Journal of Inequalities in Pure and Applied Mathematics

THE METHOD OF LOWER AND UPPER SOLUTIONS FOR SOME FOURTH-ORDER EQUATIONS

ZHANBING BAI, WEIGAO GE AND YIFU WANG

Department of Applied Mathematics,
Beijing Institute of Technology,
Beijing 100081, People's Republic of China.
EMail: baizhanbing@263.net
volume 5 , issue 1, article 13, 2004.

Received 17 September, 2003; accepted 23 January, 2004.

Communicated by: A.M. Fink
Abstract

Abstract

In this paper, by combining a new maximum principle of fourth-order equations with the theory of eigenline problems, we develop a monotone method in the presence of lower and upper solutions for some fourth-order ordinary differential equation boundary value problem. Our results indicate there is a relation between the existence of solutions of nonlinear fourth-order equation and the first eigenline of linear fourth-order equation.

2000 Mathematics Subject Classification: 34B15, 34B10.
Key words: Maximum principle; Lower and upper solutions; Fourth-order equation.
This work is sponsored by the National Nature Science Foundation of China (10371006) and the Doctoral Program Foundation of Education Ministry of China (1999000722).

The authors thank the referees for their careful reading of the manuscript and useful suggestions.

Contents

1 Introduction 3
2 Maximum Principle 5
3 The Monotone Method 9
References

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page	
Contents	
44	-
4	-
Go Back	
Close	
Quit	
Page 2 of 17	

1. Introduction

This paper consider solutions of the fourth-order boundary value problem

$$
\begin{equation*}
u^{(4)}(x)=f\left(x, u(x), u^{\prime \prime}(x)\right), \quad 0<x<1 \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \tag{1.2}
\end{equation*}
$$

where $f:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous.
Many authors [1] - [8], [10], [11], [13] - [17] have studied this problem. In [1, 4, 6, 8, 10, 16], Aftabizadeh et al. showed the existence of positive solution to (1.1) - (1.2) under some growth conditions of f and a non-resonance condition involving a two-parameter linear eigenvalue problem. These results are based upon the Leray-Schauder continuation method and topological degree. In [2, 5, 7, 11, 15], Agarwal et al. considered an equation of the form

$$
u^{(4)}(x)=f(x, u(x))
$$

with diverse kind of boundary conditions by using the lower and upper solution method.

Recently, Bai [3] and Ma et al. [14] developed the monotone method for the problem (1.1) - (1.2) under some monotone conditions of f. More recently, with using Krasnosel'skii fixed point theorem, Li [13] showed the existence results of positive solutions for the following problem

$$
u^{(4)}+\beta u^{\prime \prime}-\alpha u=f(t, u), \quad 0<t<1
$$

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu Wang

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 3 of 17 |

$$
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
$$

where $f:[0,1] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous, $\alpha, \beta \in \mathbb{R}$ and $\beta<2 \pi^{2}, \alpha \geq$ $-\beta^{2} / 4, \alpha / \pi^{4}+\beta / \pi^{2}<1$.

In this paper, by the use of a new maximum principle of fourth-order equation and the theory of the eigenline problem, we intend to further relax the monotone condition of f and get the iteration solution. Our results indicate there exists some relation between the existence of positive solutions of nonlinear fourth-order equation and the first eigenline of linear fourth-order equation.

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page
Contents
Go Back
Close
Quit

J. Ineq. Pure and Appl. Math. 5(1) Art. 13, 2004
http://jipam.vu.edu.au

2. Maximum Principle

In this section, we prove a maximum principle for the operator

$$
L: F \longrightarrow C[0,1]
$$

defined by $L u=u^{(4)}-a u^{\prime \prime}+b u$. Here $a, b \in \mathbb{R}$ satisfy

$$
\begin{equation*}
\frac{a}{\pi^{2}}+\frac{b}{\pi^{4}}+1>0, \quad a^{2}-4 b \geq 0, \quad a>-2 \pi^{2} \tag{2.1}
\end{equation*}
$$

