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ABSTRACT. Inequalities estimating the absolute value of the difference between the integral and
the quadrature, i.e. the Dragomir-Agarwal-type inequalities, are given for the general 3, 4 and
5-point quadrature formulae, both classical and corrected. Beside values of the function in the
chosen nodes, "corrected" quadrature formula includes values of the first derivative at the end
points of the interval and has a higher accuracy than the adjoint classical quadrature formula.
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1. INTRODUCTION

The well-known Hermite-Hadamard inequality states thaf if [a,b] — R is a convex
function, then

(1.1) f (“;b> < bia/a F(t)dt < M

This pair of inequalities has been improved and extended in a number of ways. One of
the directions estimated the difference between the middle and rightmost tefm]in (1.1). For
example, Dragomir and Agarwal presented the following resultin [2]: suppodeC R — R
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2 |. FRANJIC AND J. PECARIC

is differentiable or/ and| f’|? is convex ora, b] for someqg > 1, wherel is an open interval in
R anda,b € I (a <b). Then

fla)+/0) 1 [ b—a [|f'(@)]*+]f B
A0 [ o] < 20 [0 .

Generalizations to higher-order convexity for this type of inequality were given in [3]. Re-
lated results for Euler-midpoint, Euler-twopoint, Euler-Simpson, dual Euler-Simpson, Euler-
Maclaurin, Euler-Simpson 3/8 and Euler-Boole formulae were given_ih [11]. Furthermore,
related results for the general Euler 2-point formulae were given in [10], unifying the cases of
Euler trapezoid, Euler midpoint and Euler-twopoint formulae.

The aim of this paper is to give related results for the general 3, 4 and 5-point quadrature
formulae, as well as for the corrected general 3, 4 and 5-point quadrature formulae. In addition
to values of the function at the chosen nodes, "corrected” quadrature formulae include values
of the first derivative at the end points of the interval and also have higher accuracy than adjoint
classical quadrature formulae. They are sometimes called "quadratures with end corrections".

Our first course of action was to obtain the quadrature formulae. This was done using the ex-
tended Euler formulae, in which Bernoulli polynomials play an important role. For the reader’s
convenience, let us recall some basic properties of Bernoulli polynomials. Bernoulli polynomi-
als By (t) are uniquely determined by

By (r) = kBy_1(x), Bip(t+1)— Bi(t) =kt*', k>0, By(t) = 1.

For thekth Bernoulli polynomial we havés; (1 — z) = (=1)*By(x), z € R, k > 1.

The kth Bernoulli numberB, is defined byB, = Bx(0). Fork > 2, we haveBy(1) =
Bx(0) = By. Note thatBy,_ 1 =0, £ > 2andB;(1) = —B;(0) = 1/2.

Bj(z) are periodic functions of periotidefined byB; (x + 1) = B;(x), = € R, and related
to Bernoulli polynomials a3;(z) = Bi(z), 0 < z < 1. Fork > 2, Bj(t) is a continuous
function, while B (x) is a discontinuous function with a jump efl at each integer. For further
details on Bernoulli polynomials, see [1] and [9].

2. PRELIMINARIES

General 3-point quadrature formulas were obtained|in [5] and general corrected 3-point quad-
rature formulas in[6]; general closed 4-point quadrature formulas were considered in [7] and fi-
nally, general closed 5-point quadrature formulas were derived in [8]. Namély,[if, 1] — R
is such thatf™=Y is continuous and of bounded variation n1] for somen > 1, then we
have

2.1) | = Qo)+ T @) = [ e,

fora = @3, CQ3andz € [0,1/2), fora = Q4, CQ4 andx € (0,1/2], and fora = @5, CQ5
andz € (0,1/2), where

._ 1 f (x) +24By(x) f (%) +f(1—2x)

1 ) _ Tf(x) — 480Bu()f (5) + 7(1 — x)

