DRAGOMIR-AGARWAL TYPE INEQUALITIES FOR SEVERAL FAMILIES OF QUADRATURES

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page

Received:
Accepted:
05 May, 2009

Communicated by:
15 September, 2009

2000 AMS Sub. Class.:
S.S. Dragomir

Key words:

Abstract:

Acknowledgements:
J. PEČARIĆ

Faculty of Textile Technology
University of Zagreb
Prilaz baruna Filipovića 28a
10000 Zagreb, Croatia
EMail: pecaric@hazu.hr

Contents

Page 1 of 23
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Preliminaries 5
3 Main Result 10
3.1 \quad CASE $\alpha=Q 3$ and $n=3,4$ 12
3.2 CASE $\alpha=C Q 3$ and $n=5,6$ 13
3.3 CASE $\alpha=Q 4$ and $n=3,4$ 15
3.4 CASE $\alpha=C Q 4$ and $n=5,6$ 16
$3.5 \quad$ CASE $\alpha=Q 5$ and $n=5,6$ 17
3.6 CASE $\alpha=C Q 5$ and $n=7,8$ 17

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 2 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

The well-known Hermite-Hadamard inequality states that if $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

This pair of inequalities has been improved and extended in a number of ways. One of the directions estimated the difference between the middle and rightmost term in (1.1). For example, Dragomir and Agarwal presented the following result in [2]: suppose $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on I and $\left|f^{\prime}\right|^{q}$ is convex on $[a, b]$ for some $q \geq 1$, where I is an open interval in \mathbb{R} and $a, b \in I(a<b)$. Then

$$
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq \frac{b-a}{4}\left[\frac{\left|f^{\prime}(a)\right|^{q}+\left|f^{\prime}(b)\right|^{q}}{2}\right]^{\frac{1}{q}}
$$

Generalizations to higher-order convexity for this type of inequality were given in [3]. Related results for Euler-midpoint, Euler-twopoint, Euler-Simpson, dual EulerSimpson, Euler-Maclaurin, Euler-Simpson 3/8 and Euler-Boole formulae were given in [11]. Furthermore, related results for the general Euler 2-point formulae were given in [10], unifying the cases of Euler trapezoid, Euler midpoint and Eulertwopoint formulae.

The aim of this paper is to give related results for the general 3, 4 and 5-point quadrature formulae, as well as for the corrected general 3, 4 and 5-point quadrature formulae. In addition to values of the function at the chosen nodes, "corrected" quadrature formulae include values of the first derivative at the end points of the interval and also have higher accuracy than adjoint classical quadrature formulae. They are sometimes called "quadratures with end corrections".

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 3 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Our first course of action was to obtain the quadrature formulae. This was done using the extended Euler formulae, in which Bernoulli polynomials play an important role. For the reader's convenience, let us recall some basic properties of Bernoulli polynomials. Bernoulli polynomials $B_{k}(t)$ are uniquely determined by

$$
B_{k}^{\prime}(x)=k B_{k-1}(x), \quad B_{k}(t+1)-B_{k}(t)=k t^{k-1}, \quad k \geq 0, B_{0}(t)=1
$$

For the k th Bernoulli polynomial we have $B_{k}(1-x)=(-1)^{k} B_{k}(x), x \in \mathbb{R}, k \geq 1$.
The k th Bernoulli number B_{k} is defined by $B_{k}=B_{k}(0)$. For $k \geq 2$, we have

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 4 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Preliminaries

General 3-point quadrature formulas were obtained in [5] and general corrected 3point quadrature formulas in [6]; general closed 4-point quadrature formulas were considered in [7] and finally, general closed 5-point quadrature formulas were derived in [8]. Namely, if $f:[0,1] \rightarrow \mathbb{R}$ is such that $f^{(n-1)}$ is continuous and of bounded variation on $[0,1]$ for some $n \geq 1$, then we have

$$
\begin{equation*}
\int_{0}^{1} f(t) d t-Q_{\alpha}(x)+T_{n-1}^{\alpha}(x)=\frac{1}{n!} \int_{0}^{1} F_{n}^{\alpha}(x, t) d f^{(n-1)}(t) \tag{2.1}
\end{equation*}
$$