$u \in F$ and

$$
F=\left\{u \in C^{4}[0,1] \mid u(0)=0, u(1)=0, u^{\prime \prime}(0) \leq 0, u^{\prime \prime}(1) \leq 0\right\}
$$

Lemma 2.1. [12] Let $f(x)$ be continuous for $a \leq x \leq b$ and let $c<\lambda_{1}=$ $\pi^{2} /(b-a)^{2}$. Let u satisfies

$$
\begin{gathered}
u^{\prime \prime}(x)+c u(x)=f(x), \quad \text { for } x \in(a, b), \\
u(a)=u(b)=0 .
\end{gathered}
$$

Assume that $u\left(x_{1}\right)=u\left(x_{2}\right)=0$ where $a \leq x_{1}<x_{2} \leq b$ and $u(x) \neq 0$ for $x_{1} \leq x \leq x_{2}$. If either $f(x) \geq 0$ for all $x \in\left[x_{1}, x_{2}\right]$ or $f(x) \leq 0$ for all $x \in\left[x_{1}, x_{2}\right]$ and $f(x)$ is not identically zero on $\left[x_{1}, x_{2}\right]$, then $u(x) f(x) \leq 0$ for all $x \in\left[x_{1}, x_{2}\right]$.
Lemma 2.2. If $u(x)$ satisfies

$$
\begin{gathered}
u^{\prime \prime}+c u(x) \geq 0, \quad \text { for } x \in(a, b) \\
u(a) \leq 0, \quad u(b) \leq 0,
\end{gathered}
$$

where $c<\lambda_{1}=\pi^{2} /(b-a)^{2}$. Then $u(x) \leq 0$, in $[a, b]$.

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page

Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 5 of 17 |

Page 5 of 17

Proof. It follows by Lemma 2.1.
Lemma 2.3. If $u \in F$ satisfies $L u \geq 0$, then $u \geq 0$ in $[0,1]$.
Proof. Set $A x=x^{\prime \prime}$. As $a, b \in \mathbb{R}$ satisfy (2.1), we have that

$$
L u=u^{(4)}-a u^{\prime \prime}+b u=\left(A-r_{2}\right)\left(A-r_{1}\right) u \geq 0
$$

where $r_{1,2}=\left(a \pm \sqrt{a^{2}-4 b}\right) / 2 \geq-\pi^{2}$. In fact, $r_{1}=\left(a+\sqrt{a^{2}-4 b}\right) / 2 \geq$ $r_{2}=\left(a-\sqrt{a^{2}-4 b}\right) / 2$. By $a / \pi^{2}+b / \pi^{4}+1>0$, we have $a \pi^{2}+b+\pi^{4}>0$, thus $a^{2}+4 a \pi^{2}+4 \pi^{4}>a^{2}-4 b$, because $a^{2}-4 b \geq 0$, so

$$
\left(a+2 \pi^{2}\right)^{2}>\left(\sqrt{a^{2}-4 b}\right)^{2}
$$

Combining this together with $a>-2 \pi^{2}$, we can conclude

$$
a+2 \pi^{2}>\sqrt{a^{2}-4 b}
$$

Then, $r_{1} \geq r_{2}=\left(a-\sqrt{a^{2}-4 b}\right) / 2>-\pi^{2}$.
Let $y=\left(A-r_{1}\right) u=u^{\prime \prime}-r_{1} u$, then

$$
\left(A-r_{2}\right) y \geq 0
$$

i.e.,

$$
y^{\prime \prime}-r_{2} y \geq 0
$$

On the other hand, $u \in F$ yields that

$$
\begin{equation*}
y(0)=u^{\prime \prime}(0)-r_{1} u(0) \leq 0, \quad y(1)=u^{\prime \prime}(1)-r_{1} u(1) \leq 0 . \tag{2.2}
\end{equation*}
$$

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page
Contents

Go Back
Close
Quit
Page 6 of 17

Therefore, by the use of Lemma 2.2, there exists

$$
y(x) \leq 0, \quad x \in[0,1]
$$

i.e.,

$$
u^{\prime \prime}(x)-r_{1} u(x)=y(x) \leq 0
$$

This together with Lemma 2.2 and the fact that $u(0)=0, \quad u(1)=0$ implies that $u(x) \geq 0$ in $[0,1]$.

