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ABSTRACT. In this paper a new classSλ
p (α, β) of starlike functions is introduced. A subclass

TSλ
p (α, β) of Sλ

p (α, β) with negative coefficients is also considered. These classes are based
on Ruscheweyh derivatives. Certain neighbourhood results are obtained. Partial sumsfn(z) of
functionsf(z) in these classes are considered and sharp lower bounds for the ratios of real part
of f(z) to fn(z) andf ′(z) to f ′

n(z) are determined.
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1. I NTRODUCTION

Let S denote the family of functions of the form

(1.1) f (z) = z +
∞∑

k=2

akz
k

which are analytic in the open unit diskU = {z : |z| < 1}. Also denote byT , the subclass of
S consisting of functions of the form

(1.2) f (z) = z −
∞∑

k=2

|ak| zk

which are univalent and normalized inU .
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For f ∈ S, and of the form (1.1) andg(z) ∈ S given byg (z) = z +
∑∞

k=2 bkz
k, we define

the Hadamard product (or convolution)f ∗ g of f andg by

(1.3) (f ∗ g) (z) = z +
∞∑

k=2

akbkz
k.

For−1 ≤ α < 1 andβ ≥ 0, we letSλ
p (α, β) be the subclass ofS consisting of functions of the

form (1.1) and satisfying the analytic criterion

(1.4) Re

{
z

(
Dλf (z)′

)
Dλf (z)

− α

}
> β

∣∣∣∣∣z
(
Dλf (z)′

)
Dλf (z)

− 1

∣∣∣∣∣ ,

whereDλ is the Ruscheweyh derivative [6] defined by

Dλf (z) = f (z) ∗ 1

(1− z)λ+1
= z +

∞∑
k=2

Bk (λ) akz
k

and

(1.5) Bk (λ) =
(λ + 1)k−1

(k − 1)!
=

(λ + 1) (λ + 1) · · · (λ + k − 1)

(k − 1)!
, λ ≥ 0.

We also letTSλ
p (α, β) = Sλ

p (α, β)∩T. It can be seen that, by specializing on the parameters
α, β, λ the classTSλ

p (α, β) reduces to the classes introduced and studied by various authors
[1, 9, 11, 12].

The main aim of this work is to study coefficient bounds and extreme points of the gen-
eral classTSλ

p (α, β). Furthermore, we obtain certain neighbourhoods results for functions in
TSλ

p (α, β) . Partial sumsfn(z) of functionsf (z) in the classSλ
p (α, β) are considered.

2. THE CLASSES Sλ
p (α, β) AND TSλ

p (α, β)

In this section we obtain a necessary and sufficient condition and extreme points for functions
f(z) in the classTSλ

p (α, β).

Theorem 2.1. A sufficient condition for a functionf(z) of the form (1.1) to be inSλ
p (α, β) is

that

(2.1)
∞∑

k=2

[(1 + β) k − (α + β)]

1− α
Bk (λ) |ak| ≤ 1,

−1 ≤ α < 1, β ≥ 0, λ ≥ 0 andBk(λ) is as defined in (1.5).

Proof. It suffices to show that

β

∣∣∣∣∣z
(
Dλf (z)

)′
Dλf (z)

− 1

∣∣∣∣∣− Re

{
z

(
Dλf (z)

)′
Dλf (z)

− 1

}
≤ 1− α.

We have

β

∣∣∣∣∣z
(
Dλf (z)

)′
Dλf (z)

− 1

∣∣∣∣∣− Re

{
z

(
Dλf (z)

)′
Dλf (z)

− 1

}
≤ (1 + β)

∣∣∣∣∣z
(
Dλf (z)

)′
Dλf (z)

− 1

∣∣∣∣∣
≤ (1 + β)

∑∞
k=2 (k − 1) Bk (λ) |ak| |z|k−1

1−
∑∞

k=2 Bk (λ) |ak| |z|k−1

≤ (1 + β)
∑∞

k=2 (k − 1) Bk (λ) |ak|
1−

∑∞
k=2 Bk (λ) |ak|

.
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STARLIKE FUNCTIONS 3

This last expression is bounded above by1− α if
∞∑

k=2

[(1 + β) k − (α + β)] Bk (λ) |ak| ≤ 1− α,

and the proof is complete. �

Now we prove that the above condition is also necessary forf ∈ T .

Theorem 2.2. A necessary and sufficient condition forf of the form (1.2) namelyf (z) =
z −

∑∞
k=2 bkz

k, ak ≥ 0, z ∈ U to be inTSλ
p (α, β) , −1 ≤ α < 1, β ≥ 0, λ ≥ 0 is that

(2.2)
∞∑

k=2

[(1 + β) k − (α + β)] Bk (λ) ak ≤ 1− α.

