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1. Introduction

The well-known Hermite-Hadamard inequality states that iff : [a, b] → R is a
convex function, then

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

This pair of inequalities has been improved and extended in a number of ways.
One of the directions estimated the difference between the middle and rightmost
term in (1.1). For example, Dragomir and Agarwal presented the following result in
[2]: supposef : I ⊆ R → R is differentiable onI and|f ′|q is convex on[a, b] for
someq ≥ 1, whereI is an open interval inR anda, b ∈ I (a < b). Then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ≤ b− a

4

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.

Generalizations to higher-order convexity for this type of inequality were given in
[3]. Related results for Euler-midpoint, Euler-twopoint, Euler-Simpson, dual Euler-
Simpson, Euler-Maclaurin, Euler-Simpson 3/8 and Euler-Boole formulae were given
in [11]. Furthermore, related results for the general Euler 2-point formulae were
given in [10], unifying the cases of Euler trapezoid, Euler midpoint and Euler-
twopoint formulae.

The aim of this paper is to give related results for the general 3, 4 and 5-point
quadrature formulae, as well as for the corrected general 3, 4 and 5-point quadrature
formulae. In addition to values of the function at the chosen nodes, "corrected"
quadrature formulae include values of the first derivative at the end points of the
interval and also have higher accuracy than adjoint classical quadrature formulae.
They are sometimes called "quadratures with end corrections".
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Our first course of action was to obtain the quadrature formulae. This was done
using the extended Euler formulae, in which Bernoulli polynomials play an im-
portant role. For the reader’s convenience, let us recall some basic properties of
Bernoulli polynomials. Bernoulli polynomialsBk(t) are uniquely determined by

B′
k(x) = kBk−1(x), Bk(t + 1)−Bk(t) = ktk−1, k ≥ 0, B0(t) = 1.

For thekth Bernoulli polynomial we haveBk(1−x) = (−1)kBk(x), x ∈ R, k ≥ 1.
The kth Bernoulli numberBk is defined byBk = Bk(0). For k ≥ 2, we have

Bk(1) = Bk(0) = Bk. Note thatB2k−1 = 0, k ≥ 2 andB1(1) = −B1(0) = 1/2.
B∗

k(x) are periodic functions of period1 defined byB∗
k(x + 1) = B∗

k(x), x ∈ R,
and related to Bernoulli polynomials asB∗

k(x) = Bk(x), 0 ≤ x < 1. For k ≥ 2,
B∗

k(t) is a continuous function, whileB∗
1(x) is a discontinuous function with a jump

of −1 at each integer. For further details on Bernoulli polynomials, see [1] and [9].
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2. Preliminaries

General 3-point quadrature formulas were obtained in [5] and general corrected 3-
point quadrature formulas in [6]; general closed 4-point quadrature formulas were
considered in [7] and finally, general closed 5-point quadrature formulas were de-
rived in [8]. Namely, if f : [0, 1] → R is such thatf (n−1) is continuous and of
bounded variation on[0, 1] for somen ≥ 1, then we have

(2.1)
∫ 1

0

f(t)dt−Qα(x) + Tα
n−1(x) =

1

n!

∫ 1

0

Fα
n (x, t)df (n−1)(t),

for α = Q3, CQ3 andx ∈ [0, 1/2), for α = Q4, CQ4 andx ∈ (0, 1/2], and for
α = Q5, CQ5 andx ∈ (0, 1/2), where

QQ3(x) := Q

(
x,

1

2
, 1− x

)
=

f (x) + 24B2(x)f
(

1
2

)
+ f (1− x)

6(1− 2x)2
,

QCQ3(x) := QC

(
x,

1

2
, 1− x

)
=

7f(x)− 480B4(x)f
(

1
2

)
+ 7f(1− x)

30(1− 2x)2(1 + 4x− 4x2)
,

QQ4(x) := Q(0, x, 1− x, 1)

=
−6B2(x)f(0) + f(x) + f(1− x)− 6B2(x)f(1)

12x(1− x)
,

QCQ4(x) := QC(0, x, 1− x, 1)

=
30B4(x)f(0) + f(x) + f(1− x) + 30B4(x)f(1)