Remark 2.1. Observe that $a, b \in \mathbb{R}$ satisfies (2.1) if and only if

$$
\begin{equation*}
b \leq 0, \quad \frac{a}{\pi^{2}}+\frac{b}{\pi^{4}}+1>0, \quad a>-2 \pi^{2} \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
b>0, \quad a>0, \quad a^{2}-4 b \geq 0 \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
b>0, \quad 0>a>-2 \pi^{2}, \quad \frac{a}{\pi^{2}}+\frac{b}{\pi^{4}}+1>0, \quad a^{2}-4 b \geq 0 \tag{2.5}
\end{equation*}
$$

From (2.3) and (2.4), we can easily conclude

$$
r_{1}=\frac{a+\sqrt{a^{2}-4 b}}{2} \geq 0
$$

Therefore, (2.2) can be obtained under $u(0) \geq 0, u(1) \geq 0, u^{\prime \prime}(0) \leq 0, u^{\prime \prime}(1) \leq$ 0 , and F can be defined as

$$
F=\left\{u \in C^{4}[0,1] \mid u(0) \geq 0, u(1) \geq 0, u^{\prime \prime}(0) \leq 0, u^{\prime \prime}(1) \leq 0\right\}
$$

we refer the reader to $[3,13]$.

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page
Contents
$\mathbf{4}$
Go Back
Close
Quit
Page 7 of 17

Lemma 2.4. [7] Given $(a, b) \in \mathbb{R}^{2}$, the following problem

$$
\begin{gather*}
u^{(4)}-a u^{\prime \prime}+b u=0 \tag{2.6}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \tag{2.7}
\end{gather*}
$$

has a non-trivial solution if and only if

$$
\frac{a}{(k \pi)^{2}}+\frac{b}{(k \pi)^{4}}+1=0
$$

for some $k \in \mathbb{N}$.

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

J. Ineq. Pure and Appl. Math. 5(1) Art. 13, 2004 http://jipam.vu.edu.au

3. The Monotone Method

In this section, we develop the monotone method for the fourth order two-point boundary value problem (1.1) - (1.2).

For given $a, b \in \mathbb{R}$ satisfying $a / \pi^{2}+b / \pi^{4}+1>0, a^{2}-4 b \geq 0, a>-2 \pi^{2}$ and $f:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, let

$$
\begin{equation*}
f_{1}(x, u, v)=f(x, u, v)+b u-a v . \tag{3.1}
\end{equation*}
$$

Then (1.1) is equal to

$$
\begin{equation*}
L u=f_{1}\left(x, u, u^{\prime \prime}\right) \tag{3.2}
\end{equation*}
$$

Definition 3.1. Letting $\alpha \in C^{4}[0,1]$, we say that α is an upper solution for the problem (1.1) - (1.2) if α satisfies

$$
\begin{aligned}
\alpha^{(4)}(x) & \geq f\left(x, \alpha(x), \alpha^{\prime \prime}(x)\right), \quad \text { for } x \in(0,1) \\
\alpha(0) & =0, \quad \alpha(1)=0 \\
\alpha^{\prime \prime}(0) & \leq 0, \quad \alpha^{\prime \prime}(1) \leq 0
\end{aligned}
$$

Definition 3.2. Letting $\beta \in C^{4}[0,1]$, we say β is a lower solution for the problem (1.1) - (1.2) if β satisfies

$$
\begin{aligned}
\beta^{(4)}(x) & \leq f\left(x, \beta(x), \beta^{\prime \prime}(x)\right), \quad \text { for } x \in(0,1) \\
\beta(0) & =0, \quad \beta(1)=0 \\
\beta^{\prime \prime}(0) & \geq 0, \quad \beta^{\prime \prime}(1) \geq 0
\end{aligned}
$$

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page
Contents
Go Back
Close
Quit
Page 9 of 17

Remark 3.1. If a, b satisfy (2.3) or (2.4), the boundary values can be replaced by

$$
\alpha(0) \geq 0, \quad \alpha(1) \geq 0 ; \quad \beta(0) \leq 0, \quad \beta(1) \leq 0
$$

It is clear that if α, β are upper and lower solutions of the problem (1.1) (1.2) respectively, α, β are upper and lower solutions of the problem (3.2) (1.2) respectively, too.

