Journal of Inequalities in Pure and Applied Mathematics

THE METHOD OF LOWER AND UPPER SOLUTIONS FOR SOME FOURTH-ORDER EQUATIONS

ZHANBING BAI, WEIGAO GE, AND YIFU WANG
Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, People's Republic of China. baizhanbing@263.net

Abstract

In this paper, by combining a new maximum principle of fourth-order equations with the theory of eigenline problems, we develop a monotone method in the presence of lower and upper solutions for some fourth-order ordinary differential equation boundary value problem. Our results indicate there is a relation between the existence of solutions of nonlinear fourth-order equation and the first eigenline of linear fourth-order equation.

Key words and phrases: Maximum principle; Lower and upper solutions; Fourth-order equation.

1. Introduction

This paper consider solutions of the fourth-order boundary value problem

$$
\begin{equation*}
u^{(4)}(x)=f\left(x, u(x), u^{\prime \prime}(x)\right), \quad 0<x<1, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0, \tag{1.2}
\end{equation*}
$$

where $f:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous.
Many authors [1] - [8], [10], [11], [13] - [17] have studied this problem. In [1, 4, 6, 8, 10, 16], Aftabizadeh et al. showed the existence of positive solution to (1.1) - (1.2) under some growth conditions of f and a non-resonance condition involving a two-parameter linear

[^0]eigenvalue problem. These results are based upon the Leray-Schauder continuation method and topological degree. In [2, 5, 7, 11, 15], Agarwal et al. considered an equation of the form
$$
u^{(4)}(x)=f(x, u(x)),
$$
with diverse kind of boundary conditions by using the lower and upper solution method.
Recently, Bai [3] and Ma et al. [14] developed the monotone method for the problem (1.1) - (1.2) under some monotone conditions of f. More recently, with using Krasnosel'skii fixed point theorem, Li [13] showed the existence results of positive solutions for the following problem
\[

$$
\begin{gathered}
u^{(4)}+\beta u^{\prime \prime}-\alpha u=f(t, u), \quad 0<t<1, \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0,
\end{gathered}
$$
\]

where $f:[0,1] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous, $\alpha, \beta \in \mathbb{R}$ and $\beta<2 \pi^{2}, \alpha \geq-\beta^{2} / 4, \alpha / \pi^{4}+\beta / \pi^{2}<$ 1.

In this paper, by the use of a new maximum principle of fourth-order equation and the theory of the eigenline problem, we intend to further relax the monotone condition of f and get the iteration solution. Our results indicate there exists some relation between the existence of positive solutions of nonlinear fourth-order equation and the first eigenline of linear fourth-order equation.

2. Maximum Principle

In this section, we prove a maximum principle for the operator

$$
L: F \longrightarrow C[0,1]
$$

defined by $L u=u^{(4)}-a u^{\prime \prime}+b u$. Here $a, b \in \mathbb{R}$ satisfy

$$
\begin{equation*}
\frac{a}{\pi^{2}}+\frac{b}{\pi^{4}}+1>0, \quad a^{2}-4 b \geq 0, \quad a>-2 \pi^{2} \tag{2.1}
\end{equation*}
$$

$u \in F$ and

$$
F=\left\{u \in C^{4}[0,1] \mid u(0)=0, \quad u(1)=0, u^{\prime \prime}(0) \leq 0, u^{\prime \prime}(1) \leq 0\right\}
$$

Lemma 2.1. [12] Let $f(x)$ be continuous for $a \leq x \leq b$ and let $c<\lambda_{1}=\pi^{2} /(b-a)^{2}$. Let u satisfies

$$
\begin{gathered}
u^{\prime \prime}(x)+c u(x)=f(x), \quad \text { for } x \in(a, b), \\
u(a)=u(b)=0 .
\end{gathered}
$$

Assume that $u\left(x_{1}\right)=u\left(x_{2}\right)=0$ where $a \leq x_{1}<x_{2} \leq b$ and $u(x) \neq 0$ for $x_{1} \leq x \leq x_{2}$. If either $f(x) \geq 0$ for all $x \in\left[x_{1}, x_{2}\right]$ or $f(x) \leq 0$ for all $x \in\left[x_{1}, x_{2}\right]$ and $f(x)$ is not identically zero on $\left[x_{1}, x_{2}\right]$, then $u(x) f(x) \leq 0$ for all $x \in\left[x_{1}, x_{2}\right]$.