Dragomir-Agarwal Type Inequalities

$$
\begin{aligned}
Q_{Q 3}(x) & :=Q\left(x, \frac{1}{2}, 1-x\right)=\frac{f(x)+24 B_{2}(x) f\left(\frac{1}{2}\right)+f(1-x)}{6(1-2 x)^{2}} \\
Q_{C Q 3}(x) & :=Q_{C}\left(x, \frac{1}{2}, 1-x\right)=\frac{7 f(x)-480 B_{4}(x) f\left(\frac{1}{2}\right)+7 f(1-x)}{30(1-2 x)^{2}\left(1+4 x-4 x^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
Q_{Q 4}(x) & :=Q(0, x, 1-x, 1) \\
& =\frac{-6 B_{2}(x) f(0)+f(x)+f(1-x)-6 B_{2}(x) f(1)}{12 x(1-x)}
\end{aligned}
$$

$$
\begin{aligned}
Q_{C Q 4}(x) & :=Q_{C}(0, x, 1-x, 1) \\
& =\frac{30 B_{4}(x) f(0)+f(x)+f(1-x)+30 B_{4}(x) f(1)}{60 x^{2}(1-x)^{2}},
\end{aligned}
$$

for $\alpha=Q 3, C Q 3$ and $x \in[0,1 / 2)$, for $\alpha=Q 4, C Q 4$ and $x \in(0,1 / 2]$, and for $\alpha=Q 5, C Q 5$ and $x \in(0,1 / 2)$, where
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 5 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\left.\begin{array}{c}
\begin{array}{rl}
Q_{Q 5}(x): & =Q\left(0, x, \frac{1}{2}, 1-x, 1\right)
\end{array} \\
=\frac{1}{60 x(1-x)(1-2 x)^{2}}[f(x)+f(1-x) \\
\\
\quad-\left(10 x^{2}-10 x+1\right)(1-2 x)^{2}(f(0)+f(1)) \\
\left.\quad+32 x(1-x)\left(5 x^{2}-5 x+1\right) f\left(\frac{1}{2}\right)\right]
\end{array}\right\}
$$

and

$$
\begin{equation*}
T_{n-1}^{\alpha}(x)=\sum_{k=1}^{\lfloor(n-1) / 2\rfloor} \frac{1}{(2 k)!} G_{2 k}^{\alpha}(x, 0)\left[f^{(2 k-1)}(1)-f^{(2 k-1)}(0)\right], \tag{2.2}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
G_{n}^{Q 3}(x, t)=\frac{B_{n}^{*}(x-t)+24 B_{2}(x) \cdot B_{n}^{*}\left(\frac{1}{2}-t\right)+B_{n}^{*}(1-x-t)}{6(1-2 x)^{2}} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
G_{n}^{C Q 3}(x, t)=\frac{7 B_{n}^{*}(x-t)-480 B_{4}(x) \cdot B_{n}^{*}\left(\frac{1}{2}-t\right)+7 B_{n}^{*}(1-x-t)}{30(1-2 x)^{2}\left(1+4 x-4 x^{2}\right)} \tag{2.4}
\end{equation*}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 6 of 23

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{align*}
G_{n}^{Q 4}(x, t) & =\frac{B_{n}^{*}(x-t)-12 B_{2}(x) \cdot B_{n}^{*}(1-t)+B_{n}^{*}(1-x-t)}{12 x(1-x)} \tag{2.5}\\
G_{n}^{C Q 4}(x, t) & =\frac{60 B_{4}(x) \cdot B_{n}^{*}(1-t)+B_{n}^{*}(x-t)+B_{n}^{*}(1-x-t)}{60 x^{2}(1-x)^{2}} \tag{2.6}
\end{align*}
$$

2.7) $G_{n}^{Q 5}(x, t)=\frac{10 x^{2}-10 x+1}{30 x(x-1)} B_{n}^{*}(1-t)$

$$
+\frac{B_{n}^{*}(x-t)+B_{n}^{*}(1-x-t)}{60 x(1-x)(1-2 x)^{2}}+\frac{8\left(5 x^{2}-5 x+1\right)}{15(1-2 x)^{2}} B_{n}^{*}\left(\frac{1}{2}-t\right),
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page

Contents

$$
\begin{align*}
& G_{n}^{C Q 5}(x, t)=\frac{98 x^{4}-196 x^{3}+102 x^{2}-4 x-1}{210 x^{2}(1-x)^{2}} B_{n}^{*}(1-t) \tag{4}\\
& \quad+\frac{B_{n}^{*}(x-t)+B_{n}^{*}(1-x-t)}{420 x^{2}(1-x)^{2}(1-2 x)^{2}}+\frac{16\left(14 x^{2}-14 x+3\right)}{105(1-2 x)^{2}} B_{n}^{*}\left(\frac{1}{2}-t\right) \tag{2.8}
\end{align*}
$$

The following lemma was the key result for obtaining the results in [5], [6], [7] and [8], and we shall need it here as well.

