Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 4, Issue 4, Article 64, 2003

NEIGHBOURHOODS AND PARTIAL SUMS OF STARLIKE FUNCTIONS BASED ON RUSCHEWEYH DERIVATIVES

THOMAS ROSY, K.G. SUBRAMANIAN, AND G. MURUGUSUNDARAMOORTHY
Department of Mathematics, Madras Christian College, Tambaram, Chennai, India
Department of Mathematics, Vellore Institute of Technology, Deemed University, Vellore, TN-632 014, India gmsmoorthy@yahoo.com

Received 14 November, 2002; accepted 26 March, 2003
Communicated by A. Lupass

Abstract. In this paper a new class $S_{p}^{\lambda}(\alpha, \beta)$ of starlike functions is introduced. A subclass $T S_{p}^{\lambda}(\alpha, \beta)$ of $S_{p}^{\lambda}(\alpha, \beta)$ with negative coefficients is also considered. These classes are based on Ruscheweyh derivatives. Certain neighbourhood results are obtained. Partial sums $f_{n}(z)$ of functions $f(z)$ in these classes are considered and sharp lower bounds for the ratios of real part of $f(z)$ to $f_{n}(z)$ and $f^{\prime}(z)$ to $f_{n}^{\prime}(z)$ are determined.

Key words and phrases: Univalent, Starlike, Convex.
2000 Mathematics Subject Classification. 30C45.

1. Introduction

Let S denote the family of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. Also denote by T, the subclass of S consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k} \tag{1.2}
\end{equation*}
$$

which are univalent and normalized in U.

[^0]For $f \in S$, and of the form 1.1) and $g(z) \in S$ given by $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$, we define the Hadamard product (or convolution) $f * g$ of f and g by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} \tag{1.3}
\end{equation*}
$$

For $-1 \leq \alpha<1$ and $\beta \geq 0$, we let $S_{p}^{\lambda}(\alpha, \beta)$ be the subclass of S consisting of functions of the form (1.1) and satisfying the analytic criterion

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{\lambda} f(z)^{\prime}\right)}{D^{\lambda} f(z)}-\alpha\right\}>\beta\left|\frac{z\left(D^{\lambda} f(z)^{\prime}\right)}{D^{\lambda} f(z)}-1\right| \tag{1.4}
\end{equation*}
$$

where D^{λ} is the Ruscheweyh derivative [6] defined by

$$
D^{\lambda} f(z)=f(z) * \frac{1}{(1-z)^{\lambda+1}}=z+\sum_{k=2}^{\infty} B_{k}(\lambda) a_{k} z^{k}
$$

and

$$
\begin{equation*}
B_{k}(\lambda)=\frac{(\lambda+1)_{k-1}}{(k-1)!}=\frac{(\lambda+1)(\lambda+1) \cdots(\lambda+k-1)}{(k-1)!}, \lambda \geq 0 \tag{1.5}
\end{equation*}
$$

We also let $T S_{p}^{\lambda}(\alpha, \beta)=S_{p}^{\lambda}(\alpha, \beta) \cap T$. It can be seen that, by specializing on the parameters α, β, λ the class $T S_{p}^{\lambda}(\alpha, \beta)$ reduces to the classes introduced and studied by various authors [1, 9, 11, 12].
The main aim of this work is to study coefficient bounds and extreme points of the general class $T S_{p}^{\lambda}(\alpha, \beta)$. Furthermore, we obtain certain neighbourhoods results for functions in $T S_{p}^{\lambda}(\alpha, \beta)$. Partial sums $f_{n}(z)$ of functions $f(z)$ in the class $S_{p}^{\lambda}(\alpha, \beta)$ are considered.

2. The Classes $S_{p}^{\lambda}(\alpha, \beta)$ and $T S_{p}^{\lambda}(\alpha, \beta)$

In this section we obtain a necessary and sufficient condition and extreme points for functions $f(z)$ in the class $T S_{p}^{\lambda}(\alpha, \beta)$.
Theorem 2.1. A sufficient condition for a function $f(z)$ of the form (1.1) to be in $S_{p}^{\lambda}(\alpha, \beta)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha} B_{k}(\lambda)\left|a_{k}\right| \leq 1 \tag{2.1}
\end{equation*}
$$

