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ABSTRACT. Inequalities estimating the absolute value of the difference between the integral and
the quadrature, i.e. the Dragomir-Agarwal-type inequalities, are given for the general 3, 4 and
5-point quadrature formulae, both classical and corrected. Beside values of the function in the
chosen nodes, "corrected" quadrature formula includes values of the first derivative at the end
points of the interval and has a higher accuracy than the adjoint classical quadrature formula.
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1. I NTRODUCTION

The well-known Hermite-Hadamard inequality states that iff : [a, b] → R is a convex
function, then

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

This pair of inequalities has been improved and extended in a number of ways. One of
the directions estimated the difference between the middle and rightmost term in (1.1). For
example, Dragomir and Agarwal presented the following result in [2]: supposef : I ⊆ R → R
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2 I. FRANJIĆ AND J. PEČARIĆ

is differentiable onI and|f ′|q is convex on[a, b] for someq ≥ 1, whereI is an open interval in
R anda, b ∈ I (a < b). Then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ≤ b− a

4

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.

Generalizations to higher-order convexity for this type of inequality were given in [3]. Re-
lated results for Euler-midpoint, Euler-twopoint, Euler-Simpson, dual Euler-Simpson, Euler-
Maclaurin, Euler-Simpson 3/8 and Euler-Boole formulae were given in [11]. Furthermore,
related results for the general Euler 2-point formulae were given in [10], unifying the cases of
Euler trapezoid, Euler midpoint and Euler-twopoint formulae.

The aim of this paper is to give related results for the general 3, 4 and 5-point quadrature
formulae, as well as for the corrected general 3, 4 and 5-point quadrature formulae. In addition
to values of the function at the chosen nodes, "corrected" quadrature formulae include values
of the first derivative at the end points of the interval and also have higher accuracy than adjoint
classical quadrature formulae. They are sometimes called "quadratures with end corrections".

Our first course of action was to obtain the quadrature formulae. This was done using the ex-
tended Euler formulae, in which Bernoulli polynomials play an important role. For the reader’s
convenience, let us recall some basic properties of Bernoulli polynomials. Bernoulli polynomi-
alsBk(t) are uniquely determined by

B′
k(x) = kBk−1(x), Bk(t + 1)−Bk(t) = ktk−1, k ≥ 0, B0(t) = 1.

For thekth Bernoulli polynomial we haveBk(1− x) = (−1)kBk(x), x ∈ R, k ≥ 1.
The kth Bernoulli numberBk is defined byBk = Bk(0). For k ≥ 2, we haveBk(1) =

Bk(0) = Bk. Note thatB2k−1 = 0, k ≥ 2 andB1(1) = −B1(0) = 1/2.
B∗

k(x) are periodic functions of period1 defined byB∗
k(x + 1) = B∗

k(x), x ∈ R, and related
to Bernoulli polynomials asB∗

k(x) = Bk(x), 0 ≤ x < 1. For k ≥ 2, B∗
k(t) is a continuous

function, whileB∗
1(x) is a discontinuous function with a jump of−1 at each integer. For further

details on Bernoulli polynomials, see [1] and [9].

2. PRELIMINARIES

General 3-point quadrature formulas were obtained in [5] and general corrected 3-point quad-
rature formulas in [6]; general closed 4-point quadrature formulas were considered in [7] and fi-
nally, general closed 5-point quadrature formulas were derived in [8]. Namely, iff : [0, 1] → R
is such thatf (n−1) is continuous and of bounded variation on[0, 1] for somen ≥ 1, then we
have

(2.1)
∫ 1

0

f(t)dt−Qα(x) + Tα
n−1(x) =

1

n!

∫ 1

0

Fα
n (x, t)df (n−1)(t),

for α = Q3, CQ3 andx ∈ [0, 1/2), for α = Q4, CQ4 andx ∈ (0, 1/2], and forα = Q5, CQ5
andx ∈ (0, 1/2), where

QQ3(x) := Q

(
x,

1

2
, 1− x

)
=

f (x) + 24B2(x)f
(

1
2

)
+ f (1− x)

6(1− 2x)2
,

QCQ3(x) := QC

(
x,

1

2
, 1− x

)
=

7f(x)− 480B4(x)f
(

1
2

)
+ 7f(1− x)

30(1− 2x)2(1 + 4x− 4x2)
,
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DRAGOMIR-AGARWAL TYPE INEQUALITIES 3