Lemma 2.1. For $x \in\{0\} \cup[1 / 6,1 / 2)$ and $n \geq 2, G_{2 n-1}^{Q 3}(x, t)$ has no zeros in variable t on $(0,1 / 2)$. The sign of the function is determined by:

$$
(-1)^{n+1} G_{2 n-1}^{Q 3}(x, t)>0 \quad \text { for } x \in[1 / 6,1 / 2) \quad \text { and } \quad(-1)^{n} G_{2 n-1}^{Q 3}(0, t)>0
$$

For $x \in[0,1 / 2-\sqrt{15} / 10] \cup[1 / 6,1 / 2)$ and $n \geq 3, G_{2 n-1}^{C Q 3}(x, t)$ has no zeros in variable t on $(0,1 / 2)$. The sign of the function is determined by:

$$
\begin{aligned}
& (-1)^{n} G_{2 n-1}^{C Q 3}(x, t)>0 \quad \text { for } x \in[0,1 / 2-\sqrt{15} / 10], \\
& (-1)^{n+1} G_{2 n-1}^{C Q 3}(x, t)>0 \text { for } x \in[1 / 6,1 / 2)
\end{aligned}
$$

M
A

For $x \in(0,1 / 2-\sqrt{3} / 6] \cup[1 / 3,1 / 2]$ and $n \geq 2, G_{2 n-1}^{Q 4}(x, t)$ has no zeros in variable t on $(0,1 / 2)$. The sign of the function is determined by:

$$
\begin{aligned}
& (-1)^{n+1} G_{2 n-1}^{Q 4}(x, t)>0 \text { for } x \in(0,1 / 2-\sqrt{3} / 6], \\
& (-1)^{n} G_{2 n-1}^{Q 4}(x, t)>0 \text { for } x \in[1 / 3,1 / 2] .
\end{aligned}
$$

For $x \in(0,1 / 2-\sqrt{5} / 10] \cup[1 / 3,1 / 2]$ and $n \geq 3, G_{2 n-1}^{C Q 4}(x, t)$ has no zeros in variable t on $(0,1 / 2)$. The sign of the function is determined by:

$$
\begin{aligned}
& (-1)^{n+1} G_{2 n-1}^{C Q 4}(x, t)>0 \text { for } x \in(0,1 / 2-\sqrt{5} / 10] \\
& (-1)^{n} G_{2 n-1}^{C Q 4}(x, t)>0 \text { for } x \in[1 / 3,1 / 2]
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 8 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $G_{2 n-1}^{Q 3}$ is as in (2.3), $G_{2 n-1}^{C Q 3}$ as in (2.4), $G_{2 n-1}^{Q 4}$ as in (2.5), $G_{2 n-1}^{C Q 4}$ as in (2.6), $G_{2 n-1}^{Q 5}$ as in (2.7) and $G_{2 n-1}^{C Q 5}$ as in (2.8).

Applying properties of Bernoulli polynomials, it easily follows that functions G_{n}^{α} for $\alpha=Q 3, C Q 3, Q 4, C Q 4, Q 5, C Q 5$ and $n \geq 1$, have the following properties:

$$
\begin{align*}
& G_{n}^{\alpha}(x, 1-t)=(-1)^{n} G_{n}^{\alpha}(x, t), \quad t \in[0,1] \tag{2.9}\\
& \frac{\partial^{j} G_{n}^{\alpha}(x, t)}{\partial t^{j}}=(-1)^{j} \frac{n!}{(n-j)!} G_{n-j}^{\alpha}(x, t), \quad j=1,2, \ldots, n, \tag{2.10}
\end{align*}
$$