$-1 \leq \alpha<1, \beta \geq 0, \lambda \geq 0$ and $B_{k}(\lambda)$ is as defined in (1.5).
Proof. It suffices to show that

$$
\beta\left|\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right\} \leq 1-\alpha
$$

We have

$$
\begin{aligned}
\beta\left|\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right\} & \leq(1+\beta)\left|\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right| \\
& \leq \frac{(1+\beta) \sum_{k=2}^{\infty}(k-1) B_{k}(\lambda)\left|a_{k}\right||z|^{k-1}}{1-\sum_{k=2}^{\infty} B_{k}(\lambda)\left|a_{k}\right||z|^{k-1}} \\
& \leq \frac{(1+\beta) \sum_{k=2}^{\infty}(k-1) B_{k}(\lambda)\left|a_{k}\right|}{1-\sum_{k=2}^{\infty} B_{k}(\lambda)\left|a_{k}\right|} .
\end{aligned}
$$

This last expression is bounded above by $1-\alpha$ if

$$
\sum_{k=2}^{\infty}[(1+\beta) k-(\alpha+\beta)] B_{k}(\lambda)\left|a_{k}\right| \leq 1-\alpha
$$

and the proof is complete.
Now we prove that the above condition is also necessary for $f \in T$.
Theorem 2.2. A necessary and sufficient condition for f of the form (1.2) namely $f(z)=$ $z-\sum_{k=2}^{\infty} b_{k} z^{k}, a_{k} \geq 0, z \in U$ to be in $T S_{p}^{\lambda}(\alpha, \beta),-1 \leq \alpha<1, \beta \geq 0, \lambda \geq 0$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty}[(1+\beta) k-(\alpha+\beta)] B_{k}(\lambda) a_{k} \leq 1-\alpha \tag{2.2}
\end{equation*}
$$

Proof. In view of Theorem 2.1, we need only to prove the necessity. If $f \in T S_{p}^{\lambda}(\alpha, \beta)$ and z is real then

$$
\frac{1-\sum_{k=2}^{\infty} k a_{k} B_{k}(\lambda) z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} B_{k}(\lambda) z^{k-1}}-\alpha \geq \frac{1-\sum_{k=2}^{\infty}(k-1) a_{k} B_{k}(\lambda) z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} B_{k}(\lambda) z^{k-1}}
$$

Letting $z \rightarrow 1$ along the real axis, we obtain the desired inequality

$$
\sum_{k=2}^{\infty}[(1+\beta) k-(\alpha+\beta)] B_{k}(\lambda) a_{k} \leq 1-\alpha
$$

Theorem 2.3. The extreme points of $T S_{p}^{\lambda}(\alpha, \beta),-1 \leq \alpha<1, \beta \geq 0$ are the functions given by

$$
\begin{equation*}
f_{1}(z)=1 \text { and } f_{k}(z)=z-\frac{1-\alpha}{[(1+\beta) k-(\alpha+\beta)] B_{k}(\lambda)} z^{k} \tag{2.3}
\end{equation*}
$$

$k=2,3, \ldots$ where $\lambda>-1$ and $B_{k}(\lambda)$ is as defined in (1.5).
Corollary 2.4. A function $f \in T S_{p}^{\lambda}(\alpha, \beta)$ if and only if f may be expressed as $\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)$ where $\mu_{k} \geq 0, \sum_{k=1}^{\infty} \mu_{k}=1$ and f_{1}, f_{2}, \ldots are as defined in (2.3).

3. Neighbourhood Results

The concept of neighbourhoods of analytic functions was first introduced by Goodman [4] and then generalized by Ruscheweyh [5]. In this section we study neighbourhoods of functions in the family $T S_{p}^{\lambda}(\alpha, \beta)$.
Definition 3.1. For $f \in S$ of the form (1.1) and $\delta \geq 0$, we define $\eta-\delta$ - neighbourhood of f by

$$
M_{\delta}^{\eta}(f)=\left\{g \in S: g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \text { and } \sum_{k=2}^{\infty} k^{\eta+1}\left|a_{k}-b_{k}\right| \leq \delta\right\}
$$

where η is a fixed positive integer.
We may write $M_{\delta}^{\eta}(f)=N_{\delta}(f)$ and $M_{\delta}^{1}(f)=M_{\delta}(f)$ [5]. We also notice that $M_{\delta}(f)$ was defined and studied by Silverman [7] and also by others [2, 3].
We need the following two lemmas to study the $\eta-\delta$ - neighbourhood of functions in $T S_{p}^{\lambda}(\alpha, \beta)$.
Lemma 3.1. Let $m \geq 0$ and $-1 \leq \gamma<1$. If $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ satisfies $\sum_{k=2}^{\infty} k^{\mu+1}\left|b^{k}\right| \leq$ $\frac{1-\gamma}{1+\beta}$ then $g \in S_{p}^{\mu}(\gamma, \beta)$. The result is sharp.

