Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 186, 2006

SOME P.D.F.-FREE UPPER BOUNDS FOR THE DISPERSION $\sigma(X)$ AND THE
 QUANTITY $\sigma^{2}(X)+(x-E X)^{2}$
 N. K. AGBEKO
 Institute of Mathematics
 University of Miskolc
 H-3515 Miskolc-Egyetemváros
 Hungary
 matagbek@uni-miskolc.hu

Received 22 April, 2006; accepted 11 December, 2006
Communicated by C.E.M. Pearce

Abstract. In comparison with Theorems 2.1 and 2.4 in [1], we provide some p.d.f.-free upper bounds for the dispersion $\sigma(X)$ and the quantity $\sigma^{2}(X)+(x-E X)^{2}$ taking only into account the endpoints of the given finite interval.

Key words and phrases: Dispersion, P.D.F.s.
2000 Mathematics Subject Classification 60E15, 26D15.

1. Introduction and Results

Let $f:[a, b] \subset \mathbb{R} \rightarrow[0, \infty)$ be the $p . d . f$. (probability density function) of a random variable X whose expectation and dispersion are respectively given by

$$
E X=\int_{a}^{b} t f(t) d t
$$

and

$$
\sigma(X)=\sqrt{\int_{a}^{b}(t-E X)^{2} f(t) d t}=\sqrt{\int_{a}^{b} t^{2} f(t) d t-(E X)^{2}}
$$

In [1], Theorems 2.1 and 2.4, the following upper bounds were obtained for the dispersion $\sigma(X)$

$$
\sigma(X) \leq \begin{cases}\frac{\sqrt{3}(b-a)^{2}}{6}\|f\|_{\infty} & \text { if } f \in L_{\infty}[a, b] \\ \frac{\sqrt{2}(b-a)^{1+q^{-1}}}{2[(q+1)(2 q+1)]^{\frac{2}{q}}}\|f\|_{p} & \text { if } f \in L_{p}[a, b], p>1, \frac{1}{p}+\frac{1}{q}=1 \\ \frac{\sqrt{2}(b-a)}{2} & \text { if } f \in L_{1}[a, b]\end{cases}
$$

[^0]and the quantity $\sigma^{2}(X)+(x-E X)^{2}$
\[

$$
\begin{aligned}
& \sigma^{2}(X)+(x-E X)^{2} \\
& \quad \leq \begin{cases}(b-a)\left[\frac{(b-a)^{2}}{12}+\left(x-\frac{b+a}{2}\right)^{2}\right] \sqrt{\|f\|_{\infty}} & \text { if } f \in L_{\infty}[a, b] \\
{\left[\frac{(b-x)^{2 q+1}+(x-a)^{2 q+1}}{{ }^{2 q+1}}\right]^{\frac{1}{2 q}} \sqrt{\|f\|_{p}}} & \text { if } f \in L_{p}[a, b], p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\left(\frac{b-a}{2}+\left|x-\frac{b+a}{2}\right|\right)^{2} & \text { if } f \in L_{1}[a, b]\end{cases}
\end{aligned}
$$
\]

for all $x \in[a, b]$.
In this communication we intend to make free from the p.d.f. the above upper bounds for the dispersion $\sigma(X)$ and the quantity $\sigma^{2}(X)+(x-E X)^{2}$ taking only into account the endpoints of the given finite interval.

Theorem 1.1. Under the above restriction on the p.d.f. we have

$$
\sigma(X) \leq \min \{\max \{|a|,|b|\}, b-a\} .
$$

Proof. First, for any number $t \in[a, b]$ we note (via $f(t) \geq 0$) that $a f(t) \leq t f(t) \leq b f(t)$ leading to $a \leq E X \leq b$. Consequently,

$$
\begin{equation*}
0 \leq E X-a \leq b-a \quad \text { and } \quad 0 \leq b-E X \leq b-a \tag{1.1}
\end{equation*}
$$

We point out that the function $g:[a, b] \rightarrow[0, \infty)$, defined by $g(t)=(t-E X)^{2}$, is a bounded convex function which assumes the minimum at point $(E X, 0)$. Thus

$$
\begin{aligned}
\beta & :=\sup \left\{(t-E X)^{2}: t \in[a, b]\right\} \\
& =\max \left\{(a-E X)^{2},(b-E X)^{2}\right\} \\
& \leq(b-a)^{2},
\end{aligned}
$$

by taking into consideration (1.1). Now, it can be easily seen that

$$
\sigma(X)=\sqrt{\int_{a}^{b}(t-E X)^{2} f(t) d t} \leq \sqrt{\beta \int_{a}^{b} f(t) d t}=\sqrt{\beta} \leq b-a
$$

Next, using the facts that function $h(t)=t^{2}$ decreases on $(-\infty, 0)$ and increases on $(0, \infty)$ on the one hand and,

$$
\sigma(X)=\sqrt{\int_{a}^{b} t^{2} f(t) d t-(E X)^{2}} \leq \sqrt{\int_{a}^{b} t^{2} f(t) d t}
$$

on the other, we can easily check that

$$
\sigma^{2}(X) \leq \int_{a}^{b} t^{2} f(t) d t \leq \begin{cases}b^{2} & \text { if } \quad a \geq 0 \\ \max \left\{a^{2}, b^{2}\right\} & \text { if } a<0 \text { and } b>0 \\ a^{2} & \text { if } b \leq 0\end{cases}
$$

so that $\sigma^{2}(X) \leq \max \left\{a^{2}, b^{2}\right\}$. Therefore, we can conclude on the validity of the argument.
Theorem 1.2. Under the above restriction on the p.d.f. we have

$$
\sqrt{\sigma^{2}(X)+(x-E X)^{2}} \leq 2 \min \{\max \{|a|,|b|\}, b-a\}
$$

for all $x \in[a, b]$.

Proof. We recall the identity

$$
\sigma^{2}(X)+(x-E X)^{2}=\int_{a}^{b}(t-x)^{2} f(t) d t, \quad x \in[a, b],
$$

from the proof of Theorem 2.4 in [1]. Clearly,

$$
\int_{a}^{b}(t-x)^{2} f(t) d t \leq \max \left\{(t-x)^{2}: t, x \in[a, b]\right\}
$$

so that

$$
\sqrt{\sigma^{2}(X)+(x-E X)^{2}} \leq \max \{|t-x|: t, x \in[a, b]\}
$$

It is obvious that $0 \leq t-a \leq b-a$ and $0 \leq x-a \leq b-a$, since $t, x \in[a, b]$. We note that we can estimate from above the quantity $|t-x|$ in two ways:

$$
|t-x| \leq|t-a|+|a-x| \leq 2(b-a)
$$

and

$$
|t-x| \leq|t|+|x| \leq 2 \max \{|a|,|b|\} .
$$

Consequently,

$$
\max \{|t-x|: t, x \in[a, b]\} \leq 2 \min \{\max \{|a|,|b|\}, b-a\}
$$

This leads to the desired result.

References

[1] N.S.BARNETT, P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure and Appl. Math., 2(1) (2001), Art. 1. [ONLINE: http://jipam.vu.edu.au/article.php? sid=117].

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 118-06