also, that $G_{2 n-1}^{\alpha}(x, 0)=0$ for $n \geq 1$, and so $F_{2 n-1}^{\alpha}(x, t)=G_{2 n-1}^{\alpha}(x, t)$.
These properties and Lemma 2.1 yield that functions $F_{2 n}^{\alpha}$, defined by (2.2), are monotonous on $(0,1 / 2)$ and $(1 / 2,1)$, have constant sign on $(0,1)$, so the functions $\left|F_{2 n}^{\alpha}(t)\right|$ attain their maximal value at $t=1 / 2$. Finally, using (2.9) and (2.10), it is not hard to establish that under the assumptions of Lemma 2.1 we have:

$$
\begin{align*}
& \int_{0}^{1}\left|F_{2 n}^{\alpha}(x, t)\right| d t=2 \int_{0}^{1} t\left|F_{2 n}^{\alpha}(x, t)\right| d t=\left|G_{2 n}^{\alpha}(x, 0)\right|, \tag{2.11}\\
& \int_{0}^{1}\left|G_{2 n-1}^{\alpha}(x, t)\right| d t=2 \int_{0}^{1} t\left|G_{2 n-1}^{\alpha}(x, t)\right| d t=\frac{1}{n}\left|F_{2 n}^{\alpha}(x, 1 / 2)\right| \tag{2.12}
\end{align*}
$$

Now that we have stated all the previously obtained results which form a basis for the results of this paper, we proceed to the main result.

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 9 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Main Result

To shorten notation, we denote the left-hand side of (2.1) by $\int_{0}^{1} f(t) d t-\Delta_{n}^{\alpha}(x)$, i.e.

$$
\Delta_{n}^{\alpha}(x):=Q_{\alpha}(x)-T_{n-1}^{\alpha}(x)
$$

for $\alpha=Q 3, C Q 3, Q 4, C Q 4, Q 5, C Q 5$ and $n \geq 1$.

Theorem 3.1. Let $f:[0,1] \rightarrow \mathbb{R}$ be n-times differentiable. If $\left|f^{(n)}\right|^{p}$ is convex for some $p \geq 1$ and

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

- $n \geq 3$ and

1. $\alpha=Q 3$ and $x \in\{0\} \cup[1 / 6,1 / 2)$,
2. $\alpha=Q 4$ and $x \in(0,1 / 2-\sqrt{3} / 6] \cup[1 / 3,1 / 2]$,

- $n \geq 5$ and

1. $\alpha=C Q 3$ and $x \in[0,1 / 2-\sqrt{15} / 10] \cup[1 / 6,1 / 2)$,
2. $\alpha=C Q 4$ and $x \in(0,1 / 2-\sqrt{5} / 10] \cup[1 / 3,1 / 2]$,
3. $\alpha=Q 5$ and $x \in(0,1 / 2-\sqrt{15} / 10] \cup[1 / 5,1 / 2)$,

- $n \geq 7$ and

1. $\alpha=C Q 5$ and $x \in(0,1 / 2-\sqrt{21} / 14] \cup[3 / 7-\sqrt{2} / 7,1 / 2)$,
then we have

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) d t-\Delta_{n}^{\alpha}(x)\right| \leq C_{\alpha}(n, x) \cdot\left(\frac{\left|f^{(n)}(0)\right|^{p}+\left|f^{(n)}(1)\right|^{p}}{2}\right)^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

——
Title Page
Contents

Page 10 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
while if, under same conditions, $\left|f^{(n)}\right|$ is concave, then

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) d t-\Delta_{n}^{\alpha}(x)\right| \leq C_{\alpha}(n, x) \cdot\left|f^{(n)}\left(\frac{1}{2}\right)\right| \tag{3.2}
\end{equation*}
$$

where

$$
C_{\alpha}(2 k-1, x)=\frac{2}{(2 k)!}\left|F_{2 k}^{\alpha}\left(x, \frac{1}{2}\right)\right| \quad \text { and } \quad C_{\alpha}(2 k, x)=\frac{1}{(2 k)!}\left|G_{2 k}^{\alpha}(x, 0)\right|
$$

with functions $F_{2 k}^{\alpha}$ defined as in (2.2) and $G_{2 k}^{\alpha}$ as in (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8).
Proof. First, recall that $F_{2 k-1}^{\alpha}(x, t)=G_{2 k-1}^{\alpha}(x, t)$. Now, starting from (2.1), we apply Hölder's and then Jensen's inequality for the convex function $\left|f^{(n)}\right|^{p}$, to obtain