Proof. In view of Theorem 2.1, we need only to prove the necessity. Iff ∈ TSλ
p (α, β) andz is

real then
1−

∑∞
k=2 kakBk (λ) zk−1

1−
∑∞

k=2 akBk (λ) zk−1
− α ≥ 1−

∑∞
k=2 (k − 1) akBk (λ) zk−1

1−
∑∞

k=2 akBk (λ) zk−1
.

Letting z → 1 along the real axis, we obtain the desired inequality
∞∑

k=2

[(1 + β) k − (α + β)] Bk (λ) ak ≤ 1− α.

�

Theorem 2.3. The extreme points ofTSλ
p (α, β), −1 ≤ α < 1, β ≥ 0 are the functions given

by

(2.3) f1 (z) = 1 and fk (z) = z − 1− α

[(1 + β) k − (α + β)] Bk (λ)
zk,

k = 2, 3, . . . whereλ > −1 andBk(λ) is as defined in (1.5).

Corollary 2.4. A functionf ∈ TSλ
p (α, β) if and only iff may be expressed as

∑∞
k=1 µkfk (z)

whereµk ≥ 0,
∑∞

k=1 µk = 1 andf1, f2, . . . are as defined in (2.3).

3. NEIGHBOURHOOD RESULTS

The concept of neighbourhoods of analytic functions was first introduced by Goodman [4]
and then generalized by Ruscheweyh [5]. In this section we study neighbourhoods of functions
in the familyTSλ

p (α, β).

Definition 3.1. Forf ∈ S of the form (1.1) andδ ≥ 0, we defineη− δ- neighbourhood off by

Mη
δ (f) =

{
g ∈ S : g (z) = z +

∞∑
k=2

bkz
k and

∞∑
k=2

kη+1 |ak − bk| ≤ δ

}
,

whereη is a fixed positive integer.

We may writeMη
δ (f) = Nδ (f) andM1

δ (f) = Mδ (f) [5]. We also notice thatMδ (f) was
defined and studied by Silverman [7] and also by others [2, 3].

We need the following two lemmas to study theη − δ- neighbourhood of functions in
TSλ

p (α, β).

Lemma 3.1. Letm ≥ 0 and−1 ≤ γ < 1. If g(z) = z +
∑∞

k=2 bkz
k satisfies

∑∞
k=2 kµ+1

∣∣bk
∣∣ ≤

1−γ
1+β

theng ∈ Sµ
p (γ, β). The result is sharp.
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Proof. In view of the first part of Theorem 2.1, it is sufficient to show that

k (1 + β)− (γ + β)

1− γ
Bk (µ) =

kµ+1

(1− γ)
(1 + β) .

But
k (1 + β)− (γ + β)

1− γ
Bk (µ) =

(k (1 + β)− (γ + β)) (µ + 1) · · · (µ + k − 1)

(1− γ) (k − 1)!

≤ k (1 + β) (µ + 1) (µ + 2) · · · (µ + k − 1)

(1− γ) (k − 1)!
.

Therefore we need to prove that

H(k, µ) =
(µ + 1) (µ + 2) · · · (µ + k − 1)

kµ (k − 1)!
≤ 1.

SinceH(k, µ) = [(µ + 1)/2µ] ≤ 1, we need only to show thatH(k, µ) is a decreasing function
of k. But H(k + 1, µ) ≤ H(k, µ) is equivalent to(1 + µ/k) ≤ (1 + 1/k)µ. The result follows
because the last inequality holds for allk ≥ 2. �

Lemma 3.2. Let f(z) = z −
∑∞

k=2 akz
k ∈ T, −1 ≤ α < 1, β ≥ 0 andε ≥ 0. If f(z)+εz

1+ε
∈

TSλ
p (α, β) then

∞∑
k=2

kµ+1ak ≤
2η+1 (1− α) (1 + ε)

(2− α + β) (1 + λ)
,

where eitherη = 0 andλ ≥ 0 or η = 1 and1 ≤ λ ≤ 2. The result is sharp with the extremal
function

f (z) = z − (1− α) (1 + ε)

(2− α + β) (1 + λ)
z2, z ∈ U.

Proof. Lettingg (z) = f(z)+εz
1+ε

we haveg (z) = z −
∑∞

k=2
ak

1+ε
zk, z ∈ U.

In view of Corollary 2.4g(z), may be written asg (z) =
∑∞

k=1 µkgk (z), whereµk ≥
0,

∑∞
k=1 µk = 1,

g1 (z) = z and gk (z) = z − (1− α) (1 + ε)

(k − α + β) Bk (λ)
zk, k = 2, 3, . . . .