60x2(1− x)2
,
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QQ5(x) := Q

(
0, x,

1

2
, 1− x, 1

)
=

1

60x(1− x)(1− 2x)2

[
f(x) + f(1− x)

− (10x2 − 10x + 1)(1− 2x)2(f(0) + f(1))

+32x(1− x)(5x2 − 5x + 1)f

(
1

2

)]
,

QCQ5(x) := QC

(
0, x,

1

2
, 1− x, 1

)
=

1

420x2(1− x)2(1− 2x)2
[f(x) + f(1− x)

+ (98x4 − 196x3 + 102x2 − 4x− 1)(1− 2x)2(f(0) + f(1))

+ 64x2(1− x)2(14x2 − 14x + 3)f (1/2)
]

and

Tα
n−1(x) =

b(n−1)/2c∑
k=1

1

(2k)!
Gα

2k(x, 0) [f (2k−1)(1)− f (2k−1)(0)],

Fα
n (x, t) = Gα

n(x, t)−Gα
n(x, 0),(2.2)

and finally,

GQ3
n (x, t) =

B∗
n (x− t) + 24B2(x) ·B∗

n

(
1
2
− t
)

+ B∗
n (1− x− t)

6(1− 2x)2
,(2.3)

GCQ3
n (x, t) =

7B∗
n (x− t)− 480B4(x) ·B∗

n

(
1
2
− t
)

+ 7B∗
n (1− x− t)

30(1− 2x)2(1 + 4x− 4x2)
,(2.4)
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GQ4
n (x, t) =

B∗
n (x− t)− 12B2(x) ·B∗

n (1− t) + B∗
n (1− x− t)

12x(1− x)
,(2.5)

GCQ4
n (x, t) =

60B4(x) ·B∗
n (1− t) + B∗

n (x− t) + B∗
n (1− x− t)

60x2(1− x)2
,(2.6)

(2.7) GQ5
n (x, t) =

10x2 − 10x + 1

30x(x− 1)
B∗

n (1− t)

+
B∗

n (x− t) + B∗
n (1− x− t)

60x(1− x)(1− 2x)2
+

8(5x2 − 5x + 1)

15(1− 2x)2
B∗

n

(
1

2
− t

)
,

(2.8) GCQ5
n (x, t) =

98x4 − 196x3 + 102x2 − 4x− 1

210x2(1− x)2
B∗

n (1− t)

+
B∗

n (x− t) + B∗
n (1− x− t)

420x2(1− x)2(1− 2x)2
+

16(14x2 − 14x + 3)

105(1− 2x)2
B∗

n

(
1

2
− t

)
.

The following lemma was the key result for obtaining the results in [5], [6], [7]
and [8], and we shall need it here as well.

Lemma 2.1. For x ∈ {0} ∪ [1/6, 1/2) and n ≥ 2, GQ3
2n−1(x, t) has no zeros in

variablet on (0, 1/2). The sign of the function is determined by:

(−1)n+1GQ3
2n−1(x, t) > 0 for x ∈ [1/6, 1/2) and (−1)nGQ3

2n−1(0, t) > 0.

For x ∈
[
0, 1/2−

√
15/10

]
∪ [1/6, 1/2) andn ≥ 3, GCQ3

2n−1(x, t) has no zeros in
variablet on (0, 1/2). The sign of the function is determined by:

(−1)nGCQ3
2n−1(x, t) > 0 for x ∈ [0, 1/2−

√
15/10],

(−1)n+1GCQ3
2n−1(x, t) > 0 for x ∈ [1/6, 1/2).
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For x ∈ (0, 1/2 −
√

3/6] ∪ [1/3, 1/2] andn ≥ 2, GQ4
2n−1(x, t) has no zeros in

variablet on (0, 1/2). The sign of the function is determined by:

(−1)n+1GQ4
2n−1(x, t) > 0 for x ∈ (0, 1/2−

√
3/6],

(−1)nGQ4
2n−1(x, t) > 0 for x ∈ [1/3, 1/2].

For x ∈ (0, 1/2 −
√

5/10] ∪ [1/3, 1/2] andn ≥ 3, GCQ4
2n−1(x, t) has no zeros in

variablet on (0, 1/2). The sign of the function is determined by:

(−1)n+1GCQ4
2n−1(x, t) > 0 for x ∈ (0, 1/2−

√
5/10],

(−1)nGCQ4
2n−1(x, t) > 0 for x ∈ [1/3, 1/2].

