x_{i}, \quad T=\sum_{i=1}^{n} \sum_{j \neq i} x_{i}^{a} x_{j}^{b} . \tag{2.33}
\end{equation*}
$$

Then $S T=n \sigma_{1}\left(n^{2} \sigma_{a} \sigma_{b}-n \sigma_{a+b}\right)=n^{3} \sigma_{1} \sigma_{a} \sigma_{b}-n^{2} \sigma_{1} \sigma_{a+b}$. Now by the Cauchy-Schwarz inequality [4], $\sigma_{c}^{2} \leq \sigma_{1} \sigma_{a+b}$. On the other hand by the monotonicity of $\sigma_{t}^{1 / t}$, we have $\sigma_{1} \leq$ $\sigma_{c}^{1 / c}, \sigma_{a} \leq \sigma_{c}^{a / c}, \sigma_{b} \leq \sigma_{c}^{b / c}$, and so $\sigma_{1} \sigma_{a} \sigma_{b} \leq \sigma_{c}^{2}$. It follows from these inequalities that

$$
\begin{equation*}
S T \leq n^{2}(n-1) \sigma_{c}^{2} . \tag{2.34}
\end{equation*}
$$

Now for a permutation μ of $1,2, \ldots, n$, let:

$$
\begin{equation*}
A_{\mu}=\sum_{i=1}^{n} x_{\mu(i)}^{a} x_{\mu(i+1)}^{b} \tag{2.35}
\end{equation*}
$$

We would like to show that $S A_{\mu} \leq\left(n \sigma_{c}\right)^{2}$ for some permutation μ. It is sufficient to show that the average of $S A_{\mu}$ over all permutations μ is less than or equal to $\left(n \sigma_{c}\right)^{2}$. To show this, observe that the average of $S A_{\mu}$ is equal to $S T /(n-1)$ and so the claim follows from the inequality (2.34).

The symmetric group S_{n} acts on \mathbb{R}^{n} in the usual way, namely for $\mu \in S_{n}$ and $\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n} let

$$
\begin{equation*}
\mu \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\mu(1)}, \ldots, x_{\mu(n)}\right) \tag{2.36}
\end{equation*}
$$

Let R be a region in \mathbb{R}^{n} that is invariant under the action of permutations (i.e. $\mu \cdot R \subseteq R$ for all μ). define:

$$
\begin{equation*}
\lambda(R)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R \mid \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{a} x_{i+1}^{b} \leq\left(\sum_{i=1}^{n} x_{i}^{c}\right)^{2}\right\} . \tag{2.37}
\end{equation*}
$$

By Proposition 2.4 .

$$
\begin{equation*}
R \subseteq \bigcup_{\mu \in S_{n}} \mu \cdot \lambda(R) \tag{2.38}
\end{equation*}
$$

In particular, by taking the Lebesgue measure of the sides of the inclusion above, we get

$$
\begin{equation*}
\operatorname{vol} \lambda(R) \geq \frac{\operatorname{vol} R}{n!} \tag{2.39}
\end{equation*}
$$

We prove a better lower bound for $\operatorname{vol} \lambda(R)$ when n is a prime number (similar but weaker results can be proved in general).
Proposition 2.5. Let a, b be as in Proposition 2.1 and n be a prime number. Let $R \subseteq \mathbb{R}_{+}^{n}$ be a Lebesgue-measurable bounded set that is invariant under the action of permutations. Let $\lambda(R)$ denote the set of all $\left(x_{1}, \ldots, x_{n}\right) \in R$ for which the inequality (1.2) holds. Then

$$
\begin{equation*}
\operatorname{vol} \lambda(R) \geq \frac{\operatorname{vol} R}{n-1} \tag{2.40}
\end{equation*}
$$

Proof. For $m \in\{1,2, \ldots, n-1\}$ let $\mu_{m} \in S_{n}$ and denote the permutation

$$
\begin{equation*}
\mu_{m}(i)=m i \tag{2.41}
\end{equation*}
$$

where all the numbers are understood to be modulo n (in particular $\mu_{m}(n)=n$ for all m). Now recall the definition of A_{μ} from the equation (2.35) and observe that:

$$
\begin{align*}
\sum_{m=1}^{n-1} A_{\mu_{m}} & =\sum_{m=1}^{n-1} \sum_{i=1}^{n} x_{m i}^{a} x_{m i+m}^{b}=\sum_{m=1}^{n-1} \sum_{j=1}^{n} x_{j}^{a} x_{j+m}^{b} \tag{2.42}\\
& =\sum_{j=1}^{n} x_{j}^{a} \sum_{m=1}^{n-1} x_{j+m}^{b}=\sum_{j=1}^{n} x_{j}^{a} \sum_{i \neq j} x_{i}^{b} .
\end{align*}
$$

Then, the same argument in the proof of Prop. 2.4 implies that, for some $m \in\{1, \ldots, n-1\}$, we have $A_{\mu_{m}} \leq\left(n \sigma_{c}\right)^{2}$. We conclude that

$$
\begin{equation*}
R \subseteq \bigcup_{m=1}^{n-1} \mu_{m} \cdot \lambda(R) \tag{2.43}
\end{equation*}
$$

which in turn implies the inequality (2.40).

References

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge University Press, 2nd ed. (1988).
[2] O. HOSSEINI, Private Communication, Fall 2006.
[3] M.H. PROTTER AND C.B. Jr MORREY, A First Course in Real Analysis, Springer (1997).
[4] M.J. STEELE, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, Cambridge University Press (2004).

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 I would like to thank Omar Hosseini for bringing to my attention the case $a=b=1$ of the inequality 1.2 . I would also like to thank Professor G. Bennett for reviewing the article and making useful comments.

 126-06