Lemma 2.2. If $u(x)$ satisfies

$$
\begin{gathered}
u^{\prime \prime}+c u(x) \geq 0, \quad \text { for } x \in(a, b) \\
u(a) \leq 0, \quad u(b) \leq 0
\end{gathered}
$$

where $c<\lambda_{1}=\pi^{2} /(b-a)^{2}$. Then $u(x) \leq 0$, in $[a, b]$.
Proof. It follows by Lemma 2.1.
Lemma 2.3. If $u \in F$ satisfies $L u \geq 0$, then $u \geq 0$ in $[0,1]$.

Proof. Set $A x=x^{\prime \prime}$. As $a, b \in \mathbb{R}$ satisfy 2.1 , we have that

$$
L u=u^{(4)}-a u^{\prime \prime}+b u=\left(A-r_{2}\right)\left(A-r_{1}\right) u \geq 0
$$

where $r_{1,2}=\left(a \pm \sqrt{a^{2}-4 b}\right) / 2 \geq-\pi^{2}$. In fact, $r_{1}=\left(a+\sqrt{a^{2}-4 b}\right) / 2 \geq r_{2}=(a-$ $\left.\sqrt{a^{2}-4 b}\right) / 2$. By $a / \pi^{2}+b / \pi^{4}+1>0$, we have $a \pi^{2}+b+\pi^{4}>0$, thus $a^{2}+4 a \pi^{2}+4 \pi^{4}>a^{2}-4 b$, because $a^{2}-4 b \geq 0$, so

$$
\left(a+2 \pi^{2}\right)^{2}>\left(\sqrt{a^{2}-4 b}\right)^{2} .
$$

Combining this together with $a>-2 \pi^{2}$, we can conclude

$$
a+2 \pi^{2}>\sqrt{a^{2}-4 b}
$$

Then, $r_{1} \geq r_{2}=\left(a-\sqrt{a^{2}-4 b}\right) / 2>-\pi^{2}$.
Let $y=\left(A-r_{1}\right) u=u^{\prime \prime}-r_{1} u$, then

$$
\left(A-r_{2}\right) y \geq 0
$$

i.e.,

$$
y^{\prime \prime}-r_{2} y \geq 0
$$

On the other hand, $u \in F$ yields that

$$
\begin{equation*}
y(0)=u^{\prime \prime}(0)-r_{1} u(0) \leq 0, \quad y(1)=u^{\prime \prime}(1)-r_{1} u(1) \leq 0 . \tag{2.2}
\end{equation*}
$$

Therefore, by the use of Lemma 2.2, there exists

$$
y(x) \leq 0, \quad x \in[0,1],
$$

i.e.,

$$
u^{\prime \prime}(x)-r_{1} u(x)=y(x) \leq 0 .
$$

This together with Lemma 2.2 and the fact that $u(0)=0, u(1)=0$ implies that $u(x) \geq 0$ in $[0,1]$.

Remark 2.4. Observe that $a, b \in \mathbb{R}$ satisfies (2.1) if and only if

$$
\begin{equation*}
b \leq 0, \quad \frac{a}{\pi^{2}}+\frac{b}{\pi^{4}}+1>0, \quad a>-2 \pi^{2} \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
b>0, \quad a>0, \quad a^{2}-4 b \geq 0 \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
b>0, \quad 0>a>-2 \pi^{2}, \quad \frac{a}{\pi^{2}}+\frac{b}{\pi^{4}}+1>0, \quad a^{2}-4 b \geq 0 \tag{2.5}
\end{equation*}
$$

From (2.3) and (2.4), we can easily conclude

$$
r_{1}=\frac{a+\sqrt{a^{2}-4 b}}{2} \geq 0 .
$$

Therefore, 2.2 can be obtained under $u(0) \geq 0, u(1) \geq 0, \quad u^{\prime \prime}(0) \leq 0, \quad u^{\prime \prime}(1) \leq 0$, and F can be defined as

$$
F=\left\{u \in C^{4}[0,1] \mid u(0) \geq 0, u(1) \geq 0, u^{\prime \prime}(0) \leq 0, u^{\prime \prime}(1) \leq 0\right\}
$$

we refer the reader to [3, 13].

