Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 2, Article 40, 2005

LOCALIZATION OF FACTORED FOURIER SERIES

HÜSEYİN BOR
Department of Mathematics
Erciyes University
38039 KAyseri, Turkey
bor@erciyes.edu.tr
$U R L:$ http://fef.erciyes.edu.tr/math/hbor.htm

Received 20 April, 2005; accepted 02 May, 2005
Communicated by L. Leindler

Abstract. In this paper we deal with a main theorem on the local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of factored Fourier series, which generalizes some known results.

Key words and phrases: Absolute summability, Fourier series, Local property.
2000 Mathematics Subject Classification. 40D15, 40G99, 42A24, 42B15.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left(t_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$.

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

In the special case when $p_{n}=1 /(n+1)$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|$ (resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability. Also if we take $k=1$ and $p_{n}=1 /(n+1)$,

[^0]summability $\left|\bar{N}, p_{n}\right|_{k}$ is equivalent to the summability $|R, \log n, 1|$. A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

Let $f(t)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) d t=0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} A_{n}(t) \tag{1.5}
\end{equation*}
$$

It is well known that the convergence of the Fourier series at $t=x$ is a local property of the generating function f (i.e. it depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at $t=x$ by any regular linear summability method is also a local property of the generating function f.

2. Known Results

Mohanty [4] has demonstrated that the $|R, \log n, 1|$ summability of the factored Fourier series

$$
\begin{equation*}
\sum \frac{A_{n}(t)}{\log (n+1)} \tag{2.1}
\end{equation*}
$$

at $t=x$, is a local property of the generating function of f, whereas the $|C, 1|$ summability of this series is not. Matsumoto [3] improved this result by replacing the series (2.1) by

$$
\begin{equation*}
\sum \frac{A_{n}(t)}{\{\log \log (n+1)\}^{\delta}}, \quad \delta>1 \tag{2.2}
\end{equation*}
$$

Generalizing the above result Bhatt [1] proved the following theorem.
Theorem A. If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then the summability $|R, \log n, 1|$ of the series $\sum A_{n}(t) \lambda_{n} \log n$ at a point can be ensured by a local property.

3. The Main Result

The aim of the present paper is to prove a more general theorem which includes of the above results as special cases. Also it should be noted that the conditions on the sequence $\left(\lambda_{n}\right)$ in our theorem, are somewhat more general than in the above theorem.

Now we shall prove the following theorem.
Theorem 3.1. Let $k \geq 1$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the series $\sum A_{n}(t) \lambda_{n} P_{n}$ at a point is a local property of the generating function f.

We need the following lemmas for the proof of our theorem.
Lemma 3.2. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $P_{n} \lambda_{n}=O(1)$ as $n \rightarrow \infty$ and $\sum P_{n} \Delta \lambda_{n}<\infty$.

Proof. Since $\left(\lambda_{n}\right)$ is non-increasing, we have that

$$
P_{m} \lambda_{m}=\lambda_{m} \sum_{n=0}^{m} p_{n}=O(1) \sum_{n=0}^{m} p_{n} \lambda_{n}=O(1) \quad \text { as } \quad m \rightarrow \infty .
$$

Applying the Abel transform to the sum $\sum_{n=0}^{m} p_{n} \lambda_{n}$, we get that

$$
\sum_{n=0}^{m} P_{n} \Delta \lambda_{n}=\sum_{n=0}^{m} p_{n} \lambda_{n}-P_{m} \lambda_{m+1}
$$

Since $\lambda_{n} \geq \lambda_{n+1}$, we obtain

$$
\begin{aligned}
\sum_{n=0}^{m} P_{n} \Delta \lambda_{n} & \leq P_{m} \lambda_{m}+\sum_{n=0}^{m} p_{n} \lambda_{n} \\
& =O(1)+O(1)=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