Therefore we obtain

g (z) = µ1z +
∞∑

k=2

µk

(
z − (1− α) (1 + ε)

(k − α + β) Bk (λ)
zk

)

= z −
∞∑

k=2

µk

(
(1− α) (1 + ε)

(k − α + β) Bk (λ)

)
zk.

Sinceµk ≥ 0 and
∑∞

k=1 µk ≤ 1, it follows that
∞∑

k=2

kη+1ak ≤ sup
k≥2

kη+1

(
(1− α) (1 + ε)

(k − α + β) Bk (λ)

)
.

The result will follow if we can show thatA (k, η, α, ε, λ) = kη+1(1−α)(1+ε)
(k−α+β)Bk(λ)

is a decreasing

function ofk. In view of Bk+1 (λ) = λ+k
k

Bk (λ) the inequality

A (k + 1, η, α, ε, λ) ≤ A (k, η, α, ε, λ)
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is equivalent to

(k + 1)η+1 (k − α + β) ≤ kη (k + 1− α + β) (λ + k) .

This yields

(3.1) λ (k − α + β) + λ + α− β ≥ 0

wheneverη = 0 andλ ≥ 0 and

(3.2) k [(k + 1) (λ− 1) + (2− λ) (α− β)] + α− β ≥ 0,

wheneverη = 1 and 1 ≤ λ ≤ 2. Since (3.1) and (3.2) holds for allk ≥ 2, the proof is
complete. �

Theorem 3.3.Suppose eitherη = 0 andλ ≥ 0 or η = 1 and1 ≤ λ ≤ 2.
Let−1 ≤ α < 1, and

−1 ≤ γ <
(2− α + β) (1 + λ)− 2η+1 (1− α) (1 + ε) (1 + β)

(2− α + β) (1 + λ) (1 + β)
.

Letf ∈ T and for all real numbers0 ≤ ε < δ, assumef(z)+εz
1+ε

∈ TSλ
p (α, β) .

Then theη-δ - neighbourhood off , namelyMη
δ (f) ⊂ Sη

p (γ, β) where

δ =
(1− γ) (2− α + β) (1 + λ)− 2η+1 (1− α) (1 + ε) (1 + β)

(2− α + β) (1 + λ) (1 + β)
.

The result is sharp, with the extremal functionf(z) = (1−α)(1+ε)
(2−α+β)(1+λ)

z2.

Proof. For a functionf of the form (1.2), letg(z) = z +
∑∞

k=2 bkz
k be inMη

δ (f). In view of
Lemma 3.2, we have

∞∑
k=2

kη+1 |bk| =
∞∑

k=2

kη+1 |ak − bk − ak|

≤ δ +
2η+1 (1− α) (1 + ε)

(2− α + β) (1 + λ)
.

Applying Lemma 3.1, it follows thatg ∈ Sη
p (γ, β) if δ + 2η+1(1−α)(1+ε)

(2−α+β)(1+λ)
≤ 1−γ

1+β
. That is, if

δ ≤ (1− γ) (2− α + β) (1 + λ)− 2η+1 (1− α) (1 + ε) (1 + β)

(2− α + β) (1 + λ) (1 + β)
.

This completes the proof. �

Remark 3.4. By takingβ = 0 and lettingλ = 0, λ = 1 andη = 0 = ε, we note that Theorems
1,2,4 in [8] follow immediately from Theorem 3.3.

4. PARTIAL SUMS

Following the earlier works by Silverman [8] and Silvia [10] on partial sums of analytic
functions. We consider in this section partial sums of functions in the classSλ

p (α, β) and obtain
sharp lower bounds for the ratios of real part off(z) to fn(z) andf ′(z) to f ′n(z).

Theorem 4.1. Let f(z) ∈ Sλ
p (α, β) be given by (1.1) and define the partial sumsf1(z) and

fn(z), by

(4.1) f1 (z) = z; and fn (z) = z +
∞∑

k=2

akz
k, (n ∈ N/ {1})
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Suppose also that

(4.2)
∞∑

k=2

ck |ak| ≤ 1,

where
(
ck := [(1+β)k−(α+β)]Bk(λ)

1−α

)
. Thenf ∈ Sλ

p (α, β). Furthermore,

(4.3) Re

{
f (z)

fn (z)

}
> 1− 1

cn+1

z ∈ U, n ∈ N

and

(4.4) Re

{
fn (z)

f (z)

}
>

cn+1

1 + cn+1

.

Proof. It is easily seen thatz ∈ Sλ
p (α, β). Thus from Theorem 3.3 and by hypothesis (4.2), we

have

(4.5) N1 (z) ⊂ Sλ
p (α, β) ,

which shows thatf ∈ Sλ
p (α, β) as asserted by Theorem 4.1.