For x ∈ (0, 1/2−
√

15/10] ∪ [1/5, 1/2) andn ≥ 3, GQ5
2n−1(x, t) has no zeros in

variablet on (0, 1/2). The sign of the function is determined by:

(−1)nGQ5
2n−1(x, t) > 0 for x ∈

(
0, 1/2−

√
15/10

]
,

(−1)n+1GQ5
2n−1(x, t) > 0 for x ∈ [1/5, 1/2) .

For x ∈ (0, 1/2−
√

21/14]∪ [3/7−
√

2/7, 1/2) andn ≥ 4, GCQ5
2n−1(x, t) has no

zeros in variablet on (0, 1/2). The sign of the function is determined by:

(−1)nGCQ5
2n−1(x, t) > 0 for x ∈

(
0, 1/2−

√
21/14

]
,

(−1)n+1GCQ5
2n−1(x, t) > 0 for x ∈

[
3/7−

√
2/7, 1/2

)
,

whereGQ3
2n−1 is as in (2.3), GCQ3

2n−1 as in (2.4), GQ4
2n−1 as in (2.5), GCQ4

2n−1 as in (2.6),
GQ5

2n−1 as in (2.7) andGCQ5
2n−1 as in (2.8).
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Applying properties of Bernoulli polynomials, it easily follows that functionsGα
n

for α = Q3, CQ3, Q4, CQ4, Q5, CQ5 andn ≥ 1, have the following properties:

Gα
n(x, 1− t) = (−1)nGα

n(x, t), t ∈ [0, 1],(2.9)
∂jGα

n(x, t)

∂tj
= (−1)j n!

(n− j)!
Gα

n−j(x, t), j = 1, 2, . . . , n,(2.10)

also, thatGα
2n−1(x, 0) = 0 for n ≥ 1, and soFα

2n−1(x, t) = Gα
2n−1(x, t).

These properties and Lemma2.1 yield that functionsFα
2n, defined by (2.2), are

monotonous on(0, 1/2) and(1/2, 1), have constant sign on(0, 1), so the functions
|Fα

2n(t)| attain their maximal value att = 1/2. Finally, using (2.9) and (2.10), it is
not hard to establish that under the assumptions of Lemma2.1we have:∫ 1

0

|Fα
2n(x, t)|dt = 2

∫ 1

0

t|Fα
2n(x, t)|dt = |Gα

2n(x, 0)|,(2.11) ∫ 1

0

|Gα
2n−1(x, t)|dt = 2

∫ 1

0

t|Gα
2n−1(x, t)|dt =

1

n
|Fα

2n (x, 1/2)| .(2.12)

Now that we have stated all the previously obtained results which form a basis
for the results of this paper, we proceed to the main result.
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3. Main Result

To shorten notation, we denote the left-hand side of (2.1) by
∫ 1

0
f(t)dt−∆α

n(x), i.e.

∆α
n(x) := Qα(x)− Tα

n−1(x)

for α = Q3, CQ3, Q4, CQ4, Q5, CQ5 andn ≥ 1.

Theorem 3.1. Let f : [0, 1] → R ben-times differentiable. If|f (n)|p is convex for
somep ≥ 1 and

• n ≥ 3 and

1. α = Q3 andx ∈ {0} ∪ [1/6, 1/2),

2. α = Q4 andx ∈ (0, 1/2−
√

3/6] ∪ [1/3, 1/2],

• n ≥ 5 and

1. α = CQ3 andx ∈ [0, 1/2−
√

15/10] ∪ [1/6, 1/2),

2. α = CQ4 andx ∈ (0, 1/2−
√

5/10] ∪ [1/3, 1/2],

3. α = Q5 andx ∈ (0, 1/2−
√

15/10] ∪ [1/5, 1/2),

• n ≥ 7 and

1. α = CQ5 andx ∈ (0, 1/2−
√

21/14] ∪ [3/7−
√

2/7, 1/2),

then we have

(3.1)

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣ ≤ Cα(n, x) ·
(
|f (n)(0)|p + |f (n)(1)|p

2

) 1
p
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while if, under same conditions,|f (n)| is concave, then

(3.2)

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣ ≤ Cα(n, x) ·
∣∣∣∣f (n)

(
1

2

)∣∣∣∣ ,
where

Cα(2k − 1, x) =
2

(2k)!