Lemma 2.5. [7] Given $(a, b) \in \mathbb{R}^{2}$, the following problem

$$
\begin{gather*}
u^{(4)}-a u^{\prime \prime}+b u=0 \tag{2.6}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \tag{2.7}
\end{gather*}
$$

has a non-trivial solution if and only if

$$
\frac{a}{(k \pi)^{2}}+\frac{b}{(k \pi)^{4}}+1=0
$$

for some $k \in \mathbb{N}$.

3. The Monotone Method

In this section, we develop the monotone method for the fourth order two-point boundary value problem (1.1) - (1.2).
For given $a, b \in \mathbb{R}$ satisfying $a / \pi^{2}+b / \pi^{4}+1>0, \quad a^{2}-4 b \geq 0, a>-2 \pi^{2}$ and $f:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, let

$$
\begin{equation*}
f_{1}(x, u, v)=f(x, u, v)+b u-a v \tag{3.1}
\end{equation*}
$$

Then (1.1) is equal to

$$
\begin{equation*}
L u=f_{1}\left(x, u, u^{\prime \prime}\right) \tag{3.2}
\end{equation*}
$$

Definition 3.1. Letting $\alpha \in C^{4}[0,1]$, we say that α is an upper solution for the problem (1.1) (1.2) if α satisfies

$$
\begin{aligned}
\alpha^{(4)}(x) & \geq f\left(x, \alpha(x), \alpha^{\prime \prime}(x)\right), \quad \text { for } x \in(0,1) \\
\alpha(0) & =0, \quad \alpha(1)=0 \\
\alpha^{\prime \prime}(0) & \leq 0, \quad \alpha^{\prime \prime}(1) \leq 0
\end{aligned}
$$

Definition 3.2. Letting $\beta \in C^{4}[0,1]$, we say β is a lower solution for the problem (1.1) - 1.2 if β satisfies

$$
\begin{aligned}
\beta^{(4)}(x) & \leq f\left(x, \beta(x), \beta^{\prime \prime}(x)\right), \quad \text { for } x \in(0,1) \\
\beta(0) & =0, \quad \beta(1)=0 \\
\beta^{\prime \prime}(0) & \geq 0, \quad \beta^{\prime \prime}(1) \geq 0
\end{aligned}
$$

Remark 3.1. If a, b satisfy (2.3) or (2.4), the boundary values can be replaced by

$$
\alpha(0) \geq 0, \quad \alpha(1) \geq 0 ; \quad \beta(0) \leq 0, \quad \beta(1) \leq 0
$$

It is clear that if α, β are upper and lower solutions of the problem (1.1) - 1.2) respectively, α, β are upper and lower solutions of the problem (3.2) - (1.2) respectively, too.
Theorem 3.2. If there exist α and β, upper and lower solutions, respectively, for the problem (1.1) - (1.2) which satisfy

$$
\begin{equation*}
\beta \leq \alpha \quad \text { and } \quad \beta^{\prime \prime}+r(\alpha-\beta) \geq \alpha^{\prime \prime} \tag{3.3}
\end{equation*}
$$

and if $f:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and satisfies

$$
\begin{equation*}
f\left(x, u_{2}, v\right)-f\left(x, u_{1}, v\right) \geq-b\left(u_{2}-u_{1}\right) \tag{3.4}
\end{equation*}
$$

for $\beta(x) \leq u_{1} \leq u_{2} \leq \alpha(x), v \in \mathbb{R}$, and $x \in[0,1]$;

$$
\begin{equation*}
f\left(x, u, v_{2}\right)-f\left(x, u, v_{1}\right) \leq a\left(v_{2}-v_{1}\right) \tag{3.5}
\end{equation*}
$$

for $v_{2}+r(\alpha-\beta) \geq v_{1}, \alpha^{\prime \prime}-r(\alpha-\beta) \leq v_{1}, v_{2} \leq \beta^{\prime \prime}+r(\alpha-\beta), u \in \mathbb{R}$, and $x \in[0,1]$, where $a, b \in \mathbb{R}$ satisfy $a / \pi^{2}+b / \pi^{4}+1>0, a^{2}-4 b \geq 0, a>-2 \pi^{2}$ and $r=\left(a-\sqrt{a^{2}-4 b}\right) / 2$,
then there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$, non-increasing and non-decreasing, respectively, with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$, which converge uniformly to the extremal solutions in $[\beta, \alpha]$ of the problem (1.1) - (1.2).