$$
\begin{aligned}
& n!\left|\int_{0}^{1} f(t) d t-\Delta_{n}^{\alpha}(x)\right| \\
& \leq \int_{0}^{1}\left|F_{n}^{\alpha}(x, t)\right| \cdot\left|f^{(n)}(t)\right| d t \\
& \leq\left(\int_{0}^{1}\left|F_{n}^{\alpha}(x, t)\right| d t\right)^{1-\frac{1}{p}}\left(\int_{0}^{1}\left|f^{(n)}((1-t) \cdot 0+t \cdot 1)\right|^{p} \cdot\left|F_{n}^{\alpha}(x, t)\right| d t\right)^{\frac{1}{p}} \\
& \leq\left(\int_{0}^{1}\left|F_{n}^{\alpha}(x, t)\right| d t\right)^{1-\frac{1}{p}} \\
& \quad \times\left(\left|f^{(n)}(0)\right|^{p} \int_{0}^{1}(1-t)\left|F_{n}^{\alpha}(x, t)\right| d t+\left|f^{(n)}(1)\right|^{p} \int_{0}^{1} t\left|F_{n}^{\alpha}(x, t)\right| d t\right)^{\frac{1}{p}}
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 11 of 23
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

To prove (3.2), apply Jensen's integral inequality to (2.1) to obtain

$$
\begin{aligned}
& n!\left|\int_{0}^{1} f(t) d t-\Delta_{n}^{\alpha}(x)\right| \\
& \leq \int_{0}^{1}\left|F_{n}^{\alpha}(x, t)\right| \cdot\left|f^{(n)}((1-t) \cdot 0+t \cdot 1)\right| d t \\
& \leq \int_{0}^{1}\left|F_{n}^{\alpha}(x, t)\right| d t \cdot\left|f^{(n)}\left(\frac{\int_{0}^{1}((1-t) \cdot 0+t \cdot 1)\left|F_{n}^{\alpha}(x, t)\right| d t}{\int_{0}^{1}\left|F_{n}^{\alpha}(x, t)\right| d t}\right)\right|
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Theorem 3.1 provides numerous interesting special cases. Particular choices of node will procure the Dragomir-Agarwal-type estimates for many classical quadrature formulas, as well as the adjoint corrected ones.

3.1. CASE $\alpha=Q 3$ and $n=3,4$

For $x=0$, Theorem 3.1 gives Dragomir-Agarwal-type estimates for Simpson's formula; for $x=1 / 4$ it provides the estimates for the dual Simpson formula and for $x=1 / 6$ for Maclaurin's formula. These were already obtained in [11]; Simpson's formula was also considered in [4].

For $x=1 / 2-\sqrt{3} / 6\left(\Leftrightarrow B_{2}(x)=0\right)$, the following estimates are obtained for the Gauss 2-point formula:

$$
\Delta_{n}^{Q 3}\left(\frac{3-\sqrt{3}}{6}\right)=\frac{1}{2} f\left(\frac{3-\sqrt{3}}{6}\right)+\frac{1}{2} f\left(\frac{3-\sqrt{3}}{6}\right)
$$

Title Page
Contents

Page 12 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

J
and

$$
\begin{aligned}
& C_{Q 3}\left(3, \frac{3-\sqrt{3}}{6}\right)=\frac{9-4 \sqrt{3}}{1728} \approx 1.2 \cdot 10^{-3}, \\
& C_{Q 3}\left(4, \frac{3-\sqrt{3}}{6}\right)=\frac{1}{4320} \approx 2.3 \cdot 10^{-4} .
\end{aligned}
$$

3.2. CASE $\alpha=C Q 3$ and $n=5,6$

For $x=0$, the following estimates for the corrected Simpson's formula are produced:

$$
\Delta_{n}^{C Q 3}(0)=\frac{1}{30}\left[7 f(0)+16 f\left(\frac{1}{2}\right)+7 f(1)\right]-\frac{1}{60}\left[f^{\prime}(1)-f^{\prime}(0)\right]
$$

and

$$
\begin{aligned}
& C_{C Q 3}(5,0)=\frac{1}{115200} \approx 8.68 \cdot 10^{-6} \\
& C_{C Q 3}(6,0)=\frac{1}{604800} \approx 1.65 \cdot 10^{-6}
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 13 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{aligned}
& C_{C Q 3}\left(5, \frac{1}{6}\right)=\frac{1}{691200} \approx 1.45 \cdot 10^{-6}, \\
& C_{C Q 3}\left(6, \frac{1}{6}\right)=\frac{31}{87091200} \approx 3.56 \cdot 10^{-7} .
\end{aligned}
$$