QQ4(x) := Q(0, x, 1− x, 1) =
−6B2(x)f(0) + f(x) + f(1− x)− 6B2(x)f(1)

12x(1− x)
,

QCQ4(x) := QC(0, x, 1− x, 1) =
30B4(x)f(0) + f(x) + f(1− x) + 30B4(x)f(1)

60x2(1− x)2
,

QQ5(x) := Q

(
0, x,

1

2
, 1− x, 1

)
=

1

60x(1− x)(1− 2x)2

[
f(x) + f(1− x)

− (10x2 − 10x + 1)(1− 2x)2(f(0) + f(1))

+32x(1− x)(5x2 − 5x + 1)f

(
1

2

)]
,

QCQ5(x) := QC

(
0, x,

1

2
, 1− x, 1

)
=

1

420x2(1− x)2(1− 2x)2
[f(x) + f(1− x)

+ (98x4 − 196x3 + 102x2 − 4x− 1)(1− 2x)2(f(0) + f(1))

+ 64x2(1− x)2(14x2 − 14x + 3)f (1/2)
]

and

Tα
n−1(x) =

b(n−1)/2c∑
k=1

1

(2k)!
Gα

2k(x, 0) [f (2k−1)(1)− f (2k−1)(0)],

Fα
n (x, t) = Gα

n(x, t)−Gα
n(x, 0),(2.2)

and finally,

GQ3
n (x, t) =

B∗
n (x− t) + 24B2(x) ·B∗

n

(
1
2
− t
)

+ B∗
n (1− x− t)

6(1− 2x)2
,(2.3)

GCQ3
n (x, t) =

7B∗
n (x− t)− 480B4(x) ·B∗

n

(
1
2
− t
)

+ 7B∗
n (1− x− t)

30(1− 2x)2(1 + 4x− 4x2)
,(2.4)

GQ4
n (x, t) =

B∗
n (x− t)− 12B2(x) ·B∗

n (1− t) + B∗
n (1− x− t)

12x(1− x)
,(2.5)

GCQ4
n (x, t) =

60B4(x) ·B∗
n (1− t) + B∗

n (x− t) + B∗
n (1− x− t)

60x2(1− x)2
,(2.6)

(2.7) GQ5
n (x, t) =

10x2 − 10x + 1

30x(x− 1)
B∗

n (1− t)

+
B∗

n (x− t) + B∗
n (1− x− t)

60x(1− x)(1− 2x)2
+

8(5x2 − 5x + 1)

15(1− 2x)2
B∗

n

(
1

2
− t

)
,

(2.8) GCQ5
n (x, t) =

98x4 − 196x3 + 102x2 − 4x− 1

210x2(1− x)2
B∗

n (1− t)

+
B∗

n (x− t) + B∗
n (1− x− t)

420x2(1− x)2(1− 2x)2
+

16(14x2 − 14x + 3)

105(1− 2x)2
B∗

n

(
1

2
− t

)
.
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4 I. FRANJIĆ AND J. PEČARIĆ

The following lemma was the key result for obtaining the results in [5], [6], [7] and [8], and
we shall need it here as well.

Lemma 2.1. For x ∈ {0} ∪ [1/6, 1/2) andn ≥ 2, GQ3
2n−1(x, t) has no zeros in variablet on

(0, 1/2). The sign of the function is determined by:

(−1)n+1GQ3
2n−1(x, t) > 0 for x ∈ [1/6, 1/2) and (−1)nGQ3

2n−1(0, t) > 0.

For x ∈
[
0, 1/2−

√
15/10

]
∪ [1/6, 1/2) andn ≥ 3, GCQ3

2n−1(x, t) has no zeros in variablet
on (0, 1/2). The sign of the function is determined by:

(−1)nGCQ3
2n−1(x, t) > 0 for x ∈ [0, 1/2−

√
15/10],

(−1)n+1GCQ3
2n−1(x, t) > 0 for x ∈ [1/6, 1/2).

For x ∈ (0, 1/2−
√

3/6] ∪ [1/3, 1/2] andn ≥ 2, GQ4
2n−1(x, t) has no zeros in variablet on

(0, 1/2). The sign of the function is determined by:

(−1)n+1GQ4
2n−1(x, t) > 0 for x ∈ (0, 1/2−

√
3/6],

(−1)nGQ4
2n−1(x, t) > 0 for x ∈ [1/3, 1/2].