Qogs(z) = Qc (x yl-z 30(1 — 22)2(1 + 4a — 4a2) ’
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Qorle) = Q02,1 — 1) = —o22@IO) + /(@) + /(L — @) = 6Ba(@)/ (1),

122(1 — x)
Qcon(w) = Qo(0, 7, 1 —a, 1) = S2B1@ O + ] <6~"6>$+( { <_1x—)x> +30B4(x) f(1)

Qos(x) == Q <O, x, %, 1—x, 1)

1
" 60z(1 — 2)(1 — 27)2 [f(x) +f(1—x)
— (102 = 102+ 1)(1 = 202 (/(0) + £(1))

+322(1 — 2)(52® — 5r + 1) f (%)} )

QCQE}(:E) = QC (07 x, %a 1 — T, 1)

1
= 1202201 2P — 2p Y@ H -2

+ (982 — 1962% + 10222 — 4z — 1)(1 — 22)%(f(0) + f(1))
+ 642%(1 — z)*(142® — 14a + 3) f (1/2)]

and
[(n—1)/2]
Tey(x)= ) 20 G5, 0) [FP1(1) = FE=D(0)),
k=1 ’
(2.2) F:(I,t) :Gg(%t)—Gg(%O),
and finally,
2.3) 0% (0. 1) = B (x —1)+24Bs(z) - By (3 —t) + By (1—z — 1)

6(1 —2x)? ’
TB; (x —t) —480By(z) - By (3 —t) + 7B (1 —z — 1)
30(1 — 2x)2(1 4 4z — 42?) ’
Bi(x —1t) —12By(x) - B: (1 —t) + BX (1 —x — t)

(24)  G{¥(x,1) =

Q4 pr—
(2.5) G (z,1) 15202 ,
60By(x)  Bi(1—t)+ Bi (z —t)+ B (1— 2 —1)
2. CcQ4 — 4 n n n
( 6) Gn ($’ t) 60372(1 _ $)2 !
1022 — 10z + 1
Q5 —= * p—
@) G (t) = = Bl )

Bi(w—)+By(1—z—1) 8(a*-5w+1) . (1
60z(1 — z)(1 — 2x)? 15(1 — 2x)? "\ 2 ’
98z* — 1962% + 1022% — 4z — 1
21022(1 — x)?
Bi(x—t)+ B (1—ax—1t) 16(142% — 14z +3) B*(l >

S
120221 —2)2(1 =207 105(1 = 22)2 >

(2.8) GS¥(a,t) =

Br(1—1t)
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The following lemma was the key result for obtaining the resultslin [5], [6], [7] ahd [8], and
we shall need it here as well.

Lemma 2.1. For z € {0} U[1/6, 1/2) andn > 2, G$>_,(x,t) has no zeros in variableon
(0, 1/2). The sign of the function is determined by:

(=1)"MGE (1) >0 for z €[1/6,1/2) and (—1)"G$ ,(0,t) > 0.

Forz € [0, 1/2 — /15/10] U [1/6, 1/2) andn > 3, G5.2% (x,t) has no zeros in variable
on (0, 1/2). The sign of the function is determined by:

(—1)"GSL (x,t) >0 for x €0, 1/2 —v/15/10],
(=)™ GS9 (2,1) >0 for z € [1/6, 1/2).

Forz e (0, 1/2 —/3/6]U[1/3, 1/2] andn > 2, G$* | (z,t) has no zeros in variableon
(0, 1/2). The sign of the function is determined by:

(=1)"GE (2,t) >0 for z € (0, 1/2 —/3/6],
(—D)"GL (z,t) >0 for =€ [1/3, 1/2].

Forz e (0, 1/2—+/5/10]U[1/3, 1/2] andn > 3, G52 (x,t) has no zeros in variableon
(0, 1/2). The sign of the function is determined by:

(—1)" GY9 (2,1) > 0 for z € (0, 1/2 —/5/10],
(—1)"GS9 (2,t) >0 for = € [1/3, 1/2].