Proof. In view of the first part of Theorem 2.1, it is sufficient to show that

$$
\frac{k(1+\beta)-(\gamma+\beta)}{1-\gamma} B_{k}(\mu)=\frac{k^{\mu+1}}{(1-\gamma)}(1+\beta) .
$$

But

$$
\begin{aligned}
\frac{k(1+\beta)-(\gamma+\beta)}{1-\gamma} B_{k}(\mu) & =\frac{(k(1+\beta)-(\gamma+\beta))(\mu+1) \cdots(\mu+k-1)}{(1-\gamma)(k-1)!} \\
& \leq \frac{k(1+\beta)(\mu+1)(\mu+2) \cdots(\mu+k-1)}{(1-\gamma)(k-1)!}
\end{aligned}
$$

Therefore we need to prove that

$$
H(k, \mu)=\frac{(\mu+1)(\mu+2) \cdots(\mu+k-1)}{k^{\mu}(k-1)!} \leq 1 .
$$

Since $H(k, \mu)=\left[(\mu+1) / 2^{\mu}\right] \leq 1$, we need only to show that $H(k, \mu)$ is a decreasing function of k. But $H(k+1, \mu) \leq H(k, \mu)$ is equivalent to $(1+\mu / k) \leq(1+1 / k)^{\mu}$. The result follows because the last inequality holds for all $k \geq 2$.

Lemma 3.2. Let $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \in T,-1 \leq \alpha<1, \beta \geq 0$ and $\varepsilon \geq 0$. If $\frac{f(z)+\varepsilon z}{1+\varepsilon} \in$ $T S_{p}^{\lambda}(\alpha, \beta)$ then

$$
\sum_{k=2}^{\infty} k^{\mu+1} a_{k} \leq \frac{2^{\eta+1}(1-\alpha)(1+\varepsilon)}{(2-\alpha+\beta)(1+\lambda)},
$$

where either $\eta=0$ and $\lambda \geq 0$ or $\eta=1$ and $1 \leq \lambda \leq 2$. The result is sharp with the extremal function

$$
f(z)=z-\frac{(1-\alpha)(1+\varepsilon)}{(2-\alpha+\beta)(1+\lambda)} z^{2}, \quad z \in U .
$$

Proof. Letting $g(z)=\frac{f(z)+\varepsilon z}{1+\varepsilon}$ we have $g(z)=z-\sum_{k=2}^{\infty} \frac{a_{k}}{1+\varepsilon} z^{k}, z \in U$.
In view of Corollary $2.4 g(z)$, may be written as $g(z)=\sum_{k=1}^{\infty} \mu_{k} g_{k}(z)$, where $\mu_{k} \geq$ $0, \sum_{k=1}^{\infty} \mu_{k}=1$,

$$
g_{1}(z)=z \text { and } g_{k}(z)=z-\frac{(1-\alpha)(1+\varepsilon)}{(k-\alpha+\beta) B_{k}(\lambda)} z^{k}, \quad k=2,3, \ldots
$$

Therefore we obtain

$$
\begin{aligned}
g(z) & =\mu_{1} z+\sum_{k=2}^{\infty} \mu_{k}\left(z-\frac{(1-\alpha)(1+\varepsilon)}{(k-\alpha+\beta) B_{k}(\lambda)} z^{k}\right) \\
& =z-\sum_{k=2}^{\infty} \mu_{k}\left(\frac{(1-\alpha)(1+\varepsilon)}{(k-\alpha+\beta) B_{k}(\lambda)}\right) z^{k} .
\end{aligned}
$$

Since $\mu_{k} \geq 0$ and $\sum_{k=1}^{\infty} \mu_{k} \leq 1$, it follows that

$$
\sum_{k=2}^{\infty} k^{\eta+1} a_{k} \leq \sup _{k \geq 2} k^{\eta+1}\left(\frac{(1-\alpha)(1+\varepsilon)}{(k-\alpha+\beta) B_{k}(\lambda)}\right)
$$