Proof. Consider the problem

$$
\begin{gather*}
u^{(4)}(x)-a u^{\prime \prime}(x)+b u(x)=f_{1}\left(x, \eta(x), \eta^{\prime \prime}(x)\right), \quad \text { for } x \in(0,1), \tag{3.6}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0, \tag{3.7}
\end{gather*}
$$

with $\eta \in C^{2}[0,1]$.
Since $a / \pi^{2}+b / \pi^{4}+1>0$, with the use of Lemma 2.5 and Fredholm Alternative [9], the problem (3.6 - 3.7) has a unique solution u. Define $T: C^{2}[0,1] \longrightarrow C^{4}[0,1]$ by

$$
\begin{equation*}
T \eta=u . \tag{3.8}
\end{equation*}
$$

Now, we divide the proof into three steps.
Step 1. We show

$$
\begin{equation*}
T C \subseteq C . \tag{3.9}
\end{equation*}
$$

Here, $C=\left\{\eta \in C^{2}[0,1] \mid \beta \leq \eta \leq \alpha, \quad \alpha^{\prime \prime}-r(\alpha-\beta) \leq \eta^{\prime \prime} \leq \beta^{\prime \prime}+r(\alpha-\beta)\right\}$ is a nonempty bounded closed subset in $C^{2}[0,1]$.

In fact, for $\zeta \in C$, set $\omega=T \zeta$. By the definition of α, β and C, combining (3.1), (3.4), and (3.5), we have that

$$
\begin{aligned}
& (\alpha-\omega)^{(4)}(x)-a(\alpha-\omega)^{\prime \prime}(x)+b(\alpha-\omega)(x) \\
& \geq f_{1}\left(x, \alpha(x), \alpha^{\prime \prime}(x)\right)-f_{1}\left(x, \zeta(x), \zeta^{\prime \prime}(x)\right) \\
& =f\left(x, \alpha(x), \alpha^{\prime \prime}(x)\right)-f\left(x, \zeta(x), \zeta^{\prime \prime}(x)\right)-a(\alpha-\zeta)^{\prime \prime}(x)+b(\alpha-\zeta)(x) \geq 0,
\end{aligned}
$$

$$
\begin{equation*}
(\alpha-\omega)(0)=0, \quad(\alpha-\omega)(1)=0, \tag{3.1.}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha-\omega)^{\prime \prime}(0) \leq 0, \quad(\alpha-\omega)^{\prime \prime}(1) \leq 0 . \tag{3.1}
\end{equation*}
$$

With the use of Lemma 2.3, we obtain that $\alpha \geq \omega$. Analogously, there holds $\omega \geq \beta$.
By the proof of Lemma 2.3, combining (3.10), (3.11), and (3.12), we have that

$$
(\alpha-\omega)^{\prime \prime}(x)-r(\alpha-\omega)(x) \leq 0, \quad x \in(0,1)
$$

hence,

$$
\omega^{\prime \prime}(x)+r(\alpha-\beta)(x) \geq \omega^{\prime \prime}(x)+r(\alpha-\omega)(x) \geq \alpha^{\prime \prime}(x), \quad \text { for } x \in(0,1),
$$

i.e.,

$$
\omega^{\prime \prime}(x) \geq \alpha^{\prime \prime}(x)-r(\alpha-\beta)(x), \quad \text { for } x \in(0,1) .
$$

Analogously,

$$
\omega^{\prime \prime}(x) \leq \beta^{\prime \prime}(x)+r(\alpha-\beta)(x), \quad \text { for } x \in(0,1) .
$$

Thus, (3.9) holds.

Step 2. Let $u_{1}=T \eta_{1}, u_{2}=T \eta_{2}$, where $\eta_{1}, \eta_{2} \in C$ satisfy $\eta_{1} \leq \eta_{2}$ and $\eta_{1}^{\prime \prime}+r(\alpha-\beta) \geq \eta_{2}^{\prime \prime}$. We show

$$
\begin{equation*}
u_{1} \leq u_{2}, \quad u_{1}^{\prime \prime}+r(\alpha-\beta) \geq u_{2}^{\prime \prime} \tag{3.13}
\end{equation*}
$$

