Journal of Inequalities in Pure and Applied Mathematics

ON THE UNIVALENCY OF CERTAIN ANALYTIC FUNCTIONS

ZHI-GANG WANG, CHUN-YI GAO AND SHAO-MOU YUAN

College of Mathematics and Computing Science
Changsha University of Science and Technology
Changsha, Hunan 410076
People's Republic of China
EMail: zhigwang@163.com
volume 7 , issue 1 , article 9 , 2006.

Received 20 April, 2005; accepted 03 September, 2005.

Communicated by: H.M. Srivastava

Abstract
Contents
Home Page
Close
Quit

Abstract

Let $Q(\alpha, \beta, \gamma)$ denote the class of functions of the form $f(z)=z+a_{2} z^{2}+\cdots$, which are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$ and satisfy the condition

$$
\Re\left\{\alpha(f(z) / z)+\beta f^{\prime}(z)\right\}>\gamma \quad(\alpha, \beta>0 ; 0 \leq \gamma<\alpha+\beta \leq 1 ; z \in \mathcal{U}) .
$$

The extreme points for this class are provided, the coefficient bounds and radius of univalency for functions belonging to this class are also provided. The results presented here include a number of known results as their special cases.

2000 Mathematics Subject Classification: Primary 30C45.
Key words: Univalency; extreme point; bound.
This work was supported by the Scientific Research Fund of Hunan Provincial Education Department and the Hunan Provincial Natural Science Foundation (No. 05JJ30013) of People's Republic of China.

Contents

1 Introduction 3
2 Extreme Points of the Class $Q(\alpha, \beta, \gamma)$ 4
3 Radius of Univalency 8
References

On the Univalency of Certain

 Analytic FunctionsZhi-Gang Wang, Chun-Yi Gao and
Shao-Mou Yuan

Title Page
Contents
Go Back
Close
Quit 2

[^0]
1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$. Also let \mathcal{S} denote the familiar subclass of \mathcal{A} consisting of all functions which are univalent in \mathcal{U}.

In the present paper, we consider the following subclass of \mathcal{A} :

$$
\begin{equation*}
Q(\alpha, \beta, \gamma)=\left\{f(z) \in \mathcal{A}: \Re\left\{\alpha \frac{f(z)}{z}+\beta f^{\prime}(z)\right\}>\gamma(z \in \mathcal{U})\right\} \tag{1.1}
\end{equation*}
$$

where $\alpha, \beta>0$ and $0 \leq \gamma<\alpha+\beta \leq 1$.
In some recent papers, Saitoh [2] and Owa [3, 4] discussed the related properties of the class $Q(1-\beta, \beta, \gamma)$. In the present paper, first we determine the extreme points of the class $Q(\alpha, \beta, \gamma)$, then we find the coefficient bounds and radius of univalency for functions belonging to this class. The results presented here include a number of known results as their special cases.

Zhi-Gang Wang, Chun-Yi Gao and
Shao-Mou Yuan

Title Page
Contents

Go Back
Close
Quit
Page 3 of 10

2. Extreme Points of the Class $Q(\alpha, \beta, \gamma)$

First we give the following theorem.
Theorem 2.1. A function $f(z) \in Q(\alpha, \beta, \gamma)$ if and only if $f(z)$ can be expressed as

$$
\begin{align*}
f(z)=\frac{1}{\alpha+\beta} \int_{|x|=1}[(2 \gamma-\alpha-\beta) z
\end{aligned} \quad \begin{aligned}
& \left.\quad+2(\alpha+\beta-\gamma) \sum_{n=0}^{\infty} \frac{(\alpha+\beta) x^{n} z^{n+1}}{(n+1) \beta+\alpha}\right] d \mu(x) \tag{2.1}
\end{align*}
$$

where $\mu(x)$ is the probability measure defined on $X=\{x:|x|=1\}$. For fixed α, β and $\gamma, Q(\alpha, \beta, \gamma)$ and the probability measures $\{\mu\}$ defined on X are one-to-one by the expression (2.1).