The result will follow if we can show that $A(k, \eta, \alpha, \varepsilon, \lambda)=\frac{k^{\eta+1}(1-\alpha)(1+\varepsilon)}{(k-\alpha+\beta) B_{k}(\lambda)}$ is a decreasing function of k. In view of $B_{k+1}(\lambda)=\frac{\lambda+k}{k} B_{k}(\lambda)$ the inequality

$$
A(k+1, \eta, \alpha, \varepsilon, \lambda) \leq A(k, \eta, \alpha, \varepsilon, \lambda)
$$

is equivalent to

$$
(k+1)^{\eta+1}(k-\alpha+\beta) \leq k^{\eta}(k+1-\alpha+\beta)(\lambda+k) .
$$

This yields

$$
\begin{equation*}
\lambda(k-\alpha+\beta)+\lambda+\alpha-\beta \geq 0 \tag{3.1}
\end{equation*}
$$

whenever $\eta=0$ and $\lambda \geq 0$ and

$$
\begin{equation*}
k[(k+1)(\lambda-1)+(2-\lambda)(\alpha-\beta)]+\alpha-\beta \geq 0 \tag{3.2}
\end{equation*}
$$

whenever $\eta=1$ and $1 \leq \lambda \leq 2$. Since (3.1) and (3.2) holds for all $k \geq 2$, the proof is complete.
Theorem 3.3. Suppose either $\eta=0$ and $\lambda \geq 0$ or $\eta=1$ and $1 \leq \lambda \leq 2$.
Let $-1 \leq \alpha<1$, and

$$
-1 \leq \gamma<\frac{(2-\alpha+\beta)(1+\lambda)-2^{\eta+1}(1-\alpha)(1+\varepsilon)(1+\beta)}{(2-\alpha+\beta)(1+\lambda)(1+\beta)} .
$$

Let $f \in T$ and for all real numbers $0 \leq \varepsilon<\delta$, assume $\frac{f(z)+\varepsilon z}{1+\varepsilon} \in T S_{p}^{\lambda}(\alpha, \beta)$.
Then the $\eta-\delta$ - neighbourhood of f, namely $M_{\delta}^{\eta}(f) \subset S_{p}^{\eta}(\gamma, \beta)$ where

$$
\delta=\frac{(1-\gamma)(2-\alpha+\beta)(1+\lambda)-2^{\eta+1}(1-\alpha)(1+\varepsilon)(1+\beta)}{(2-\alpha+\beta)(1+\lambda)(1+\beta)} .
$$

The result is sharp, with the extremal function $f(z)=\frac{(1-\alpha)(1+\varepsilon)}{(2-\alpha+\beta)(1+\lambda)} z^{2}$.
Proof. For a function f of the form (1.2), let $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ be in $M_{\delta}^{\eta}(f)$. In view of Lemma 3.2, we have

$$
\begin{aligned}
\sum_{k=2}^{\infty} k^{\eta+1}\left|b_{k}\right| & =\sum_{k=2}^{\infty} k^{\eta+1}\left|a_{k}-b_{k}-a_{k}\right| \\
& \leq \delta+\frac{2^{\eta+1}(1-\alpha)(1+\varepsilon)}{(2-\alpha+\beta)(1+\lambda)}
\end{aligned}
$$

Applying Lemma 3.1. it follows that $g \in S_{p}^{\eta}(\gamma, \beta)$ if $\delta+\frac{2^{\eta+1}(1-\alpha)(1+\varepsilon)}{(2-\alpha+\beta)(1+\lambda)} \leq \frac{1-\gamma}{1+\beta}$. That is, if

$$
\delta \leq \frac{(1-\gamma)(2-\alpha+\beta)(1+\lambda)-2^{\eta+1}(1-\alpha)(1+\varepsilon)(1+\beta)}{(2-\alpha+\beta)(1+\lambda)(1+\beta)} .
$$

This completes the proof.
Remark 3.4. By taking $\beta=0$ and letting $\lambda=0, \lambda=1$ and $\eta=0=\varepsilon$, we note that Theorems $1,2,4$ in [8] follow immediately from Theorem 3.3.