Next, for the coefficientsck given by (4.2) it is not difficult to verify that

(4.6) ck+1 > ck > 1.

Therefore we have

(4.7)
n∑

k=2

|ak|+ cn+1

∞∑
k=n+1

|ak| ≤
∞∑

k=2

ck |ak| ≤ 1

by using the hypothesis (4.2).
By setting

g1 (z) = cn+1

{
f (z)

fn (z)
−

(
1− 1

cn+1

)}
(4.8)

= 1 +
cn+1

∑∞
k=n+1 akz

k−1

1 +
∑n

k=2 akzk−1

and applying (4.7), we find that∣∣∣∣g1 (z)− 1

g1 (z) + 1

∣∣∣∣ ≤ cn+1

∑∞
k=n+1 |ak|

2− 2
∑n

k=2 |ak| − cn+1

∑∞
k=n+1 |ak|

(4.9)

≤ 1, z ∈ U,

which readily yields the assertion (4.3) of Theorem 4.1. In order to see that

(4.10) f (z) = z +
zn+1

cn+1

gives sharp result, we observe that forz = reiπ/n that f(z)
fn(z)

= 1 + zn

cn+1
→ 1− 1

cn+1
asz → 1−.

Similarly, if we take

g2 (z) = (1 + cn+1)

{
fn (z)

f (z)
− cn+1

1 + cn+1

}
(4.11)

= 1−
(1 + cn+1)

∑∞
k=n+1 akz

k−1

1 +
∑∞

k=2 akzk−1
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and making use of (4.7), we can deduce that∣∣∣∣g2 (z)− 1

g2 (z) + 1

∣∣∣∣ ≤ (1 + cn+1)
∑∞

k=n+1 |ak|
2− 2

∑n
k=2 |ak| − (1 + cn+1)

∑∞
k=n+1 |ak|

(4.12)

≤ 1, z ∈ U,

which leads us immediately to the assertion (4.4) of Theorem 4.1.
The bound in (4.4) is sharp for eachn ∈ N with the extremal functionf(z) given by (4.10).

The proof of Theorem 4.1. is thus complete. �

Theorem 4.2. If f(z) of the form (1.1) satisfies the condition (2.1). Then

(4.13) Re

{
f ′ (z)

f ′n (z)

}
≥ 1− n + 1

cn+1

.

Proof. By setting

g (z) = cn+1

{
f ′ (z)

f ′n (z)
−

(
1− n + 1

cn+1

)}
(4.14)

=
1 + cn+1

n+1

∑∞
k=n+1 kakz

k−1 +
∑∞

k=2 kakz
k−1

1 +
∑n

k=2 kakzk−1

= 1 +

cn+1

n+1

∑∞
k=n+1 kakz

k−1

1 +
∑n

k=2 kakzk−1
,∣∣∣∣g (z)− 1

g (z) + 1

∣∣∣∣ ≤ cn+1

n+1

∑∞
k=n+1 k |ak|

2− 2
∑n

k=2 k |ak| − cn+1

n+1

∑∞
k=n+1 k |ak|

.

Now
∣∣∣g(z)−1
g(z)+1

∣∣∣ ≤ 1 if

(4.15)
n∑

k=2

k |ak|+
cn+1

n + 1

∞∑
k=n+1

k |ak| ≤ 1

since the left hand side of (4.15) is bounded above by
∑n

k=2 ck |ak| if

(4.16)
n∑

k=2

(ck − k) |ak|+
∞∑

k=n+1

ck −
cn+1

n + 1
k |ak| ≥ 0,

and the proof is complete. The result is sharp for the extremal functionf (z) = z + zn+1

cn+1
. �

Theorem 4.3. If f(z) of the form (1.1) satisfies the condition (2.1) then

Re

{
f ′n (z)

f ′ (z)

}
≥ cn+1

n + 1 + cn+1

.

Proof. By setting

g (z) = [(n + 1) + cn+1]

{
f ′n (z)

f ′ (z)
− cn+1

n + 1 + cn+1

}
= 1−

(
1 + cn+1

n+1

) ∑∞
k=n+1 kakz

k−1

1 +
∑n

k=2 kakzk−1

and making use of (4.16), we can deduce that∣∣∣∣g (z)− 1

g (z) + 1

∣∣∣∣ ≤
(
1 + cn+1

n+1

) ∑∞
k=n+1 k |ak|

2− 2
∑n

k=2 k |ak| −
(
1 + cn+1

n+1

) ∑∞
k=n+1 k |ak|

≤ 1,
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which leads us immediately to the assertion of the Theorem 4.3. �

Remark 4.4. We note thatβ = 1, and choosingλ = 0, λ = 1 these results coincide with the
results obtained in [13].
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