For x ∈ (0, 1/2−
√

5/10]∪ [1/3, 1/2] andn ≥ 3, GCQ4
2n−1(x, t) has no zeros in variablet on

(0, 1/2). The sign of the function is determined by:

(−1)n+1GCQ4
2n−1(x, t) > 0 for x ∈ (0, 1/2−

√
5/10],

(−1)nGCQ4
2n−1(x, t) > 0 for x ∈ [1/3, 1/2].

For x ∈ (0, 1/2 −
√

15/10] ∪ [1/5, 1/2) andn ≥ 3, GQ5
2n−1(x, t) has no zeros in variablet

on (0, 1/2). The sign of the function is determined by:

(−1)nGQ5
2n−1(x, t) > 0 for x ∈

(
0, 1/2−

√
15/10

]
,

(−1)n+1GQ5
2n−1(x, t) > 0 for x ∈ [1/5, 1/2) .

For x ∈ (0, 1/2 −
√

21/14] ∪ [3/7 −
√

2/7, 1/2) andn ≥ 4, GCQ5
2n−1(x, t) has no zeros in

variablet on (0, 1/2). The sign of the function is determined by:

(−1)nGCQ5
2n−1(x, t) > 0 for x ∈

(
0, 1/2−

√
21/14

]
,

(−1)n+1GCQ5
2n−1(x, t) > 0 for x ∈

[
3/7−

√
2/7, 1/2

)
,

whereGQ3
2n−1 is as in (2.3),GCQ3

2n−1 as in (2.4),GQ4
2n−1 as in (2.5),GCQ4

2n−1 as in (2.6),GQ5
2n−1 as in

(2.7) andGCQ5
2n−1 as in (2.8).

Applying properties of Bernoulli polynomials, it easily follows that functionsGα
n for α =

Q3, CQ3, Q4, CQ4, Q5, CQ5 andn ≥ 1, have the following properties:

Gα
n(x, 1− t) = (−1)nGα

n(x, t), t ∈ [0, 1],(2.9)

∂jGα
n(x, t)

∂tj
= (−1)j n!

(n− j)!
Gα

n−j(x, t), j = 1, 2, . . . , n,(2.10)

also, thatGα
2n−1(x, 0) = 0 for n ≥ 1, and soFα

2n−1(x, t) = Gα
2n−1(x, t).

These properties and Lemma 2.1 yield that functionsFα
2n, defined by (2.2), are monotonous

on (0, 1/2) and (1/2, 1), have constant sign on(0, 1), so the functions|Fα
2n(t)| attain their
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DRAGOMIR-AGARWAL TYPE INEQUALITIES 5

maximal value att = 1/2. Finally, using (2.9) and (2.10), it is not hard to establish that under
the assumptions of Lemma 2.1 we have:∫ 1

0

|Fα
2n(x, t)|dt = 2

∫ 1

0

t|Fα
2n(x, t)|dt = |Gα

2n(x, 0)|,(2.11) ∫ 1

0

|Gα
2n−1(x, t)|dt = 2

∫ 1

0

t|Gα
2n−1(x, t)|dt =

1

n
|Fα

2n (x, 1/2)| .(2.12)

Now that we have stated all the previously obtained results which form a basis for the results
of this paper, we proceed to the main result.

3. M AIN RESULT

To shorten notation, we denote the left-hand side of (2.1) by
∫ 1

0
f(t)dt−∆α

n(x), i.e.

∆α
n(x) := Qα(x)− Tα

n−1(x)

for α = Q3, CQ3, Q4, CQ4, Q5, CQ5 andn ≥ 1.

Theorem 3.1. Let f : [0, 1] → R ben-times differentiable. If|f (n)|p is convex for somep ≥ 1
and

• n ≥ 3 and
(1) α = Q3 andx ∈ {0} ∪ [1/6, 1/2),
(2) α = Q4 andx ∈ (0, 1/2−

√
3/6] ∪ [1/3, 1/2],

• n ≥ 5 and
(1) α = CQ3 andx ∈ [0, 1/2−

√
15/10] ∪ [1/6, 1/2),

(2) α = CQ4 andx ∈ (0, 1/2−
√

5/10] ∪ [1/3, 1/2],
(3) α = Q5 andx ∈ (0, 1/2−

√
15/10] ∪ [1/5, 1/2),

• n ≥ 7 and
(1) α = CQ5 andx ∈ (0, 1/2−

√
21/14] ∪ [3/7−

√
2/7, 1/2),

then we have

(3.1)

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣ ≤ Cα(n, x) ·
(
|f (n)(0)|p + |f (n)(1)|p

2

) 1
p

while if, under same conditions,|f (n)| is concave, then

(3.2)

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣ ≤ Cα(n, x) ·
∣∣∣∣f (n)

(
1

2

)∣∣∣∣ ,
where

Cα(2k − 1, x) =
2

(2k)!