4. Partial Sums

Following the earlier works by Silverman [8] and Silvia [10] on partial sums of analytic functions. We consider in this section partial sums of functions in the class $S_{p}^{\lambda}(\alpha, \beta)$ and obtain sharp lower bounds for the ratios of real part of $f(z)$ to $f_{n}(z)$ and $f^{\prime}(z)$ to $f_{n}^{\prime}(z)$.
Theorem 4.1. Let $f(z) \in S_{p}^{\lambda}(\alpha, \beta)$ be given by (1.1) and define the partial sums $f_{1}(z)$ and $f_{n}(z)$, by

$$
\begin{equation*}
f_{1}(z)=z ; \text { and } f_{n}(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(n \in \mathbb{N} /\{1\}) \tag{4.1}
\end{equation*}
$$

Suppose also that

$$
\begin{equation*}
\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1 \tag{4.2}
\end{equation*}
$$

where $\left(c_{k}:=\frac{[(1+\beta) k-(\alpha+\beta)] B_{k}(\lambda)}{1-\alpha}\right)$. Then $f \in S_{p}^{\lambda}(\alpha, \beta)$. Furthermore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\}>1-\frac{1}{c_{n+1}} z \in U, \quad n \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\}>\frac{c_{n+1}}{1+c_{n+1}} . \tag{4.4}
\end{equation*}
$$

Proof. It is easily seen that $z \in S_{p}^{\lambda}(\alpha, \beta)$. Thus from Theorem 3.3 and by hypothesis 4.2, we have

$$
\begin{equation*}
N_{1}(z) \subset S_{p}^{\lambda}(\alpha, \beta), \tag{4.5}
\end{equation*}
$$

which shows that $f \in S_{p}^{\lambda}(\alpha, \beta)$ as asserted by Theorem 4.1
Next, for the coefficients c_{k} given by (4.2) it is not difficult to verify that

$$
\begin{equation*}
c_{k+1}>c_{k}>1 \tag{4.6}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\sum_{k=2}^{n}\left|a_{k}\right|+c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1 \tag{4.7}
\end{equation*}
$$

by using the hypothesis (4.2).
By setting

$$
\begin{align*}
g_{1}(z) & =c_{n+1}\left\{\frac{f(z)}{f_{n}(z)}-\left(1-\frac{1}{c_{n+1}}\right)\right\} \tag{4.8}\\
& =1+\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} a_{k} z^{k-1}}
\end{align*}
$$

and applying (4.7), we find that

$$
\begin{align*}
\left|\frac{g_{1}(z)-1}{g_{1}(z)+1}\right| & \leq \frac{c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n}\left|a_{k}\right|-c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right|} \tag{4.9}\\
& \leq 1, \quad z \in U,
\end{align*}
$$

which readily yields the assertion (4.3) of Theorem 4.1. In order to see that

$$
\begin{equation*}
f(z)=z+\frac{z^{n+1}}{c_{n+1}} \tag{4.10}
\end{equation*}
$$

gives sharp result, we observe that for $z=r e^{i \pi / n}$ that $\frac{f(z)}{f_{n}(z)}=1+\frac{z^{n}}{c_{n+1}} \rightarrow 1-\frac{1}{c_{n+1}}$ as $z \rightarrow 1^{-}$.
Similarly, if we take

$$
\begin{align*}
g_{2}(z) & =\left(1+c_{n+1}\right)\left\{\frac{f_{n}(z)}{f(z)}-\frac{c_{n+1}}{1+c_{n+1}}\right\} \tag{4.11}\\
& =1-\frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}}
\end{align*}
$$

and making use of (4.7), we can deduce that

$$
\begin{align*}
\left|\frac{g_{2}(z)-1}{g_{2}(z)+1}\right| & \leq \frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n}\left|a_{k}\right|-\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty}\left|a_{k}\right|} \tag{4.12}\\
& \leq 1, \quad z \in U,
\end{align*}
$$

which leads us immediately to the assertion (4.4) of Theorem 4.1.
The bound in (4.4) is sharp for each $n \in \mathbb{N}$ with the extremal function $f(z)$ given by 4.10. The proof of Theorem 4.1. is thus complete.

