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ABSTRACT. By using a linear operator, a subclass of meromorphigallyalent functions with
alternating coefficients is introduced. Some important properties of this class such as coefficient
bounds, distortion bounds, etc. are found.
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1. INTRODUCTION

Let ¥, be the class of functions of the form
(1.1) f(z) = A2+ a.2", A=0
n=p

that are regular in the punctured digk = {z : 0 < |2| < 1} ando, be the subclass df,
consisting of functions with alternating coefficients of the type

(1.2) f(z) =Az7P + i(—l)”_lanz”, a, >0, A>0.
Let o
(1.3) E;(ﬁ):{fezp:Re <%) <—ﬁ,0§ﬂ<p}

and leto; () = ¥5(8) N o, where

(1.4) T(F() = (v —p+ 1) / (W) f (uz)du, p <~
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is a linear operator.
With a simple calculation we obtain

Az 4 S0 (R ) 0, () €0y
(1.5) I (f(2) = o
Az 4y (528 0, f(2) €5,

For more details about meromorphwalent functions, we can see the recent works of many
authors inl[1], 2], [3].

Also, Uralegaddi and Ganidi[4] worked on meromorphic univalent functions with alternating
coefficients.

2. COEFFICIENT ESTIMATES
Theorem 2.1. Let

f(z) =Az"P + Zanz” € X,

n=p
If
2.1 LT ) an] < A(p — B),
@) o) (Tl < 4609
thenf(z) € ¥5(5).
Proof. It is sufficient to show that
Z[Jf(Z))]
M = i) TP <1 for |z|<1
T 2T fR)) )
Ty — W —20)

However, by[(1.)

—pAzTP + Z n <:Y/J:ZE) an2" + pAzTP + Zp (liﬁ) 2"

_WMW+Z:(Lﬁg%ﬂ—@—waﬂ—Z@—%wﬁﬁD%ﬂ

n=p

> [n+p) (2252)] lau

< = :
24(p— §) = X (n —p+20) (324 |al

n=p
The last expression is less than or equal to 1 provided

> y—p+1 = y—p+1
A < 24(p—fB) — 28) [ ———=
>[4 (Tl <240-9) - 0929 (T ol
which is equivalent to
- TP+
LA e A< A
S (T ol < 409
which is true by[(2.]1) so the proof is complete. O

The converse of Theorem 2.1 is also true for functions;ig), wherep is an odd number.
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Theorem 2.2. A functionf(z) in o, is in o7;(3) if and only if

2.2) >otn+0) (L2 ) oo < - ).

— y+n+1

Proof. According to Theorem 2] 1 it is sufficient to prove the “only if” part. Suppose that

, —Ap=7 + > (=1 () 0
(2.3) Re (M) — Re Z:p <7+ +1> < B
Az=p 4 Y (—1)n! (3;—%) an 2"

By choosing values of on the real axis so thaf 74 is real and clearing the denominator
in (2.3) and letting: — —1 through real values we obtain

- y—p+1 y—p+1
—E > g
i npn(v+n+1) 6(’“ <v+n+1) )

which is equivalent to

S+ 0) (22 ) 0 < Al ).

n=p

Corollary 2.3. If f(2) € o,(5) then

Alp—B)(y+n+1)
(n+B8)(y—p+1)

The result is sharp for functions of the type

(2.4) a, < for n=p,p+1,....

Alp—-B)v+n+1) ,
(n+0)(y—p+1)

(2.5) falz) = AP 4 (-1)"

3. DISTORTION BOUNDS AND | MPORTANT PROPERTIES OF o} (/3)
In this section we obtain distortion bounds for functions in the clg$s) and prove some
important properties of this class, wheres an odd number.
Theorem3.1.Let f(z) = Az7?+ 3 (—1)"'a,2", a, > 0 beinthe class’ () andf > y+1

then

A(p - )
vy—p+1

A@—@ﬁ

(3.1) Ar P —
7-p+1

P <|f(z)| < Ar P+

. TL-‘rﬁ
Proof. Since > v+ 1, so ST 2 1. Then

+n-+1

(v—p+1 Eyméij(n+ﬁ )W—p+D%§A@—5%
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and we have
!f@HILAfp+§:F-
, Alp—p)
S — + rP an >~ :
E: "t
Similarly,
A - A Alp-5)
_ n P - D
|f(Z)|Z7"p ;panr >r r;panzrp S pt1
Theorem 3.2. Let
= AP+ Zanzn and g(z Az7P + Z ) 1y, 2"
n=p

be in the class; (). Then the weighted mean ffand g defined by

Ha— e+ @+ Do)

Wi(z) = 3

is also in the same class.

Proof. Since f andg belong too} (), then by [2.2) we have

S (n+5) (528 0w < Ap - ),
(3.2) n=p 1
> (n+8) (225}) b < Alp - 8).

After a simple calculation we obtain

Wi(z) = Az + Z l 5 ]an + ;jbn} (=)t

However,

(e 9]

y=p+1)\ [1— 1+
Z]"+m(w+n+1>[ 2a”+_?*4

(525w (e () S (550
by (3.2)

n=p n=p

= () a0-9+ (57) aw-0)
= A(p — D).
Hence by Theorem 2.2V;(z) € a;(5).
Theorem 3.3. Let

fr(z Az_p+z )" g 2" € a,(8), k=1,2,...,m
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then the arithmetic mean g¢f.(z) defined by

(3.3) Flz) = %Z Ful2)

is also in the same class.
Proof. Sincefy(2) € o,(5), then by [2.2) we have

@ Y+ (2 w00 b=12..m)

After a simple calculation we obtain

F(z) = Z(Az_p—l—z ) ankz)

k=1

=Az"P + 2:(—”%1 (% Zm: an,k) 2"
n=p k=1

However,
0 y—p+1 1 & by (3.4))
- < A( -
an(mﬁ) <7+n+1) (m;k> < Z (0= 15)=Alp—5)
which in view of Theorem 2]2 yields the proof of Theorgm| 3.3. O
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