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ABSTRACT. In this paper we studyvp(n!), the greatest power of primep in factorization ofn!.
We find some lower and upper bounds forvp(n!), and we show thatvp(n!) = n

p−1 + O(lnn).
By using the afore mentioned bounds, we study the equationvp(n!) = v for a fixed positive
integerv. Also, we study the triangle inequality aboutvp(n!), and show that the inequality
pvp(n!) > qvq(n!) holds for primesp < q and sufficiently large values ofn.
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1. I NTRODUCTION

As we know, for everyn ∈ N, n! = 1× 2× 3× · · · × n. Let vp(n!) be the highest power of

primep in factorization ofn! to prime numbers. It is well-known that (see [3] or [5])

(1.1) vp(n!) =
∞∑

k=1

[
n

pk

]
=

[ ln n
ln p ]∑
k=1

[
n

pk

]
,

in which [x] is the largest integer less than or equal tox. An elementary problem aboutn! is

finding the number of zeros at the end of it, in which clearly its answer isv5(n!). The inverse

of this problem is very nice; for example finding values ofn in whichn! terminates in 37 zeros

[3], and generally finding values ofn such thatvp(n!) = v. We show that ifvp(n!) = v has a
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2 MEHDI HASSANI

solution then it has exactlyp solutions. For doing these, we need some properties of[x], such

as

(1.2) [x] + [y] ≤ [x + y] (x, y ∈ R),

and

(1.3)
[x
n

]
=

[
[x]

n

]
(x ∈ R, n ∈ N).

2. ESTIMATING vp(n!)

Theorem 2.1.For everyn ∈ N and primep, such thatp ≤ n, we have:

(2.1)
n− p

p− 1
− ln n

ln p
< vp(n!) ≤ n− 1

p− 1
.

Proof. According to the relation (1.1), we havevp(n!) =
∑m

k=1

[
n
pk

]
in whichm =

[
ln n
ln p

]
, and

sincex− 1 < [x] ≤ x, we obtain

n

m∑
k=1

1

pk
−m < vp(n!) ≤ n

m∑
k=1

1

pk
,

considering
∑m

k=1
1
pk =

1− 1
pm

p−1
, we obtain

n

p− 1

(
1− 1

pm

)
−m < vp(n!) ≤ n

p− 1

(
1− 1

pm

)
,

and combining this inequality withln n
ln p

− 1 < m ≤ ln n
ln p

completes the proof. �

Corollary 2.2. For everyn ∈ N and primep, such thatp ≤ n, we have:

vp(n!) =
n

p− 1
+ O(ln n).

Proof. By using (2.1), we have

0 <

n
p−1

− vp(n!)

ln n
<

1

ln p
+ O

(
1

ln n

)
,

and this yields the result. �

Note that the above corollary asserts thatn! ends approximately inn
4

zeros [1].

Corollary 2.3. For everyn ∈ N and primep, such thatp ≤ n, and for alla ∈ (0,∞) we have:

(2.2)
n− p

p− 1
− 1

ln p

(n

a
+ ln a− 1

)
< vp(n!).

Proof. Consider the functionf(x) = ln x. Since,f ′′(x) = − 1
x2 , ln x is a concave function and

so, for everya ∈ (0, +∞) we have

ln x ≤ ln a +
1

a
(x− a),

combining this with the left hand side of (2.1) completes the proof. �
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EQUATIONS AND INEQUALITIES INVOLVING vp(n!) 3

3. STUDY OF THE EQUATION vp(n!) = v

Supposev ∈ N is given. We are interested in finding the values ofn such that in factorization

of n!, the highest power ofp, is equal tov. First, we find some lower and upper bounds for these

n’s.

Lemma 3.1. Supposev ∈ N andp is a prime andvp(n!) = v, then we have

(3.1) 1 + (p− 1)v ≤ n <
v + p

p−1
+ ln(1+(p−1)v)

ln p
− 1

ln p

1
p−1

− 1
(1+(p−1)v) ln p

.

Proof. For proving the left hand side of (3.1), use right hand side of (2.1) with the assumption

vp(n!) = v, and for proving the right hand side of (3.1), use (2.2) witha = 1 + (p− 1)v. �

Lemma 3.1 suggests an interval for the solution ofvp(n!) = v. In the next lemma we show

that it is sufficient for one to check only multiples ofp in above interval.