Theorem 3.1. If there exist α and β, upper and lower solutions, respectively, for the problem (1.1) - (1.2) which satisfy

$$
\begin{equation*}
\beta \leq \alpha \quad \text { and } \quad \beta^{\prime \prime}+r(\alpha-\beta) \geq \alpha^{\prime \prime} \tag{3.3}
\end{equation*}
$$

and if $f:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and satisfies

$$
\begin{equation*}
f\left(x, u_{2}, v\right)-f\left(x, u_{1}, v\right) \geq-b\left(u_{2}-u_{1}\right) \tag{3.4}
\end{equation*}
$$

for $\beta(x) \leq u_{1} \leq u_{2} \leq \alpha(x), v \in \mathbb{R}$, and $x \in[0,1]$;

$$
\begin{equation*}
f\left(x, u, v_{2}\right)-f\left(x, u, v_{1}\right) \leq a\left(v_{2}-v_{1}\right) \tag{3.5}
\end{equation*}
$$

for $v_{2}+r(\alpha-\beta) \geq v_{1}, \alpha^{\prime \prime}-r(\alpha-\beta) \leq v_{1}, v_{2} \leq \beta^{\prime \prime}+r(\alpha-\beta), u \in \mathbb{R}$, and $x \in[0,1]$, where $a, b \in \mathbb{R}$ satisfy $a / \pi^{2}+b / \pi^{4}+1>0, a^{2}-4 b \geq 0, a>-2 \pi^{2}$ and $r=\left(a-\sqrt{a^{2}-4 b}\right) / 2$, then there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$, non-increasing and non-decreasing, respectively, with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$, which converge uniformly to the extremal solutions in $[\beta, \alpha]$ of the problem (1.1) - (1.2).

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu Wang

Title Page

Contents
$\mathbf{4}$
Go Back
Close
Quit

Page 10 of 17

Proof. Consider the problem

$$
\begin{equation*}
u^{(4)}(x)-a u^{\prime \prime}(x)+b u(x)=f_{1}\left(x, \eta(x), \eta^{\prime \prime}(x)\right), \quad \text { for } x \in(0,1) \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \tag{3.7}
\end{equation*}
$$

with $\eta \in C^{2}[0,1]$.
Since $a / \pi^{2}+b / \pi^{4}+1>0$, with the use of Lemma 2.4 and Fredholm Alternative [9], the problem (3.6) - (3.7) has a unique solution u. Define T : $C^{2}[0,1] \longrightarrow C^{4}[0,1]$ by

$$
\begin{equation*}
T \eta=u \tag{3.8}
\end{equation*}
$$

Now, we divide the proof into three steps.

Step 1. We show

$$
\begin{equation*}
T C \subseteq C \tag{3.9}
\end{equation*}
$$

Here, $C=\left\{\eta \in C^{2}[0,1] \mid \beta \leq \eta \leq \alpha, \quad \alpha^{\prime \prime}-r(\alpha-\beta) \leq \eta^{\prime \prime} \leq\right.$ $\left.\beta^{\prime \prime}+r(\alpha-\beta)\right\}$ is a nonempty bounded closed subset in $C^{2}[0,1]$.
In fact, for $\zeta \in C$, set $\omega=T \zeta$. By the definition of α, β and C, combining (3.1), (3.4), and (3.5), we have that

$$
\begin{align*}
& (\alpha-\omega)^{(4)}(x)-a(\alpha-\omega)^{\prime \prime}(x)+b(\alpha-\omega)(x) \\
& \geq f_{1}\left(x, \alpha(x), \alpha^{\prime \prime}(x)\right)-f_{1}\left(x, \zeta(x), \zeta^{\prime \prime}(x)\right) \\
& \quad=f\left(x, \alpha(x), \alpha^{\prime \prime}(x)\right)-f\left(x, \zeta(x), \zeta^{\prime \prime}(x)\right) \\
& \quad \quad-a(\alpha-\zeta)^{\prime \prime}(x)+b(\alpha-\zeta)(x) \\
& \geq 0, \quad \tag{3.10}
\end{align*}
$$