Lemma 3.3. Let $k \geq 1$ and $s_{n}=O(1)$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow$ ∞ as $n \rightarrow \infty$, then the series $\sum a_{n} \lambda_{n} P_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$.
Proof. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n} \lambda_{n} P_{n}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r} P_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} P_{v} .
$$

Then, for $n \geq 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} P_{v} a_{v} \lambda_{v} .
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} s_{v} \Delta \lambda_{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} p_{v} \lambda_{v} \\
& -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} p_{v+1} s_{v} \lambda_{v+1}+s_{n} p_{n} \lambda_{n} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say } .
\end{aligned}
$$

By Minkowski's inequality for $k>1$, to complete the proof of Lemma 3.3, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{3.1}
\end{equation*}
$$

Now, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$ and $k>1$, we get that

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{v=1}^{n-1}\left|s_{v}\right|^{k} P_{v} P_{v} \Delta \lambda_{v}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}\right\}^{k-1} .
$$

Since

$$
\sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} \leq P_{n-1} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v}
$$

it follows by Lemma 3.2 that

$$
\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} \leq \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v}=O(1) \quad \text { as } \quad n \rightarrow \infty
$$

Therefore

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k} P_{v} P_{v} \Delta \lambda_{v} \\
& =O(1) \sum_{v=1}^{m}\left|s_{v}\right|^{k} P_{v} P_{v} \Delta \lambda_{v} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} P_{v} \Delta \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(P_{v} \lambda_{v}\right)^{k} p_{v}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \\
& =O(1) \sum_{v=1}^{m}\left|s_{v}\right|^{k}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|s_{v}\right|^{k}\left(P_{v} \lambda_{v}\right)^{k} \frac{p_{v}}{P_{v}} \\
& =O(1) \sum_{v=1}^{m}\left|s_{v}\right|^{k}\left(P_{v} \lambda_{v}\right)^{k-1} p_{v} \lambda_{v} \\
& =O(1) \sum_{v=1}^{m} p_{v} \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of the hypotheses of Theorem 3.1 and Lemma 3.2. Using the fact that $P_{v}<P_{v+1}$, similarly we have that

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k}=O(1) \sum_{v=1}^{m} p_{v+1} \lambda_{v+1}=O(1) \quad \text { as } \quad m \rightarrow \infty
$$

Finally, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 4}\right|^{k} & =\sum_{n=1}^{m}\left|s_{n}\right|^{k}\left(P_{n} \lambda_{n}\right)^{k-1} p_{n} \lambda_{n} \\
& =O(1) \sum_{n=1}^{m} p_{n} \lambda_{n}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 3.2. Therefore, we get that

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2,3,4
$$

This completes the proof of Lemma 3.3 ,
In the particular case if we take $p_{n}=1$ for all values of n in Lemma 3.3, then we get the following corollary.

Corollary 3.4. Let $k \geq 1$ and and $s_{n}=O(1)$. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum \lambda_{n}$ is convergent, then the series $\sum n a_{n} \lambda_{n}$ is summable $|C, 1|_{k}$.

Proof of Theorem 3.1] Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighbourhood of this point only, hence the truth of Theorem 3.1 is a consequence of Lemma 3.3. If we take $p_{n}=1$ for all values of n in this theorem, then we get a new local property result concerning the $|C, 1|_{k}$ summability.

References

[1] S.N. BHATT, An aspect of local property of $|R, \log n, 1|$ summability of the factored Fourier series, Proc. Nat. Inst. Sci. India, 26 (1960), 69-73.
[2] H. BOR, On two summability methods, Math. Proc. Cambridge Philos Soc., 97 (1985), 147-149.
[3] K. MATSUMOTO, Local property of the summability $|R, \log n, 1|$, Tôhoku Math. J. (2), $\mathbf{8}$ (1956), 114-124.
[4] R. MOHANTY, On the summability $|R, \log w, 1|$ of Fourier series, J. London Math. Soc., 25 (1950), 67-72.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 126-05