Lemma 3.2. Supposem ∈ N andp is a prime, then we have

(3.2) vp((pm + p)!)− vp((pm)!) ≥ 1.

Proof. By using (1.1) and (1.2) we have

vp((pm + p)!) =
∞∑

k=1

[
pm + p

pk

]

≥
∞∑

k=1

[
pm

pk

]
+

∞∑
k=1

[
p

pk

]
= 1 + vp((pm)!),

and this completes the proof. �

In the next lemma, we show that ifvp(n!) = v has a solution, then it has exactlyp solutions.

In fact, the next lemma asserts that ifvp((mp)!) = v holds, then for all0 ≤ r ≤ p − 1,

vp((mp + r)!) = v also holds.

Lemma 3.3. Supposem ∈ N andp is a prime, then we have

(3.3) vp((m + 1)!) ≥ vp(m!),

and

(3.4) vp((pm + p− 1)!) = vp((pm)!).
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Proof. For proving (3.3), use (1.1) and (1.2) as follows

vp((m + 1)!) =
∞∑

k=1

[
m + 1

pk

]

≥
∞∑

k=1

[
m

pk

]
+

∞∑
k=1

[
1

pk

]

=
∞∑

k=1

[
m

pk

]
= vp(m!).

For proving (3.4), it is enough to show that for allk ∈ N,
[

pm+p−1
pk

]
=
[

pm
pk

]
and we do this by

induction onk; for k = 1, clearly
[

pm+p−1
p

]
=
[

pm
p

]
. Now, by using (1.3) we have

[
pm + p− 1

pk+1

]
=

[
pm+p−1

pk

p

]
=


[

pm+p−1
pk

]
p

 =


[

pm
pk

]
p


=

[
pm
pk

p

]
=

[
pm

pk+1

]
.

This completes the proof. �

So, we have proved that

Theorem 3.4. Supposev ∈ N and p is a prime. For solving the equationvp(n!) = v, it is

sufficient to check the valuesn = mp, in whichm ∈ N and

(3.5)

[
1 + (p− 1)v

p

]
≤ m ≤

[
v + p

p−1
+ ln(1+(p−1)v)

ln p
− 1

ln p
p

p−1
− p

(1+(p−1)v) ln p

]
.

Also, ifn = mp is a solution ofvp(n!) = v, then it has exactlyp solutionsn = mp+ r, in which

0 ≤ r ≤ p− 1.

Note and Problem 1.As we see, there is no guarantee of the existence of a solution forvp(n!) =

v. In fact we need to show that{vp(n!)|n ∈ N} = N; however, computational observations

suggest thatn = p
∥∥∥1+(p−1)v

p

∥∥∥ usually is a solution, such that||x|| is the nearest integer tox, but

we cannot prove it.

Note and Problem 2. Other problems can lead us to other equations involvingvp(n!); for

example, supposen, v ∈ N given, find the value of primep such thatvp(n!) = v.

Or, supposep andq are primes andf : N2 → N is a prime value function, for whichn’s do we

havevp(n!) + vq(n!) = vf(p,q)(n!)? And many other problems!

4. TRIANGLE I NEQUALITY CONCERNING vp(n!)

In this section we are going to comparevp((m + n)!) andvp(m!) + vp(n!).
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EQUATIONS AND INEQUALITIES INVOLVING vp(n!) 5

Theorem 4.1.For everym,n ∈ N and primep, such thatp ≤ min{m, n}, we have

(4.1) vp((m + n)!) ≥ vp(m!) + vp(n!),

and

(4.2) vp((m + n)!)− vp(m!)− vp(n!) = O(ln(mn)).

Proof. By using (1.1) and (1.2), we have

vp((m + n)!) =
∞∑

k=1

[
m + n

pk

]

≥
∞∑

k=1

[
m

pk

]
+

∞∑
k=1

[
n

pk

]
= vp(m!) + vp(n!).

Also, by using (2.1) and (4.1) we obtain

0 ≤ vp((m + n)!)− vp(m!)− vp(n!)