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page

Contents

44	-
4	-
Go Back	
Close	
Quit	

Page 11 of 17
J. Ineq. Pure and Appl. Math. 5(1) Art. 13, 2004

$$
\begin{equation*}
(\alpha-\omega)(0)=0, \quad(\alpha-\omega)(1)=0 \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha-\omega)^{\prime \prime}(0) \leq 0, \quad(\alpha-\omega)^{\prime \prime}(1) \leq 0 \tag{3.12}
\end{equation*}
$$

With the use of Lemma 2.3, we obtain that $\alpha \geq \omega$. Analogously, there holds $\omega \geq \beta$.
By the proof of Lemma 2.3, combining (3.10), (3.11), and (3.12), we have that

$$
(\alpha-\omega)^{\prime \prime}(x)-r(\alpha-\omega)(x) \leq 0, \quad x \in(0,1)
$$

hence,
$\omega^{\prime \prime}(x)+r(\alpha-\beta)(x) \geq \omega^{\prime \prime}(x)+r(\alpha-\omega)(x) \geq \alpha^{\prime \prime}(x), \quad$ for $x \in(0,1)$, i.e.,

$$
\omega^{\prime \prime}(x) \geq \alpha^{\prime \prime}(x)-r(\alpha-\beta)(x), \quad \text { for } x \in(0,1)
$$

Analogously,

$$
\omega^{\prime \prime}(x) \leq \beta^{\prime \prime}(x)+r(\alpha-\beta)(x), \quad \text { for } x \in(0,1)
$$

Thus, (3.9) holds.
Step 2. Let $u_{1}=T \eta_{1}, u_{2}=T \eta_{2}$, where $\eta_{1}, \eta_{2} \in C$ satisfy $\eta_{1} \leq \eta_{2}$ and $\eta_{1}^{\prime \prime}+$ $r(\alpha-\beta) \geq \eta_{2}^{\prime \prime}$. We show

$$
\begin{equation*}
u_{1} \leq u_{2}, \quad u_{1}^{\prime \prime}+r(\alpha-\beta) \geq u_{2}^{\prime \prime} \tag{3.13}
\end{equation*}
$$

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu Wang

Title Page
Contents
$\mathbf{S 4}$
Go Back
Close
Quit

In fact, by (3.4), (3.5), and the definition of u_{1}, u_{2},

$$
\begin{gathered}
L\left(u_{2}-u_{1}\right)(x)=f_{1}\left(x, \eta_{2}(x), \eta_{2}^{\prime \prime}(x)\right)-f_{1}\left(x, \eta_{1}(x), \eta_{1}^{\prime \prime}(x)\right) \geq 0 \\
\left(u_{2}-u_{1}\right)(0)=\left(u_{2}-u_{1}\right)(1)=0 \\
\left(u_{2}-u_{1}\right)^{\prime \prime}(0)=\left(u_{2}-u_{1}\right)^{\prime \prime}(1)=0 .
\end{gathered}
$$

With the use of Lemma 2.3, we get that $u_{1} \leq u_{2}$. Similar to Step 1, we can easily prove $u_{1}^{\prime \prime}+r(\alpha-\beta) \geq u_{2}^{\prime \prime}$. Thus, (3.13) holds.