In fact, by (3.4), (3.5), and the definition of u_{1}, u_{2},

$$
\begin{gathered}
L\left(u_{2}-u_{1}\right)(x)=f_{1}\left(x, \eta_{2}(x), \eta_{2}^{\prime \prime}(x)\right)-f_{1}\left(x, \eta_{1}(x), \eta_{1}^{\prime \prime}(x)\right) \geq 0, \\
\left(u_{2}-u_{1}\right)(0)=\left(u_{2}-u_{1}\right)(1)=0, \\
\left(u_{2}-u_{1}\right)^{\prime \prime}(0)=\left(u_{2}-u_{1}\right)^{\prime \prime}(1)=0 .
\end{gathered}
$$

With the use of Lemma 2.3, we get that $u_{1} \leq u_{2}$. Similar to Step 1 , we can easily prove $u_{1}^{\prime \prime}+r(\alpha-\beta) \geq u_{2}^{\prime \prime}$. Thus, 3.13) holds.
Step 3. The sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are obtained by recurrence:

$$
\alpha_{0}=\alpha, \quad \beta_{0}=\beta, \quad \alpha_{n}=T \alpha_{n-1}, \quad \beta_{n}=T \beta_{n-1}, \quad n=1,2, \ldots
$$

From the results of Step 1 and Step 2, we have that

$$
\begin{equation*}
\beta^{\prime \prime}=\beta_{0}^{\prime \prime}, \quad \alpha^{\prime \prime}=\alpha_{0}^{\prime \prime}, \quad \alpha^{\prime \prime}-r(\alpha-\beta) \leq \alpha_{n}^{\prime \prime}, \quad \beta_{n}^{\prime \prime} \leq \beta^{\prime \prime}+r(\alpha-\beta) \tag{3.15}
\end{equation*}
$$

Moreover, from the definition of T (see (3.8)), we get

$$
\alpha_{n}^{(4)}(x)-a \alpha_{n}^{\prime \prime}(x)+b \alpha_{n}(x)=f_{1}\left(x, \alpha_{n-1}(x), \alpha_{n-1}^{\prime \prime}(x)\right),
$$

i.e.,

$$
\begin{aligned}
\alpha_{n}^{(4)}(x) & =f_{1}\left(x, \alpha_{n-1}(x), \alpha_{n-1}^{\prime \prime}(x)\right)+a \alpha_{n}^{\prime \prime}(x)-b \alpha_{n}(x) \\
& \leq f_{1}\left(x, \alpha_{n-1}(x), \alpha_{n-1}^{\prime \prime}(x)\right)+a\left[\beta^{\prime \prime}+r(\alpha-\beta)\right](x)-b \beta(x)
\end{aligned}
$$

$$
\alpha_{n}(0)=\alpha_{n}(1)=\alpha_{n}^{\prime \prime}(0)=\alpha_{n}^{\prime \prime}(1)=0
$$

Analogously,

$$
\begin{aligned}
\beta_{n}^{(4)}(x) & =f_{1}\left(x, \beta_{n-1}(x), \beta_{n-1}^{\prime \prime}(x)\right)+a \beta_{n}^{\prime \prime}(x)-b \beta_{n}(x) \\
& \leq f_{1}\left(x, \beta_{n-1}(x), \beta_{n-1}^{\prime \prime}(x)\right)+a\left[\beta^{\prime \prime}+r(\alpha-\beta)\right](x)-b \beta(x)
\end{aligned}
$$

$$
\beta_{n}(0)=\beta_{n}(1)=\beta_{n}^{\prime \prime}(0)=\beta_{n}^{\prime \prime}(1)=0
$$

From (3.14), (3.15), (3.16), and the continuity of f_{1}, we have that there exists $M_{\alpha, \beta}>0$ depending only on α and β (but not on n or x) such that

$$
\left|\alpha_{n}^{(4)}(x)\right| \leq M_{\alpha, \beta}, \quad \text { for all } x \in[0,1] .
$$

Using the boundary condition (3.17), we get that for each $n \in \mathbb{N}$, there exists $\xi_{n} \in(0,1)$ such that

$$
\alpha_{n}^{\prime \prime \prime}\left(\xi_{n}\right)=0
$$

This together with (3.20) yields

$$
\begin{equation*}
\left|\alpha_{n}^{\prime \prime \prime}(x)\right|=\left|\alpha_{n}^{\prime \prime \prime}\left(\xi_{n}\right)+\int_{\xi_{n}}^{x} \alpha_{n}^{(4)}(s) d s\right| \leq M_{\alpha, \beta} \tag{3.22}
\end{equation*}
$$