For $x=1 / 4$, the following estimates for the corrected dual Simpson's formula are produced:

$$
\Delta_{n}^{C Q 3}\left(\frac{1}{4}\right)=\frac{1}{15}\left[8 f\left(\frac{1}{4}\right)-f\left(\frac{1}{2}\right)+8 f\left(\frac{3}{4}\right)\right]+\frac{1}{120}\left[f^{\prime}(1)-f^{\prime}(0)\right]
$$

and

$$
\begin{aligned}
& C_{C Q 3}\left(5, \frac{1}{4}\right)=\frac{1}{115200} \approx 8.68 \cdot 10^{-6} \\
& C_{C Q 3}\left(6, \frac{1}{4}\right)=\frac{31}{19353600} \approx 1.6 \cdot 10^{-6} .
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 14 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{aligned}
& C_{C Q 3}\left(5, \frac{5-\sqrt{15}}{10}\right)=\frac{25-6 \sqrt{15}}{576000} \approx 3.06 \cdot 10^{-6} \\
& C_{C Q 3}\left(6, \frac{5-\sqrt{15}}{10}\right)=\frac{1}{2016000} \approx 4.96 \cdot 10^{-7}
\end{aligned}
$$

For $x=x_{0}:=1 / 2-\sqrt{225-30 \sqrt{30}} / 30\left(\Leftrightarrow B_{4}(x)=0\right)$ (the case when the weight next to $f(1 / 2)$ is annihilated), the following estimates for the corrected Gauss 2-point formula are produced:

$$
\Delta_{n}^{C Q 3}\left(x_{0}\right)=\frac{1}{2} f\left(x_{0}\right)+\frac{1}{2} f\left(1-x_{0}\right)-\frac{5-\sqrt{30}}{60}\left[f^{\prime}(1)-f^{\prime}(0)\right]
$$

and

$$
\begin{aligned}
& C_{C Q 3}\left(5, \frac{15-\sqrt{225-30 \sqrt{30}}}{30}\right) \\
& =\frac{46 \sqrt{225-30 \sqrt{30}}-120 \sqrt{30-4 \sqrt{30}}+150 \sqrt{30}-825}{1728000} \approx 7.86 \cdot 10^{-6}, \\
& \quad C_{C Q 3}\left(6, \frac{15-\sqrt{225-30 \sqrt{30}}}{30}\right)=\frac{45-7 \sqrt{30}}{4536000} \approx 1.47 \cdot 10^{-6} .
\end{aligned}
$$

3.3. \quad CASE $\alpha=Q 4$ and $n=3,4$

For $x=1 / 3$, the estimates for the Simpson 3/8 formula from [11] are recaptured.

Dragomir-Agarwal Type Inequalities

I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 15 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3.4. CASE $\alpha=C Q 4$ and $n=5,6$

For $x=1 / 3$, the following estimates for the corrected Simpson $3 / 8$ formula are produced:
$\Delta_{n}^{C Q 4}\left(\frac{1}{3}\right)=\frac{1}{80}\left[13 f(0)+27 f\left(\frac{1}{3}\right)+27 f\left(\frac{2}{3}\right)+13 f(1)\right]-\frac{1}{120}\left[f^{\prime}(1)-f^{\prime}(0)\right]$
and

$$
\begin{aligned}
& C_{C Q 4}\left(5, \frac{1}{3}\right)=\frac{1}{691200} \approx 1.45 \cdot 10^{-6} \\
& C_{C Q 4}\left(6, \frac{1}{3}\right)=\frac{1}{2721600} \approx 3.67 \cdot 10^{-7}
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

For $x=1 / 2-\sqrt{5} / 10 \quad\left(\Leftrightarrow G_{2}^{C Q 4}(x, 0)=0\right)$, the following estimates for the Lobatto 4-point formula are produced:

$$
\Delta_{n}^{C Q 4}\left(\frac{1}{3}\right)=\frac{1}{12}\left[f(0)+5 f\left(\frac{5-\sqrt{5}}{10}\right)+5 f\left(\frac{5+\sqrt{5}}{10}\right)+f(1)\right]
$$

and

$$
\begin{aligned}
& C_{C Q 4}\left(5, \frac{5-\sqrt{5}}{10}\right)=\frac{\sqrt{5}}{576000} \approx 3.88 \cdot 10^{-6} \\
& C_{C Q 4}\left(6, \frac{5-\sqrt{5}}{10}\right)=\frac{1}{1512000} \approx 6.61 \cdot 10^{-7} .
\end{aligned}
$$

Title Page
Contents
Title Page

Page 16 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3.5. \quad CASE $\alpha=Q 5$ and $n=5,6$

For $x=1 / 4$, the following estimates for Boole's formula from [11] are recaptured.