Step 3. The sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are obtained by recurrence:

$$
\alpha_{0}=\alpha, \quad \beta_{0}=\beta, \quad \alpha_{n}=T \alpha_{n-1}, \quad \beta_{n}=T \beta_{n-1}, \quad n=1,2, \ldots
$$

From the results of Step 1 and Step 2, we have that

$$
\begin{equation*}
\beta=\beta_{0} \leq \beta_{1} \leq \cdots \leq \beta_{n} \leq \cdots \leq \alpha_{n} \leq \cdots \leq \alpha_{1} \leq \alpha_{0}=\alpha \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
\beta^{\prime \prime}=\beta_{0}^{\prime \prime}, \quad \alpha^{\prime \prime}=\alpha_{0}^{\prime \prime}, \quad \alpha^{\prime \prime}-r(\alpha-\beta) \leq \alpha_{n}^{\prime \prime}, \quad \beta_{n}^{\prime \prime} \leq \beta^{\prime \prime}+r(\alpha-\beta) \tag{3.15}
\end{equation*}
$$

Moreover, from the definition of T (see (3.8)), we get

$$
\alpha_{n}^{(4)}(x)-a \alpha_{n}^{\prime \prime}(x)+b \alpha_{n}(x)=f_{1}\left(x, \alpha_{n-1}(x), \alpha_{n-1}^{\prime \prime}(x)\right),
$$

i.e.,

$$
\alpha_{n}^{(4)}(x)=f_{1}\left(x, \alpha_{n-1}(x), \alpha_{n-1}^{\prime \prime}(x)\right)+a \alpha_{n}^{\prime \prime}(x)-b \alpha_{n}(x)
$$

$$
\begin{equation*}
\leq f_{1}\left(x, \alpha_{n-1}(x), \alpha_{n-1}^{\prime \prime}(x)\right)+a\left[\beta^{\prime \prime}+r(\alpha-\beta)\right](x)-b \beta(x) \tag{3.16}
\end{equation*}
$$

Title Page

Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 13 of 17

$$
\begin{equation*}
\alpha_{n}(0)=\alpha_{n}(1)=\alpha_{n}^{\prime \prime}(0)=\alpha_{n}^{\prime \prime}(1)=0 \tag{3.17}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\beta_{n}^{(4)}(x)=f_{1}\left(x, \beta_{n-1}(x), \beta_{n-1}^{\prime \prime}(x)\right)+a \beta_{n}^{\prime \prime}(x)-b \beta_{n}(x) \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{n}(0)=\beta_{n}(1)=\beta_{n}^{\prime \prime}(0)=\beta_{n}^{\prime \prime}(1)=0 \tag{3.19}
\end{equation*}
$$

From (3.14), (3.15), (3.16), and the continuity of f_{1}, we have that there exists $M_{\alpha, \beta}>0$ depending only on α and β (but not on n or x) such that

$$
\begin{equation*}
\left|\alpha_{n}^{(4)}(x)\right| \leq M_{\alpha, \beta}, \quad \text { for all } x \in[0,1] \tag{3.20}
\end{equation*}
$$

Using the boundary condition (3.17), we get that for each $n \in \mathbb{N}$, there exists $\xi_{n} \in(0,1)$ such that

$$
\begin{equation*}
\alpha_{n}^{\prime \prime \prime}\left(\xi_{n}\right)=0 \tag{3.21}
\end{equation*}
$$

This together with (3.20) yields

$$
\begin{equation*}
\left|\alpha_{n}^{\prime \prime \prime}(x)\right|=\left|\alpha_{n}^{\prime \prime \prime}\left(\xi_{n}\right)+\int_{\xi_{n}}^{x} \alpha_{n}^{(4)}(s) d s\right| \leq M_{\alpha, \beta} . \tag{3.22}
\end{equation*}
$$

The Method of Lower and Upper Solutions for Some
Fourth-Order Equations
Zhanbing Bai, Weigao Ge and Yifu Wang

Title Page
Contents
$\mathbf{4 4}$
Go Back
Close
Quit
Page 14 of 17

By combining (3.15) and (3.17), we can similarly get that there is $C_{\alpha, \beta}>0$ depending only on α and β (but not on n or x) such that

$$
\begin{equation*}
\left|\alpha_{n}^{\prime \prime}(x)\right| \leq C_{\alpha, \beta}, \quad \text { for all } x \in[0,1] \tag{3.23}
\end{equation*}
$$

Thus, from (3.14), (3.22), (3.23), and (3.24), we know that $\left\{\alpha_{n}\right\}$ is bounded in $C^{3}[0,1]$. Similarly, $\left\{\beta_{n}\right\}$ is bounded in $C^{3}[0,1]$.