∣∣∣∣Fα
2k

(
x,

1

2

)∣∣∣∣ and Cα(2k, x) =
1

(2k)!
|Gα

2k(x, 0)|

with functionsFα
2k defined as in (2.2) and Gα

2k as in (2.3), (2.4), (2.5), (2.6), (2.7)
and (2.8).

Proof. First, recall thatFα
2k−1(x, t) = Gα

2k−1(x, t). Now, starting from (2.1), we
apply Hölder’s and then Jensen’s inequality for the convex function|f (n)|p, to obtain

n!

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣
≤
∫ 1

0

|Fα
n (x, t)| · |f (n)(t)|dt

≤
(∫ 1

0

|Fα
n (x, t)|dt

)1− 1
p
(∫ 1

0

|f (n)((1− t) · 0 + t · 1)|p · |Fα
n (x, t)|dt

) 1
p

≤
(∫ 1

0

|Fα
n (x, t)|dt

)1− 1
p

×
(
|f (n)(0)|p

∫ 1

0

(1− t)|Fα
n (x, t)|dt + |f (n)(1)|p

∫ 1

0

t|Fα
n (x, t)|dt

) 1
p

.

Inequality (3.1) now follows from (2.11) and (2.12).
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To prove (3.2), apply Jensen’s integral inequality to (2.1) to obtain

n!

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣
≤
∫ 1

0

|Fα
n (x, t)| · |f (n)((1− t) · 0 + t · 1)|dt

≤
∫ 1

0

|Fα
n (x, t)|dt ·

∣∣∣∣∣f (n)

(∫ 1

0
((1− t) · 0 + t · 1)|Fα

n (x, t)|dt∫ 1

0
|Fα

n (x, t)|dt

)∣∣∣∣∣ .

Theorem3.1 provides numerous interesting special cases. Particular choices of
node will procure the Dragomir-Agarwal-type estimates for many classical quadra-
ture formulas, as well as the adjoint corrected ones.

3.1. CASE α = Q3 and n = 3, 4

Forx = 0, Theorem3.1gives Dragomir-Agarwal-type estimates for Simpson’s for-
mula; forx = 1/4 it provides the estimates for the dual Simpson formula and for
x = 1/6 for Maclaurin’s formula. These were already obtained in [11]; Simpson’s
formula was also considered in [4].

For x = 1/2 −
√

3/6 (⇔ B2(x) = 0), the following estimates are obtained for
the Gauss 2-point formula:

∆Q3
n

(
3−

√
3

6

)
=

1

2
f

(
3−

√
3

6

)
+

1

2
f

(
3−

√
3

6

)
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and

CQ3

(
3,

3−
√

3

6

)
=

9− 4
√

3

1728
≈ 1.2 · 10−3,

CQ3

(
4,

3−
√

3

6

)
=

1

4320
≈ 2.3 · 10−4.

3.2. CASE α = CQ3 and n = 5, 6

For x = 0, the following estimates for the corrected Simpson’s formula are pro-
duced:

∆CQ3
n (0) =

1

30

[
7f(0) + 16f

(
1

2

)
+ 7f(1)

]
− 1

60
[f ′(1)− f ′(0)]

and

CCQ3(5, 0) =
1

115200
≈ 8.68 · 10−6,

CCQ3(6, 0) =
1

604800
≈ 1.65 · 10−6.

For x = 1/6, the following estimates for the corrected Maclaurin’s formula are
produced:

∆CQ3
n

(
1

6

)
=

1

80

[
27f

(
1

6

)
+ 26f

(
1

2

)
+ 27f

(
5

6

)]
+

1

240
[f ′(1)− f ′(0)]
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and

CCQ3

(
5,

1

6

)
=

1

691200
≈ 1.45 · 10−6,

CCQ3

(
6,

1

6

)
=

31

87091200
≈ 3.56 · 10−7.