Forz € (0, 1/2 — v/15/10] U [1/5, 1/2) andn > 3, GS?_, (x,t) has no zeros in variable
on (0, 1/2). The sign of the function is determined by:

(—1)"GL (z,) >0 for z € (0, 1/2 - ¢1_5/10} ,
(=1)"'GE (2,t) >0 for z e [1/5, 1/2).

For z € (0, 1/2 — /21/14] U [3/7 — v/2/7, 1/2) andn > 4, G5, (x,t) has no zeros in
variablet on (0, 1/2). The sign of the function is determined by:

(—1)"GSD (2,1) > 0 for = € (0, 1/2 - \/ﬁ/m] ,
(—1)"GE9 (2,8) > 0 for z € [3/7— V2/7, 1/2),

whereGS?_ | is as in [2.8).GS%, asin [2.4),G9) | asin [2.5),GS% asin [2.6).G5, asin
(2.7) andGS, asin[2.8).

Applying properties of Bernoulli polynomials, it easily follows that functiagd$ for o =
Q3, CQ3, Q4, CQ4, 5, CQ5andn > 1, have the following properties:

(2.9) Gz, 1 =) = (=1)"Gy(x, 1), ¢ [0,1],
PG (x,t - nl o .
(210) % = <_1)J(n_j)|Gn7](x7t)7 J = 1,2,...,71,

also, that5g, ,(z,0) =0forn > 1, and soFy,_,(z,t) = G5, (x,1).
These properties and Lemina]2.1 yield that functigjs defined by[(2.2), are monotonous
on (0,1/2) and (1/2,1), have constant sign ofv, 1), so the functiongFs, (t)| attain their
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maximal value at = 1/2. Finally, using[(2.p) and (2.10), it is not hard to establish that under
the assumptions of Lemma 2.1 we have:

1 1
(2.11) B, (oMt =2 [ 4P (o 0ldt =15, (2. 0)|
0

1
1
(2.12) / G5, (1)t =2 / 1G5, (e, Dt = |5, (x,1/2)]

Now that we have stated all the previously obtained results which form a basis for the results
of this paper, we proceed to the main result.

3. MAIN RESULT
To shorten notation, we denote the left-hand sid (2.1j0]by(t)dt — A%(x), i.e.

AL (x) == Qalz) — T3, (2)
fora = Q3, CQ3, Q4, CQ4, Q5, CQ5andn > 1.

Theorem 3.1.Let f : [0, 1] — R ben-times differentiable. Iff™ [P is convex for somg > 1
and

e n>3and
(1) a=Q3andz € {0} U[1/6, 1/2),
(2) a=Q4andx € (0, 1/2 —+/3/6]U[1/3, 1/2],
e n>5and
(1) a =CQ3andx € [0, 1/2 —/15/10] U [1/6, 1/2),
(2) a =CQ4andx € (0, 1/2 —+/5/10] U [1/3, 1/2],
(B) a=Q@5andx € (0, 1/2 —/15/10] U [1/5, 1/2),
e n>7and

(1) a =CQ5andx € (0, 1/2 —/21/14] U [3/7 — v/2/7, 1/2),

then we have

3 =

(3.1) Al(x)

() ()P (n)(1)|P
< o) (LTI

while if, under same conditionf ™| is concave, then

(3.2) 1f(t)dt—Ag(x) §Ca(n,x)-‘f(") (%) :
0
where
Co(2k — 1 2 £ L d C,(2k ——1 G5, 0
(2 L) = |75 ()| and a2 ) = o I60)

with functionsFy;, defined as in[(2]2) and's; as in (2.3),[(2.4),[(2]5)[ (2l6), (2.7) and (2.8).
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Proof. First, recall thatFy},_,(z,t) = G%,_,(z,t). Now, starting from[(2]1), we apply Hélder’s
and then Jensen’s inequality for the convex functifift) |7, to obtain