3.6. \quad CASE $\alpha=C Q 5$ and $n=7,8$

For $x=1 / 2-\sqrt{21} / 14 \quad\left(\Leftrightarrow G_{2}^{C Q 5}(x, 0)=0\right)$, the following estimates for the Lobatto 5-point formula are produced:

$$
\begin{aligned}
& \Delta_{n}^{C Q 5}\left(\frac{1}{4}\right) \\
& =\frac{1}{180}\left[9 f(0)+49 f\left(\frac{7-\sqrt{21}}{14}\right)+64 f\left(\frac{1}{2}\right)+49 f\left(\frac{7+\sqrt{21}}{14}\right)+9 f(1)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{C Q 5}\left(7, \frac{7-\sqrt{21}}{14}\right)=\frac{12 \sqrt{21}-49}{1264435200} \approx 4.74 \cdot 10^{-9} \\
& C_{C Q 5}\left(8, \frac{7-\sqrt{21}}{14}\right)=\frac{1}{1422489600} \approx 7.03 \cdot 10^{-10}
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 17 of 23

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{aligned}
& C_{C Q 5}\left(7, \frac{1}{4}\right)=\frac{17}{4877107200} \approx 3.49 \cdot 10^{-9} \\
& C_{C Q 5}\left(8, \frac{1}{4}\right)=\frac{1}{1625702400} \approx 6.15 \cdot 10^{-10}
\end{aligned}
$$

Further, for $x=1 / 2-\sqrt{7} / 14\left(\Leftrightarrow 14 x^{2}-14 x+3=0\right)$, which is the case when the weight next to $f(1 / 2)$ is annihilated, the following estimates for the corrected Lobatto 4-point formula are produced:

$$
\begin{aligned}
\Delta_{n}^{C Q 5}\left(\frac{7-\sqrt{7}}{14}\right)=\frac{1}{270} & {\left[37 f(0)+98 f\left(\frac{7-\sqrt{7}}{14}\right)\right.} \\
& \left.+98 f\left(\frac{7+\sqrt{7}}{14}\right)+37 f(1)\right]-\frac{1}{180}\left[f^{\prime}(1)-f^{\prime}(0)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{C Q 5}\left(7, \frac{7-\sqrt{7}}{14}\right)=\frac{343-16 \sqrt{7}}{34139750400} \approx 8.81 \cdot 10^{-9}, \\
& C_{C Q 5}\left(8, \frac{7-\sqrt{7}}{14}\right)=\frac{1}{711244800} \approx 1.41 \cdot 10^{-9}
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 18 of 23
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Finally, for

$$
\begin{aligned}
x=x_{0}:=\frac{1}{2} & -\frac{\sqrt{45-2 \sqrt{102}}}{14} \\
& \left(\Leftrightarrow 98 x^{4}-196 x^{3}+102 x^{2}-4 x-1\right. \\
& \left.=98\left(x^{2}-x+\frac{1}{49}-\frac{\sqrt{102}}{98}\right)\left(x^{2}-x+\frac{1}{49}+\frac{\sqrt{102}}{98}\right)=0\right)
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009
which is the case when the weight next to $f(0)$ and $f(1)$ is annihilated, the estimates for the corrected Gauss 3-point formula are produced:

$$
\begin{aligned}
& \Delta_{n}^{C Q 5}\left(x_{0}\right)=\frac{1977+16 \sqrt{102}}{6930}\left[f\left(x_{0}\right)+f\left(1-x_{0}\right)\right] \\
& \quad+\frac{1488-16 \sqrt{102}}{3465} f\left(\frac{1}{2}\right)-\frac{9-\sqrt{102}}{420}\left[f^{\prime}(1)-f^{\prime}(0)\right]
\end{aligned}
$$

Title Page
Contents

Page 19 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
the corrected 3-point quadrature formulae, the corrected Maclaurin's formula has the same property.