For x = 1/4, the following estimates for the corrected dual Simpson’s formula
are produced:

∆CQ3
n

(
1

4

)
=

1

15

[
8f

(
1

4

)
− f

(
1

2

)
+ 8f

(
3

4

)]
+

1

120
[f ′(1)− f ′(0)]

and

CCQ3

(
5,

1

4

)
=

1

115200
≈ 8.68 · 10−6,

CCQ3

(
6,

1

4

)
=

31

19353600
≈ 1.6 · 10−6.

For x = 1/2 −
√

15/10 (⇔ GCQ3
2 (x, 0) = 0), the following estimates for the

Gauss 3-point formula are produced:

∆CQ3
n

(
5−

√
15

10

)
=

1

18

[
5f

(
5−

√
15

10

)
+ 8f

(
1

2

)
+ 5f

(
5 +

√
15

10

)]
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vol. 10, iss. 3, art. 65, 2009

Title Page

Contents

JJ II

J I

Page 15 of 23

Go Back

Full Screen

Close

and

CCQ3

(
5,

5−
√

15

10

)
=

25− 6
√

15

576000
≈ 3.06 · 10−6,

CCQ3

(
6,

5−
√

15

10

)
=

1

2016000
≈ 4.96 · 10−7.

For x = x0 := 1/2 −
√

225− 30
√

30
/

30 (⇔ B4(x) = 0) (the case when

the weight next tof(1/2) is annihilated), the following estimates for the corrected
Gauss 2-point formula are produced:

∆CQ3
n (x0) =

1

2
f (x0) +

1

2
f (1− x0)−

5−
√

30

60
[f ′(1)− f ′(0)]

and

CCQ3

(
5,

15−
√

225− 30
√

30

30

)

=
46
√

225− 30
√

30− 120
√

30− 4
√

30 + 150
√

30− 825

1728000
≈ 7.86 · 10−6,

CCQ3

(
6,

15−
√

225− 30
√

30

30

)
=

45− 7
√

30

4536000
≈ 1.47 · 10−6.

3.3. CASE α = Q4 and n = 3, 4

Forx = 1/3, the estimates for the Simpson 3/8 formula from [11] are recaptured.
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3.4. CASE α = CQ4 and n = 5, 6

For x = 1/3, the following estimates for the corrected Simpson 3/8 formula are
produced:

∆CQ4
n

(
1

3

)
=

1

80

[
13f(0) + 27f

(
1

3

)
+ 27f

(
2

3

)
+ 13f (1)

]
− 1

120
[f ′(1)−f ′(0)]

and

CCQ4

(
5,

1

3

)
=

1

691200
≈ 1.45 · 10−6,

CCQ4

(
6,

1

3

)
=

1

2721600
≈ 3.67 · 10−7.

For x = 1/2 −
√

5/10
(
⇔ GCQ4

2 (x, 0) = 0
)

, the following estimates for the

Lobatto 4-point formula are produced:

∆CQ4
n

(
1

3

)
=

1

12

[
f(0) + 5f

(
5−

√
5

10

)
+ 5f

(
5 +

√
5

10

)
+ f(1)

]
and

CCQ4

(
5,

5−
√

5

10

)
=

√
5

576000
≈ 3.88 · 10−6,

CCQ4

(
6,

5−
√

5

10

)
=

1

1512000
≈ 6.61 · 10−7.
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3.5. CASE α = Q5 and n = 5, 6

Forx = 1/4, the following estimates for Boole’s formula from [11] are recaptured.

3.6. CASE α = CQ5 and n = 7, 8

For x = 1/2 −
√

21/14
(
⇔ GCQ5

2 (x, 0) = 0
)

, the following estimates for the

Lobatto 5-point formula are produced:

∆CQ5
n

(
1

4

)
=

1

180

[
9f(0) + 49f

(
7−

√
21

14

)
+ 64f

(
1

2

)
+ 49f

(
7 +

√
21

14

)
+ 9f(1)

]
and

CCQ5

(
7,

7−
√

21

14

)
=

12
√

21− 49

1264435200
≈ 4.74 · 10−9,

CCQ5

(
8,

7−
√

21

14

)
=

1

1422489600
≈ 7.03 · 10−10.