[ stoyie - sy
< [ 1m0l 15w

([ |Fs<x,t>|dt)1; ([ 1o =0 040 |F5<I,t)|dt)i

<(/ 1 |Fs<x,t>|dt)l_; (1o [ (0 | ES ()t + |7 ) / 1 tIFS(a:,t)|dt>; |

Inequality [3.1) now follows from (2.11) anf (2]12).
To prove [(3.2), apply Jensen'’s integral inequality t0](2.1) to obtain

/fth“

/ o (2, 8)] - [F™((1 =) -0+ ¢-1)|dt

) (0%
) i Na 0+t 1)|F(x,t)|dt
S/O |Fy (8 dt - | f ( fo |Fe(x, ¢)|dt '

O

Theorent 3.l provides numerous interesting special cases. Particular choices of node will
procure the Dragomir-Agarwal-type estimates for many classical quadrature formulas, as well
as the adjoint corrected ones.

3.1. CASEa = @3 and n = 3,4. Forz = 0, Theorenf 3]l gives Dragomir-Agarwal-type
estimates for Simpson’s formula; for = 1/4 it provides the estimates for the dual Simp-
son formula and for: = 1/6 for Maclaurin’s formula. These were already obtained_in [11];
Simpson’s formula was also considered.in [4].

Forz = 1/2 — v/3/6 (< By(x) = 0), the following estimates are obtained for the Gauss

2-point formula:
o () -2 () ()

— —4
Cos (3, 3 \/§> _ 9 V3 ~ 1.2-1073,

and

6 1728

3—3 1
4 — ~ 2.3-1074
CQ3<’ 6 > 4320 3-10

3.2.CASE o« = C@3 and n = 5,6. Forxz = 0, the following estimates for the corrected
Simpson’s formula are produced:

2590 = g5 [rr0) -+ 101 (3 ) + 77| - Gl - £10)
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and
Ccqs(5,0) = L+ 868-107
o T 115200 7
1
= ~ 1.65-1075.

Forx = 1/6, the following estimates for the corrected Maclaurin’s formula are produced:

260 () = [ () w200 (5) + 221 ()] + gt - o

and
1 1
— | = ~ 1.45-107°
Cogs (5’ 6) 691200 > 107
1 31
S)=—2_ ~356-107".
Coas (6’ 6) s7091200 ~ 50010

Forz = 1/4, the following estimates for the corrected dual Simpson’s formula are produced:

(1) =5 [0 (3) -1 (3) +3 (3)] + e - ro

and
1 1
- = ~ 8.68-107°
Coas (5’ 4) Ti5200 ~ SO0
1 31
)=~ 16-107C
Cogs (6’ 4) 19353600 6-10

Forz = 1/2 — v/15/10 (< G5 (x,0) = 0), the following estimates for the Gauss 3-point
formula are produced:

cos [6—V15) 1 5-+/15 1 5+ V15
a0 () = pr () o () o (57

and
—V1 25 — 64/1
Cogs | 5, ooV} BV 3.06-107°
10 576000
5—+/15 1
YT = ~ 4.96-107".
Ceas (6’ 10 ) 2016000 9610

Forz = g :=1/2 — /225 — 30\/%/30 (& By(x) = 0) (the case when the weight next

to f(1/2) is annihilated), the following estimates for the corrected Gauss 2-point formula are
produced:

5—+/30
60

NG9 (a0) = 5 (a0) + 5 (1~ 20) - £/(1) = F'(0)]
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and
15 — /225 — 30v/30
Cegs (57 30 >
_ 461225 — 30V/30 — 120V/30 — 4/30 + 150v30 - 825 0 o
= 1728000 o ’
15 — \/22_— 45 — )
Coon (6 5 5—30v30) _ 45-7V30 ~ 1.47-1075.
30 4536000