Now, by using the fact that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are bounded in $C^{3}[0,1]$, we can conclude that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ converge uniformly to the extremal solutions in $[0,1]$ of the problem (3.2) - (1.2). Therefore, $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ converge uniformly to the extremal solutions in $[0,1]$ of the problem (1.1) - (1.2), too.

Example 3.1. Consider the boundary value problem

$$
\begin{equation*}
u^{(4)}(x)=-5 u^{\prime \prime}(x)-(u(x)+1)^{2}+\sin ^{2} \pi x+1 \tag{3.25}
\end{equation*}
$$

It is clear that the results of [3, 7, 13, 14] can't apply to the example. On the other hand, it is easy to check that $\alpha=\sin \pi x, \beta=0$ are upper and lower solutions of (3.25) - (3.26), respectively. Letting $a=-5, \quad b=4$, then all assumptions of Theorem 3.1 are fulfilled. Hence the problem (3.25) - (3.26) has at least one solution u, which satisfies $0 \leq u \leq \sin \pi x$.

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu
Wang

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 15 of 17 |

References

[1] A.R. AFTABIZADEH, Existence and uniqueness theorems for fourthorder boundary value problems, J. Math. Anal. Appl., 116 (1986), 415426.
[2] R.P. AGARWAL, On fourth-order boundary value problems arising in beam analysis, Differential Integral Equations, 2 (1989), 91-110.
[3] Z.B. BAI, The Method of lower and upper solutions for a bending of an elastic beam equation, J. Math. Anal. Appl., 248 (2000), 195-202.
[4] Z.B. BAI AND H.Y. WANG, On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368.
[5] A. CABADA, The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl., 185 (1994), 302-320.
[6] C. De COSTER, C. FABRY and F. MUNYAMARERE, Nonresonance conditions for fourth-order nonlinear boundary value problems, Internat. J. Math. Sci., 17 (1994), 725-740.
[7] C. DE COSTER AND L. SANCHEZ, Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E., Riv. Mat. Pura Appl., 14 (1994), 1129-1138.
[8] M.A. DEL PINO AND R.F. MANASEVICH, Existence for a fourth-order boundary value problem under a two parameter nonresonance condition, Proc. Amer. Math. Soc., 112 (1991), 81-86.

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu Wang

Title Page
Contents

44	$\stackrel{ }{ } \stackrel{ }{ }$
4	,
Go Back	
Close	
Quit	

Page 16 of 17
J. Ineq. Pure and Appl. Math. 5(1) Art. 13, 2004
[9] D. GILBARG and N.S. TRUDINGER, Elliptic Partial Differential Equations of Second-Order, Springer-Verlag, New York, 1977.
[10] C.P. GUPTA, Existence and uniqueness theorem for a bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304.
[11] P. KORMAN, A maximum principle for fourth-order ordinary differential equations, Appl. Anal., 33 (1989), 267-273.
[12] A.C. LAZER AND P.J. MCKENNA, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994), 648-655.
[13] Y.X. LI, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281 (2003), 477-484.
[14] R.Y. MA, J.H. ZHANG AND S.M. FU, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422.
[15] J. SCHRODER, Fourth-order two-point boundary value problems; estimates by two side bounds, Nonl. Anal., 8 (1984), 107-114.
[16] R.A. USMANI, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc., 77 (1979), 327-335.
[17] Q.L. YAO AND Z.B. BAI, Existence of positive solutions of boundary value problems for $u^{(4)}(t)-\lambda h(t) f(u(t))=0$, Chinese. Ann. Math. Ser. A, 20 (1999), 575-578. [In Chinese]

The Method of Lower and Upper Solutions for Some Fourth-Order Equations

Zhanbing Bai, Weigao Ge and Yifu Wang

Title Page
Contents

Go Back

Close
Quit
Page 17 of 17