∣∣∣∣Fα
2k

(
x,

1

2

)∣∣∣∣ and Cα(2k, x) =
1

(2k)!
|Gα

2k(x, 0)|

with functionsFα
2k defined as in (2.2) andGα

2k as in (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8).
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6 I. FRANJIĆ AND J. PEČARIĆ

Proof. First, recall thatFα
2k−1(x, t) = Gα

2k−1(x, t). Now, starting from (2.1), we apply Hölder’s
and then Jensen’s inequality for the convex function|f (n)|p, to obtain

n!

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣
≤
∫ 1

0

|Fα
n (x, t)| · |f (n)(t)|dt

≤
(∫ 1

0

|Fα
n (x, t)|dt

)1− 1
p
(∫ 1

0

|f (n)((1− t) · 0 + t · 1)|p · |Fα
n (x, t)|dt

) 1
p

≤
(∫ 1

0

|Fα
n (x, t)|dt

)1− 1
p
(
|f (n)(0)|p

∫ 1

0

(1− t)|Fα
n (x, t)|dt + |f (n)(1)|p

∫ 1

0

t|Fα
n (x, t)|dt

) 1
p

.

Inequality (3.1) now follows from (2.11) and (2.12).
To prove (3.2), apply Jensen’s integral inequality to (2.1) to obtain

n!

∣∣∣∣∫ 1

0

f(t)dt−∆α
n(x)

∣∣∣∣ ≤ ∫ 1

0

|Fα
n (x, t)| · |f (n)((1− t) · 0 + t · 1)|dt

≤
∫ 1

0

|Fα
n (x, t)|dt ·

∣∣∣∣∣f (n)

(∫ 1

0
((1− t) · 0 + t · 1)|Fα

n (x, t)|dt∫ 1

0
|Fα

n (x, t)|dt

)∣∣∣∣∣ .
�

Theorem 3.1 provides numerous interesting special cases. Particular choices of node will
procure the Dragomir-Agarwal-type estimates for many classical quadrature formulas, as well
as the adjoint corrected ones.

3.1. CASE α = Q3 and n = 3, 4. For x = 0, Theorem 3.1 gives Dragomir-Agarwal-type
estimates for Simpson’s formula; forx = 1/4 it provides the estimates for the dual Simp-
son formula and forx = 1/6 for Maclaurin’s formula. These were already obtained in [11];
Simpson’s formula was also considered in [4].

For x = 1/2 −
√

3/6 (⇔ B2(x) = 0), the following estimates are obtained for the Gauss
2-point formula:

∆Q3
n

(
3−

√
3

6

)
=

1

2
f

(
3−

√
3

6

)
+

1

2
f

(
3−

√
3

6

)
and

CQ3

(
3,

3−
√

3

6

)
=

9− 4
√

3

1728
≈ 1.2 · 10−3,

CQ3

(
4,

3−
√

3

6

)
=

1

4320
≈ 2.3 · 10−4.

3.2. CASE α = CQ3 and n = 5, 6. For x = 0, the following estimates for the corrected
Simpson’s formula are produced:

∆CQ3
n (0) =

1

30

[
7f(0) + 16f

(
1

2

)
+ 7f(1)

]
− 1

60
[f ′(1)− f ′(0)]
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and

CCQ3(5, 0) =
1

115200
≈ 8.68 · 10−6,

CCQ3(6, 0) =
1

604800
≈ 1.65 · 10−6.

Forx = 1/6, the following estimates for the corrected Maclaurin’s formula are produced:

∆CQ3
n

(
1

6

)
=

1

80

[
27f

(
1

6

)
+ 26f

(
1

2

)
+ 27f

(
5

6

)]
+

1

240
[f ′(1)− f ′(0)]

and

CCQ3

(
5,

1

6

)
=

1

691200
≈ 1.45 · 10−6,

CCQ3

(
6,

1

6

)
=

31

87091200
≈ 3.56 · 10−7.