3.3. CASE o = Q4 and n = 3,4. Forz = 1/3, the estimates for the Simpson 3/8 formula
from [11] are recaptured.

3.4. CASE o = CQ4andn = 5,6. Forz = 1/3, the following estimates for the corrected
Simpson 3/8 formula are produced:

Agas (%) - [13f<0> T 21) (%) oty (;) +13f <1>} — ol = FO)

and

1 1
C, 5 - | = ~ 1.45-107°
CQ4( ’ 3) 691200 ’
1 1
C 6, — | = ~ 3.67-107".
CQ4( ’ 3) 2721600

Forz = 1/2—+/5/10 <<:> GS9 (2,0) = O) , the following estimates for the Lobatto 4-point
formula are produced:

AC@ (%) - [f(o) +5f (5 —10¢5> +5f <5+10‘/5) +f(1)]

5—-+/5 5
Coga (5, f) V5 ~ 3.88-107°

and

10 )~ 576000
5—+/5 1
= % . ]_ * 1 _7.
Coqs (6’ 10 ) 512000 = 0:01-10

3.5. CASEa = @Q5andn = 5,6. Forz = 1/4, the following estimates for Boole’s formula
from [11] are recaptured.

36.CASEa = CQ5andn = 7,8. Forz = 1/2 — /21/14 (<:> G99 (1, 0) = o), the
following estimates for the Lobatto 5-point formula are produced:

ACQS (i) = % [9f(0) +49f (7_1Zﬁ> + 64f (%) +49f (7+1}l/ﬁ) +9f<1>]
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and
— 21 12¢/21 — 4
Coogs | 7, T2y Lv2i A9 4.74-1077,
14 1264435200
7 V21 1
) =~ 7.03-107%
Cegs (8’ 14 ) 1422480600 = (V310

Forx = 1/4, the following estimates for the corrected Boole’s formula are produced:

1 1 1 1 3
INE (ZL) = 550 [217f(0) + 512f <Z) + 432f (5) + 512f <Z> + 217f(1)}
1

= ! 1 _ !
252[f( ) — f(0)]
and
1 17
— = — = 4 -1 -9
Ceas (7’ 4) wrrioma00 = 34910
1\ 1 _ 1

Further, forz = 1/2 — V/7/14 (< 142% — 14z + 3 = 0), which is the case when the weight
nexttof(1/2) is annihilated, the following estimates for the corrected Lobatto 4-point formula
are produced:

AC@5 (7__\/7> 1 [37f(()) + 98 f (7_ ﬁ) +98f <7+\/7> +37f(1)]

14 |~ 270 14 14
1 !
- 1) — f/
180[}“( ) — f'(0)]
and
7T 343 — 1617
Cogs | 7, VT = V7 ~ 8.81-1077,
14 34139750400
7 -7 1
— ~ 1.41-107°.
Cogs (8’ 14 ) 711244800 0
Finally, for
1 45 — 24/102
r =Xy = = —

2 14

( < 9824 — 19622 + 10222 — 42 — 1
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which is the case when the weight nextft@) and f(1) is annihilated, the estimates for the
corrected Gauss 3-point formula are produced:

1977 + 16/102

Qs B
AL (o) 6930 [f (zo) + f(1 — x0)]
1488 — 16v/102 , /1) 9 — /102
+ fls)— (1) = f(0)]
3465 2 420
and
24 ~6014+/102 — 49(87 — 8/102
Coon (7, 7o) = V60933 — 60141102 — 49(87 — 8v/102) _ §12.10°
3793305600
43 — 3v/102
= OOV 19841070
Cogs (8: 70) = Somm197200 8- 10

Remark 1. An interesting fact to point out is that out of all the 3-point quadrature formulae,
Maclaurin’s formula gives the least estimate of error in Thedrerh 3.1; among the corrected 3-
point quadrature formulae, the corrected Maclaurin’s formula has the same property.

Further, among the closed 4-point quadrature formulas, the Simpson 3/8 formula gives the
best estimate and the corrected Simpson 3/8 formula is the optimal corrected closed 4-point
guadrature formula.