For x = 1/4, the following estimates for the corrected Boole’s formula are pro-
duced:

∆CQ5
n

(
1

4

)
=

1

1890

[
217f(0) + 512f

(
1

4

)
+ 432f

(
1

2

)
+512f

(
3

4

)
+ 217f(1)

]
− 1

252
[f ′(1)− f ′(0)]
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vol. 10, iss. 3, art. 65, 2009

Title Page

Contents

JJ II

J I

Page 18 of 23

Go Back

Full Screen

Close

and

CCQ5

(
7,

1

4

)
=

17

4877107200
≈ 3.49 · 10−9,

CCQ5

(
8,

1

4

)
=

1

1625702400
≈ 6.15 · 10−10.

Further, forx = 1/2−
√

7/14 (⇔ 14x2− 14x + 3 = 0), which is the case when
the weight next tof(1/2) is annihilated, the following estimates for the corrected
Lobatto 4-point formula are produced:

∆CQ5
n

(
7−

√
7

14

)
=

1

270

[
37f(0) + 98f

(
7−

√
7

14

)

+98f

(
7 +

√
7

14

)
+ 37f(1)

]
− 1

180
[f ′(1)− f ′(0)]

and

CCQ5

(
7,

7−
√

7

14

)
=

343− 16
√

7

34139750400
≈ 8.81 · 10−9,

CCQ5

(
8,

7−
√

7

14

)
=

1

711244800
≈ 1.41 · 10−9.
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Finally, for

x = x0 :=
1

2
−
√

45− 2
√

102

14(
⇔ 98x4 − 196x3 + 102x2 − 4x− 1

= 98

(
x2 − x +

1

49
−
√

102

98

)(
x2 − x +

1

49
+

√
102

98

)
= 0

)
,

which is the case when the weight next tof(0) andf(1) is annihilated, the estimates
for the corrected Gauss 3-point formula are produced:

∆CQ5
n (x0) =

1977 + 16
√

102

6930
[f(x0) + f(1− x0)]

+
1488− 16

√
102

3465
f

(
1

2

)
− 9−

√
102

420
[f ′(1)− f ′(0)]

and

CCQ5 (7, x0) =
24
√

60933− 6014
√

102− 49(87− 8
√

102)

3793305600
≈ 8.12 · 10−9,

CCQ5 (8, x0) =
43− 3

√
102

9957427200
≈ 1.28 · 10−9.

Remark1. An interesting fact to point out is that out of all the 3-point quadrature for-
mulae, Maclaurin’s formula gives the least estimate of error in Theorem3.1; among
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the corrected 3-point quadrature formulae, the corrected Maclaurin’s formula has the
same property.

Further, among the closed 4-point quadrature formulas, the Simpson 3/8 formula
gives the best estimate and the corrected Simpson 3/8 formula is the optimal cor-
rected closed 4-point quadrature formula.

Finally, the nodex = 1/5 produces the closed 5-point quadrature formula with
the best error estimate, while the nodex = 3/7 −

√
2/7 produces the corrected

closed 5-point quadrature formula with the same property.
The proofs are similar to those in [5], [6], [7] and [8], respectively.

In view of the previous remark, let us consider the caseα = Q5, n = 5, 6 and
x = 1/5. We have:

∆Q5
n

(
1

5

)
=

1

432

[
27f(0) + 125f

(
1

5

)
+ 128f

(
1

2

)
+ 125f

(
4

5

)
+ 27f(1)

]
and

CQ5

(
5,

1

5

)
=

1

1152000
≈ 8.68 · 10−7,

CQ5

(
6,

1

5

)
=

1

5040000
≈ 1.98 · 10−7.

Further, forα = CQ5, n = 7, 8 andx = x0 := 3/7−
√

2/7 we obtain:

∆CQ5
n (x0) = 0.10143 [f(0) + f(1)] + 0.259261 [f(x0) + f(1− x0)]

+ 0.278617 f

(
1

2

)
+ 3.07832 · 10−3 [f ′(1)− f ′(0)]
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and

CCQ5 (7, x0) =
27− 16

√
2

3793305600
≈ 1.15 · 10−9,

CCQ5 (8, x0) =
11− 6

√
2

9957427200
≈ 2.53 · 10−10.
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