Proof. By the definition of $Q(\alpha, \beta, \gamma)$, we know $f(z) \in Q(\alpha, \beta, \gamma)$ if and only if

$$
\frac{\alpha(f(z) / z)+\beta f^{\prime}(z)-\gamma}{\alpha+\beta-\gamma} \in \mathcal{P},
$$

where \mathcal{P} denotes the normalized well-known class of analytic functions which have positive real part. By the aid of Herglotz expressions of functions in \mathcal{P}, we have

$$
\frac{\alpha(f(z) / z)+\beta f^{\prime}(z)-\gamma}{\alpha+\beta-\gamma}=\int_{|x|=1} \frac{1+x z}{1-x z} d \mu(x)
$$

On the Univalency of Certain Analytic Functions

Zhi-Gang Wang, Chun-Yi Gao and
Shao-Mou Yuan

Title Page
Contents

Go Back
Close
Quit
Page 4 of 10

or equivalently,

$$
\frac{\alpha}{\beta} \frac{f(z)}{z}+f^{\prime}(z)=\frac{1}{\beta} \int_{|x|=1} \frac{\alpha+\beta+(\alpha+\beta-2 \gamma) x z}{1-x z} d \mu(x) .
$$

Thus we have

$$
\begin{aligned}
& z^{-\frac{\alpha}{\beta}} \int_{0}^{z}\left[\frac{\alpha}{\beta} \frac{f(\zeta)}{\zeta}+f^{\prime}(\zeta)\right] \zeta^{\frac{\alpha}{\beta}} d \zeta \\
& \\
& \quad=\frac{1}{\beta} \int_{|x|=1}\left[z^{-\frac{\alpha}{\beta}} \int_{0}^{z} \frac{\alpha+\beta+(\alpha+\beta-2 \gamma) x \zeta}{1-x \zeta} \zeta^{\frac{\alpha}{\beta}} d \zeta\right] d \mu(x)
\end{aligned}
$$

that is,

$$
\begin{aligned}
f(z)=\frac{1}{\alpha+\beta} \int_{|x|=1}[(2 \gamma-\alpha-\beta) z
\end{aligned} \quad \begin{aligned}
& \left.\quad+2(\alpha+\beta-\gamma) \sum_{n=0}^{\infty} \frac{(\alpha+\beta) x^{n} z^{n+1}}{(n+1) \beta+\alpha}\right] d \mu(x) .
\end{aligned}
$$

This deductive process can be converse, so we have proved the first part of the theorem. We know that both probability measures $\{\mu\}$ and class \mathcal{P}, class \mathcal{P} and $Q(\alpha, \beta, \gamma)$ are one-to-one, so the second part of the theorem is true. This completes the proof of Theorem 2.1.

Corollary 2.2. The extreme points of the class $Q(\alpha, \beta, \gamma)$ are

$$
\begin{align*}
& f_{x}(z)=\frac{1}{\alpha+\beta}[(2 \gamma-\alpha-\beta) z \tag{2.2}\\
&\left.+2(\alpha+\beta-\gamma) \sum_{n=0}^{\infty} \frac{(\alpha+\beta) x^{n} z^{n+1}}{(n+1) \beta+\alpha}\right] \quad(|x|=1)
\end{align*}
$$

Proof. Using the notation $f_{x}(z)$, (2.1) can be written as

$$
f_{\mu}(z)=\int_{|x|=1} f_{x}(z) d \mu(x)
$$

By Theorem 2.1, the map $\mu \rightarrow f_{\mu}$ is one-to-one, so the assertion follows (see [1]).