Finally, the noder = 1/5 produces the closed 5-point quadrature formula with the best error
estimate, while the node = 3/7 — v/2/7 produces the corrected closed 5-point quadrature
formula with the same property.

The proofs are similar to those in [5], [6],/[7] ard [8], respectively.

In view of the previous remark, let us consider the case 5, n = 5,6 andx = 1/5. We
have:

A9 (%) = é {27]”(0) +125f (é) + 128f (%) + 125f (%) - 27f(1)1

and
1 1
_ — ~ . -] =7
Cas (5’ 5) 1152000 ~ 5081075
1 1
- = ~ 1.98-107".
Cas (6’ 5) 5040000 98- 10

Further, fora = CQ5,n = 7,8 andz = z, := 3/7 — v/2/7 we obtain:
A% (20) = 0.10143 [£(0) + £(1)] 4+ 0.259261 [f(20) + f(1 — 20)]

+0.278617 f G) +3.07832- 107 [£/(1) — f/(0)]

and
27 — 164/2
_ AT IVE 151070
Ceqs (T:70) = 3703305600 51077,
11— 62
_ 1 TOVE 95310710
Ceqs (8,70) = Gommomang 5310

J. Inequal. Pure and Appl. Mathl0(3) (2009), Art. 65, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

DRAGOMIR-AGARWAL TYPE INEQUALITIES 11

REFERENCES

[1] M. ABRAMOWITZ AND |.LA. STEGUN (Eds),Handbook of Mathematical Functions with For-
mulae, Graphs and Mathematical Tahl&gational Bureau of Standards, Applied Math. Series 55,
4th printing, Washington, 1965.

[2] S.S. DRAGOMIRAND R.P. AGARWAL, Two inequalities for differentiable mappings and appli-
cations to special means of real numbers and to trapezoid fordpiad, Mat. Lett, 11(5) (1998),
91-95.

[3] Lj. DEDIC, C.E.M. PEARCEAND J. PECARIC, Hadamard and Dragomir-Agarwal inequalities,
higher-order convexity and the Euler formulaKorean Math. So¢38 (2001), 1235-1243.

[4] Lj. DEDIC, C.E.M. PEARCEAND J. PECARIC, The Euler formulae and convex functiodath.
Inequal. Appl. 3(2) (2000), 211-221.

[5] I. FRANJIC, J. PEEARIC AND |. PERIC, Quadrature formulae of Gauss type based on Euler
identitites,Math. Comput. Modellingd5(3-4) (2007), 355-370.

[6] I. FRANJIC, J. PEEARIC AND |. PERIC, General 3-point quadrature formulas of Euler type,
(submitted for publication).

[7] I. FRANJIC, J. PEEARIC AND I. PERIC, General closed 4-point quadrature formulae of Euler
type,Math. Inequal. Appl.12(2009), 573-586.

[8] I. FRANJIC, J. PEEARIC AND |. PERIC, On families of quadrature formulas based on Euler
identities, (submitted for publication).

[9] V.I. KRYLOV, Approximate Calculation of Integral$/acmillan, New York-London, 1962.

[10] J. PECARIC AND A. VUKELI C, Hadamard and Dragomir-Agarwal inequalities, the general Eu-
ler two point formulae and convex functionRad Hrvat. akad. znan. umjet., 491. Matematicke
znanostj15(2005), 139-152.

[11] J. PEEARIC AND A. VUKELI C, On generalizations of Dragomir-Agarwal inequality via some
Euler-type identititesBulletin de la Société des Mathématiciens de R. Macédasi@.Il) (2002),
463-483.

J. Inequal. Pure and Appl. Mathl0(3) (2009), Art. 65, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries
	3. Main Result
	3.1. CASE =Q3 and n=3,4
	3.2. CASE =CQ3 and n=5,6
	3.3. CASE =Q4 and n=3,4
	3.4. CASE =CQ4 and n=5,6
	3.5. CASE =Q5 and n=5,6
	3.6. CASE =CQ5 and n=7,8

	References