Further, among the closed 4-point quadrature formulas, the Simpson $3 / 8$ formula gives the best estimate and the corrected Simpson $3 / 8$ formula is the optimal corrected closed 4-point quadrature formula.

Finally, the node $x=1 / 5$ produces the closed 5-point quadrature formula with the best error estimate, while the node $x=3 / 7-\sqrt{2} / 7$ produces the corrected closed 5-point quadrature formula with the same property.

The proofs are similar to those in [5], [6], [7] and [8], respectively.
In view of the previous remark, let us consider the case $\alpha=Q 5, n=5,6$ and $x=1 / 5$. We have:

$$
\Delta_{n}^{Q 5}\left(\frac{1}{5}\right)=\frac{1}{432}\left[27 f(0)+125 f\left(\frac{1}{5}\right)+128 f\left(\frac{1}{2}\right)+125 f\left(\frac{4}{5}\right)+27 f(1)\right]
$$

and

$$
\begin{aligned}
& C_{Q 5}\left(5, \frac{1}{5}\right)=\frac{1}{1152000} \approx 8.68 \cdot 10^{-7} \\
& C_{Q 5}\left(6, \frac{1}{5}\right)=\frac{1}{5040000} \approx 1.98 \cdot 10^{-7}
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 20 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{aligned}
& C_{C Q 5}\left(7, x_{0}\right)=\frac{27-16 \sqrt{2}}{3793305600} \approx 1.15 \cdot 10^{-9} \\
& C_{C Q 5}\left(8, x_{0}\right)=\frac{11-6 \sqrt{2}}{9957427200} \approx 2.53 \cdot 10^{-10} .
\end{aligned}
$$

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 21 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

References

[1] M. ABRAMOWITZ and I.A. STEGUN (Eds), Handbook of Mathematical Functions with Formulae, Graphs and Mathematical Tables, National Bureau of Standards, Applied Math. Series 55, 4th printing, Washington, 1965.
[2] S.S. DRAGOMIR and R.P. AGARWAL, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoid formula, Appl. Mat. Lett., 11(5) (1998), 91-95.
[3] Lj. DEDIĆ, C.E.M. PEARCE AND J. PEČARIĆ, Hadamard and DragomirAgarwal inequalities, higher-order convexity and the Euler formula, J. Korean Math. Soc., 38 (2001), 1235-1243.
[4] Lj. DEDIĆ, C.E.M. PEARCE AND J. PEČARIĆ, The Euler formulae and convex functions, Math. Inequal. Appl., 3(2) (2000), 211-221.
[5] I. FRANJIĆ, J. PEČARIĆ AND I. PERIĆ, Quadrature formulae of Gauss type based on Euler identitites, Math. Comput. Modelling, 45(3-4) (2007), 355-370.
[6] I. FRANJIĆ, J. PEČARIĆ AND I. PERIĆ, General 3-point quadrature formulas of Euler type, (submitted for publication).
[7] I. FRANJIĆ, J. PEČARIĆ AND I. PERIĆ, General closed 4-point quadrature formulae of Euler type, Math. Inequal. Appl., 12 (2009), 573-586.
[8] I. FRANJIĆ, J. PEČARIĆ AND I. PERIĆ, On families of quadrature formulas based on Euler identities, (submitted for publication).
[9] V.I. KRYLOV, Approximate Calculation of Integrals, Macmillan, New YorkLondon, 1962.

Dragomir-Agarwal Type Inequalities

I. Franjić and J. Pečarić
vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

Page 22 of 23
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[10] J. PEČARIĆ AND A. VUKELIĆ, Hadamard and Dragomir-Agarwal inequalities, the general Euler two point formulae and convex functions, Rad Hrvat. akad. znan. umjet., 491. Matematičke znanosti, 15 (2005), 139-152.
[11] J. PEČARIĆ AND A. VUKELIĆ, On generalizations of Dragomir-Agarwal inequality via some Euler-type identitites, Bulletin de la Sociètè des Mathèmaticiens de R. Macèdonie, 26 (LII) (2002), 463-483.

Dragomir-Agarwal Type Inequalities
I. Franjić and J. Pečarić vol. 10, iss. 3, art. 65, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 23 of 23	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