By combining (3.15) and (3.17), we can similarly get that there is $C_{\alpha, \beta}>0$ depending only on α and β (but not on n or x) such that

$$
\begin{array}{ll}
\left|\alpha_{n}^{\prime \prime}(x)\right| \leq C_{\alpha, \beta}, & \text { for all } x \in[0,1] \tag{3.23}\\
\left|\alpha_{n}^{\prime}(x)\right| \leq C_{\alpha, \beta}, & \text { for all } x \in[0,1]
\end{array}
$$

Thus, from (3.14), (3.22), (3.23), and (3.24), we know that $\left\{\alpha_{n}\right\}$ is bounded in $C^{3}[0,1]$. Similarly, $\left\{\beta_{n}\right\}$ is bounded in $C^{3}[0,1]$.
Now, by using the fact that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are bounded in $C^{3}[0,1]$, we can conclude that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ converge uniformly to the extremal solutions in $[0,1]$ of the problem (3.2) - (1.2). Therefore, $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ converge uniformly to the extremal solutions in $[0,1]$ of the problem (1.1) - (1.2), too.

Example 3.1. Consider the boundary value problem

$$
\begin{gather*}
u^{(4)}(x)=-5 u^{\prime \prime}(x)-(u(x)+1)^{2}+\sin ^{2} \pi x+1, \tag{3.25}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 . \tag{3.26}
\end{gather*}
$$

It is clear that the results of [3, 7, 13, 14] can't apply to the example. On the other hand, it is easy to check that $\alpha=\sin \pi x, \quad \beta=0$ are upper and lower solutions of (3.25) - (3.26), respectively. Letting $a=-5, \quad b=4$, then all assumptions of Theorem 3.2 are fulfilled. Hence the problem (3.25) - 3.26) has at least one solution u, which satisfies $0 \leq u \leq \sin \pi x$.

References

[1] A.R. AFTABIZADEH, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.
[2] R.P. AGARWAL, On fourth-order boundary value problems arising in beam analysis, Differential Integral Equations, 2 (1989), 91-110.
[3] Z.B. BAI, The Method of lower and upper solutions for a bending of an elastic beam equation, J. Math. Anal. Appl., 248 (2000), 195-202.
[4] Z.B. BAI and H.Y. WANG, On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368.
[5] A. CABADA, The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl., 185 (1994), 302-320.
[6] C. DE COSTER, C. FABRY and F. MUNYAMARERE, Nonresonance conditions for fourth-order nonlinear boundary value problems, Internat. J. Math. Sci., 17 (1994), 725-740.
[7] C. De COSTER and L. SANCHEZ, Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E., Riv. Mat. Pura Appl., 14 (1994), 1129-1138.
[8] M.A. Del PINO and R.F. MANASEVICH, Existence for a fourth-order boundary value problem under a two parameter nonresonance condition, Proc. Amer. Math. Soc., 112 (1991), 81-86.
[9] D. GILBARG and N.S. TRUDINGER, Elliptic Partial Differential Equations of Second-Order, Springer-Verlag, New York, 1977.
[10] C.P. GUPTA, Existence and uniqueness theorem for a bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304.
[11] P. KORMAN, A maximum principle for fourth-order ordinary differential equations, Appl. Anal., 33 (1989), 267-273.
[12] A.C. LAZER AND P.J. MCKENNA, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994), 648-655.
[13] Y.X. LI, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281 (2003), 477-484.
[14] R.Y. MA, J.H. ZHANG and S.M. FU, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422.
[15] J. SCHRODER, Fourth-order two-point boundary value problems; estimates by two side bounds, Nonl. Anal., 8 (1984), 107-114.
[16] R.A. USMANI, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc., 77 (1979), 327-335.
[17] Q.L. YAO AND Z.B. BAI, Existence of positive solutions of boundary value problems for $u^{(4)}(t)-$ $\lambda h(t) f(u(t))=0$, Chinese. Ann. Math. Ser. A, 20 (1999), 575-578. [In Chinese]

[^0]: ISSN (electronic): 1443-5756
 © 2004 Victoria University. All rights reserved.
 This work is sponsored by the National Nature Science Foundation of China (10371006) and the Doctoral Program Foundation of Education Ministry of China (1999000722).

 The authors thank the referees for their careful reading of the manuscript and useful suggestions
 124-03