Forx = 1/4, the following estimates for the corrected dual Simpson’s formula are produced:

∆CQ3
n

(
1

4

)
=

1

15

[
8f

(
1

4

)
− f

(
1

2

)
+ 8f

(
3

4

)]
+

1

120
[f ′(1)− f ′(0)]

and

CCQ3

(
5,

1

4

)
=

1

115200
≈ 8.68 · 10−6,

CCQ3

(
6,

1

4

)
=

31

19353600
≈ 1.6 · 10−6.

Forx = 1/2−
√

15/10 (⇔ GCQ3
2 (x, 0) = 0), the following estimates for the Gauss 3-point

formula are produced:

∆CQ3
n

(
5−

√
15

10

)
=

1

18

[
5f

(
5−

√
15

10

)
+ 8f

(
1

2

)
+ 5f

(
5 +

√
15

10

)]
and

CCQ3

(
5,

5−
√

15

10

)
=

25− 6
√

15

576000
≈ 3.06 · 10−6,

CCQ3

(
6,

5−
√

15

10

)
=

1

2016000
≈ 4.96 · 10−7.

For x = x0 := 1/2 −
√

225− 30
√

30
/

30 (⇔ B4(x) = 0) (the case when the weight next

to f(1/2) is annihilated), the following estimates for the corrected Gauss 2-point formula are
produced:

∆CQ3
n (x0) =

1

2
f (x0) +

1

2
f (1− x0)−

5−
√

30

60
[f ′(1)− f ′(0)]
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8 I. FRANJIĆ AND J. PEČARIĆ

and

CCQ3

(
5,

15−
√

225− 30
√

30

30

)

=
46
√

225− 30
√

30− 120
√

30− 4
√

30 + 150
√

30− 825

1728000
≈ 7.86 · 10−6,

CCQ3

(
6,

15−
√

225− 30
√

30

30

)
=

45− 7
√

30

4536000
≈ 1.47 · 10−6.

3.3. CASE α = Q4 and n = 3, 4. For x = 1/3, the estimates for the Simpson 3/8 formula
from [11] are recaptured.

3.4. CASE α = CQ4 and n = 5, 6. For x = 1/3, the following estimates for the corrected
Simpson 3/8 formula are produced:

∆CQ4
n

(
1

3

)
=

1

80

[
13f(0) + 27f

(
1

3

)
+ 27f

(
2

3

)
+ 13f (1)

]
− 1

120
[f ′(1)− f ′(0)]

and

CCQ4

(
5,

1

3

)
=

1

691200
≈ 1.45 · 10−6,

CCQ4

(
6,

1

3

)
=

1

2721600
≈ 3.67 · 10−7.

Forx = 1/2−
√

5/10
(
⇔ GCQ4

2 (x, 0) = 0
)

, the following estimates for the Lobatto 4-point

formula are produced:

∆CQ4
n

(
1

3

)
=

1

12

[
f(0) + 5f

(
5−

√
5

10

)
+ 5f

(
5 +

√
5

10

)
+ f(1)

]
and

CCQ4

(
5,

5−
√

5

10

)
=

√
5

576000
≈ 3.88 · 10−6,

CCQ4

(
6,

5−
√

5

10

)
=

1

1512000
≈ 6.61 · 10−7.

3.5. CASE α = Q5 and n = 5, 6. For x = 1/4, the following estimates for Boole’s formula
from [11] are recaptured.

3.6. CASE α = CQ5 and n = 7, 8. For x = 1/2 −
√

21/14
(
⇔ GCQ5

2 (x, 0) = 0
)

, the

following estimates for the Lobatto 5-point formula are produced:

∆CQ5
n

(
1

4

)
=

1

180

[
9f(0) + 49f

(
7−

√
21

14

)
+ 64f

(
1

2

)
+ 49f

(
7 +

√
21

14

)
+ 9f(1)

]
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and

CCQ5

(
7,

7−
√

21

14

)
=

12
√

21− 49

1264435200
≈ 4.74 · 10−9,

CCQ5

(
8,

7−
√

21

14

)
=

1

1422489600
≈ 7.03 · 10−10.