<
2p− 1

p− 1
+

ln(mn)

ln p
≤ 3 +

ln(mn)

ln 2
,

this completes the proof. �

More generally, ifn1, n2, . . . , nt ∈ N andp is a prime, in whichp ≤ min{n1, n2, . . . , nt}, by

using an extension of (1.2), we obtain

vp

((
t∑

k=1

nk

)
!

)
≥

t∑
k=1

vp(nk!),

and by using this inequality and (2.1), we obtain

0 ≤ vp

((
t∑

k=1

nk

)
!

)
−

t∑
k=1

vp(nk!)

<
tp− 1

p− 1
+

ln(n1n2 · · ·nt)

ln p

≤ 2t− 1 +
ln(n1n2 · · ·nt)

ln 2
,

and consequently we have

vp

((
t∑

k=1

nk

)
!

)
−

t∑
k=1

vp(nk!) = O(ln(n1n2 · · ·nt)).

Note and Problem 3. Supposef : Nt → N is a function andp is a prime. For which

n1, n2, . . . , nt ∈ N, do we have

vp((f(n1, n2, . . . , nt)!) ≥ f(vp(n1!), vp(n2!), . . . , vp(nt!))?

Also, we can consider the above question in other view points.
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5. THE I NEQUALITY pvp(n!) > qvq(n!)

Supposep and q are primes andp < q. Sincevp(n!) ≥ vq(n!), comparingpvp(n!) and

qvq(n!) becomes a nice problem. In [2], by using elementary properties about[x], the inequal-

ity pvp(n!) > qvq(n!) was considered for some special cases. In addition, it was shown that

2v2(n!) > 3v3(n!) holds for alln ≥ 4. In this section we studypvp(n!) > qvq(n!) in the more general

case and also reprove2v2(n!) > 3v3(n!).

Lemma 5.1. Supposep andq are primes andp < q, then

pq−1 > qp−1.

Proof. Consider the function

f(x) = x
1

x−1 (x ≥ 2).

A simple calculation yields that forx ≥ 2 we have

f ′(x) = −x
2−x
x−1 (x ln x− x + 1)

(x− 1)2
< 0,

so,f is strictly decreasing andf(p) > f(q). This completes the proof. �

Theorem 5.2.Supposep andq are primes andp < q, then for sufficiently largen’s we have

(5.1) pvp(n!) > qvq(n!).

Proof. Sincep < q, Lemma 5.1 yields thatp
q−1

qp−1 > 1 and so, there exitsN ∈ N such that for

n > N we have (
pq−1

qp−1

)n

≥ pp(q−1)

qp−1
n(p−1)(q−1).

Thus,
pn(q−1)

n(p−1)(q−1)pp(q−1)
≥ qn(p−1)

qp−1
,

and therefore,
p

n
p−1

np
p

p−1

≥ q
n

q−1

q
1

q−1

.

So, we obtain

p
n−p
p−1

− ln n
ln p ≥ q

n−1
q−1 ,

and considering this inequality with (2.1), completes the proof. �

Corollary 5.3. For n = 2 andn ≥ 4 we have

(5.2) 2v2(n!) > 3v3(n!).

Proof. It is easy to see that forn ≥ 30 we have(
4

3

)n

≥ 16

3
n2,

and by Theorem 5.2, we yield (5.2) forn ≥ 30. For n = 2 and4 ≤ n < 30 check it using a

computer. �
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A Computational Note. In Theorem 5.2, the relation (5.1) holds forn > N (see its proof). We

can check (5.1) forn ≤ N at most by checking the following number of cases:

R(N) := # {(p, q, n)| p, q ∈ P, n = 3, 4, . . . , N, andp < q ≤ N} ,

in whichP is the set of all primes. If,π(x) = The number of primes≤ x, then we have

R(N) =
N∑

n=3

# {(p, q)| p, q ∈ P, andp < q ≤ n} =
1

2

N∑
n=3

π(n)(π(n)− 1).

But, clearlyπ(n) < n and this yields that

R(N) <
N3

6
.

Of course, we have other bounds forπ(n) sharper thann such as [4]

π(n) ≤ n

ln n

(
1 +

1

ln n
+

2.25

ln2 n

)
(n ≥ 355991),

and by using this bound we can find sharper bounds forR(N).

REFERENCES

[1] A. ADLER AND J.E. COURY,The Theory of Numbers, Bartlett Publishers, 1995.
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