Corollary 2.3. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in Q(\alpha, \beta, \gamma)$, then for $n \geq 2$, we have

$$
\left|a_{n}\right| \leq \frac{2(\alpha+\beta-\gamma)}{n \beta+\alpha}
$$

The results are sharp.
Proof. The coefficient bounds are maximized at an extreme point. Now from (2.2), $f_{x}(z)$ can be expressed as

$$
\begin{equation*}
f_{x}(z)=z+2(\alpha+\beta-\gamma) \sum_{n=2}^{\infty} \frac{x^{n-1} z^{n}}{n \beta+\alpha}(|x|=1) \tag{2.3}
\end{equation*}
$$

and the result follows.

Corollary 2.4. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in Q(\alpha, \beta, \gamma)$, then for $|z|=r<1$, we have

$$
|f(z)| \leq r+2(\alpha+\beta-\gamma) \sum_{n=2}^{\infty} \frac{r^{n}}{n \beta+\alpha}
$$

This result follows from (2.3).

Analytic Functions
Zhi-Gang Wang, Chun-Yi Gao and
Shao-Mou Yuan

3. Radius of Univalency

In this section, we shall provide the radius of univalency for functions belonging to the class $Q(\alpha, \beta, \gamma)$.

Theorem 3.1. Let $f(z) \in Q(\alpha, \beta, \gamma)$, then $f(z)$ is univalent in $|z|<R(\alpha, \beta, \gamma)$, where

$$
R(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{n \beta+\alpha}{2 n(\alpha+\beta-\gamma)}\right\}^{\frac{1}{n-1}}
$$

This result is sharp.
Proof. It suffices to show that

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<1 \tag{3.1}
\end{equation*}
$$

For the left hand side of (3.1) we have

$$
\left|\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right| \leq \sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1}
$$

This last expression is less than 1 if

$$
|z|^{n-1}<\frac{n \beta+\alpha}{2 n(\alpha+\beta-\gamma)}
$$

To show that the bound $R(\alpha, \beta, \gamma)$ is best possible, we consider the function $f(z) \in \mathcal{A}$ defined by

$$
f(z)=z-\frac{2(\alpha+\beta-\gamma)}{n \beta+\alpha} z^{n}
$$

If $\delta>R(\alpha, \beta, \gamma)$, then there exists $n \geq 2$ such that

$$
\left\{\frac{n \beta+\alpha}{2 n(\alpha+\beta-\gamma)}\right\}^{\frac{1}{n-1}}<\delta
$$

Since $f^{\prime}(0)=1>0$ and

$$
f^{\prime}(\delta)=1-\frac{2 n(\alpha+\beta-\gamma)}{n \beta+\alpha} \delta^{n-1}<0
$$

Thus, there exists $\delta_{0} \in(0, \delta)$ such that $f^{\prime}\left(\delta_{0}\right)=0$, which implies that $f(z)$ is not univalent in $|z|<\delta$. This completes the proof of Theorem 3.1.

On the Univalency of Certain Analytic Functions

Zhi-Gang Wang, Chun-Yi Gao and
Shao-Mou Yuan

J. Ineq. Pure and Appl. Math. 7(1) Art. 9, 2006 http://jipam.vu.edu.au

References

[1] D.J. HALLENBECK, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc., 192 (1974), 285-292.
[2] H. SAITOH, On inequalities for certain analytic functions, Math. Japon., 35 (1990), 1073-1076.
[3] S. OWA, Some properties of certain analytic functions, Soochow J. Math., 13 (1987), 197-201.
[4] S. OWA, Generalization properties for certain analytic functions, Internat. J. Math. Math. Sci., 21 (1998), 707-712.

On the Univalency of Certain Analytic Functions

Zhi-Gang Wang, Chun-Yi Gao and
Shao-Mou Yuan

J. Ineq. Pure and Appl. Math. 7(1) Art. 9, 2006 http://jipam.vu.edu.au

[^0]: J. Ineq. Pure and Appl. Math. 7(1) Art. 9, 2006 http://jipam.vu.edu.au