Forx = 1/4, the following estimates for the corrected Boole’s formula are produced:

∆CQ5
n

(
1

4

)
=

1

1890

[
217f(0) + 512f

(
1

4

)
+ 432f

(
1

2

)
+ 512f

(
3

4

)
+ 217f(1)

]
− 1

252
[f ′(1)− f ′(0)]

and

CCQ5

(
7,

1

4

)
=

17

4877107200
≈ 3.49 · 10−9,

CCQ5

(
8,

1

4

)
=

1

1625702400
≈ 6.15 · 10−10.

Further, forx = 1/2−
√

7/14 (⇔ 14x2 − 14x + 3 = 0), which is the case when the weight
next tof(1/2) is annihilated, the following estimates for the corrected Lobatto 4-point formula
are produced:

∆CQ5
n

(
7−

√
7

14

)
=

1

270

[
37f(0) + 98f

(
7−

√
7

14

)
+ 98f

(
7 +

√
7

14

)
+ 37f(1)

]
− 1

180
[f ′(1)− f ′(0)]

and

CCQ5

(
7,

7−
√

7

14

)
=

343− 16
√

7

34139750400
≈ 8.81 · 10−9,

CCQ5

(
8,

7−
√

7

14

)
=

1

711244800
≈ 1.41 · 10−9.

Finally, for

x = x0 :=
1

2
−
√

45− 2
√

102

14 (
⇔ 98x4 − 196x3 + 102x2 − 4x− 1

= 98

(
x2 − x +

1

49
−
√

102

98

)(
x2 − x +

1

49
+

√
102

98

)
= 0

)
,

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 65, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 I. FRANJIĆ AND J. PEČARIĆ

which is the case when the weight next tof(0) andf(1) is annihilated, the estimates for the
corrected Gauss 3-point formula are produced:

∆CQ5
n (x0) =

1977 + 16
√

102

6930
[f(x0) + f(1− x0)]

+
1488− 16

√
102

3465
f

(
1

2

)
− 9−

√
102

420
[f ′(1)− f ′(0)]

and

CCQ5 (7, x0) =
24
√

60933− 6014
√

102− 49(87− 8
√

102)

3793305600
≈ 8.12 · 10−9,

CCQ5 (8, x0) =
43− 3

√
102

9957427200
≈ 1.28 · 10−9.

Remark 1. An interesting fact to point out is that out of all the 3-point quadrature formulae,
Maclaurin’s formula gives the least estimate of error in Theorem 3.1; among the corrected 3-
point quadrature formulae, the corrected Maclaurin’s formula has the same property.

Further, among the closed 4-point quadrature formulas, the Simpson 3/8 formula gives the
best estimate and the corrected Simpson 3/8 formula is the optimal corrected closed 4-point
quadrature formula.

Finally, the nodex = 1/5 produces the closed 5-point quadrature formula with the best error
estimate, while the nodex = 3/7 −

√
2/7 produces the corrected closed 5-point quadrature

formula with the same property.
The proofs are similar to those in [5], [6], [7] and [8], respectively.

In view of the previous remark, let us consider the caseα = Q5, n = 5, 6 andx = 1/5. We
have:

∆Q5
n

(
1

5

)
=

1

432

[
27f(0) + 125f

(
1

5

)
+ 128f

(
1

2

)
+ 125f

(
4

5

)
+ 27f(1)

]
and

CQ5

(
5,

1

5

)
=

1

1152000
≈ 8.68 · 10−7,

CQ5

(
6,

1

5

)
=

1

5040000
≈ 1.98 · 10−7.

Further, forα = CQ5, n = 7, 8 andx = x0 := 3/7−
√

2/7 we obtain:

∆CQ5
n (x0) = 0.10143 [f(0) + f(1)] + 0.259261 [f(x0) + f(1− x0)]

+ 0.278617 f

(
1

2

)
+ 3.07832 · 10−3 [f ′(1)− f ′(0)]

and

CCQ5 (7, x0) =
27− 16

√
2

3793305600
≈ 1.15 · 10−9,

CCQ5 (8, x0) =
11− 6

√
2

9957427200
≈ 2.53 · 10−10.
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[10] J. PĚCARIĆ AND A. VUKELI Ć, Hadamard and Dragomir-Agarwal inequalities, the general Eu-
ler two point formulae and convex functions,Rad Hrvat. akad. znan. umjet., 491. Matematičke
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