Theorem 4.2. If $f(z)$ of the form (1.1) satisfies the condition (2.1). Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq 1-\frac{n+1}{c_{n+1}} \tag{4.13}
\end{equation*}
$$

Proof. By setting

$$
\begin{align*}
& g(z)=c_{n+1}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}-\left(1-\frac{n+1}{c_{n+1}}\right)\right\} \tag{4.14}\\
&=\frac{1+\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k a_{k} z^{k-1}+\sum_{k=2}^{\infty} k a_{k} z^{k-1}}{1+\sum_{k=2}^{n} k a_{k} z^{k-1}} \\
&=1+\frac{\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k a_{k} z^{k-1}}{1+\sum_{k=2}^{n} k a_{k} z^{k-1}}, \\
&\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} k\left|a_{k}\right|-\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k\left|a_{k}\right|} .
\end{align*}
$$

Now $\left|\frac{g(z)-1}{g(z)+1}\right| \leq 1$ if

$$
\begin{equation*}
\sum_{k=2}^{n} k\left|a_{k}\right|+\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k\left|a_{k}\right| \leq 1 \tag{4.15}
\end{equation*}
$$

since the left hand side of 4.15$)$ is bounded above by $\sum_{k=2}^{n} c_{k}\left|a_{k}\right|$ if

$$
\begin{equation*}
\sum_{k=2}^{n}\left(c_{k}-k\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty} c_{k}-\frac{c_{n+1}}{n+1} k\left|a_{k}\right| \geq 0 \tag{4.16}
\end{equation*}
$$

and the proof is complete. The result is sharp for the extremal function $f(z)=z+\frac{z^{n+1}}{c_{n+1}}$.
Theorem 4.3. If $f(z)$ of the form (1.1) satisfies the condition (2.1) then

$$
\operatorname{Re}\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{c_{n+1}}{n+1+c_{n+1}} .
$$

Proof. By setting

$$
\begin{aligned}
g(z) & =\left[(n+1)+c_{n+1}\right]\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}-\frac{c_{n+1}}{n+1+c_{n+1}}\right\} \\
& =1-\frac{\left(1+\frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} k a_{k} z^{k-1}}{1+\sum_{k=2}^{n} k a_{k} z^{k-1}}
\end{aligned}
$$

and making use of (4.16), we can deduce that

$$
\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\left(1+\frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} k\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} k\left|a_{k}\right|-\left(1+\frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} k\left|a_{k}\right|} \leq 1,
$$

which leads us immediately to the assertion of the Theorem4.3.
Remark 4.4. We note that $\beta=1$, and choosing $\lambda=0, \lambda=1$ these results coincide with the results obtained in [13].

References

[1] O.P. AHUJA, Hadamard product of analytic functions defined by Ruscheweyh derivatives, in Current Topics in Analytic Function Theory, World Scientific Publishing, River Edge, N.J. (1992), 13-28.
[2] O.P. AHUJA AND M. NUNOKAWA, Neighborhoods of analytic functions defined by Ruscheweyh derivatives, Math. J., 51(3) (2000), 487-492.
[3] O. ALTINTAS AND S. OWA, Neighborhood of certain analytic functions with negative coefficients, Inter. J. Math and Math. Sci., 19(4) (1996), 797-800.
[4] A.W. GOODMAN, Univalent function with analytic curves, Proc. Amer. Math. Soc., 8 (1957), 598-601.
[5] S. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4) (1981), 521-527.
[6] S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109115.
[7] H. SILVERMAN, Neighborhoods of classes of analytic function, Far. East. J. Math. Sci., 3(2) (1995), 165-169.
[8] H. SILVERMAN, Partial sums of starlike and convex functions, J. Math. Anal. \& Appl., 209 (1997), 221-227.
[9] H. SILVERMAN, Univalent function with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116
[10] E.M. SILVIA, Partial sums of convex functions of order α, Houston J. Math., 11(3) (1985), 397404.
[11] K.G. SUBRAMANIAN, T.V. SUDHARSAN, P. BALASUBRAHMANYAM and H. SILVERMAN, Class of uniformly starlike functions, Publ. Math. Debercen, 53(4) (1998) ,309-315.
[12] K.G. SUBRAMANIAN, G. MURUGUSUNDARAMOORTHY, P. BALASUBRAHMANYAM and H. SILVERMAN, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, 42(3) (1995), 517-522.
[13] T. ROSY, Studies on subclasses of starlike and convex functions, Ph.D., Thesis, Madras University (2001).

[^0]: ISSN (electronic): 1443-5756
 (C) 2003 Victoria University. All rights reserved.

 123-02

