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Abstract

Sharp bounds are obtained for expressions involving Zeta and related functions
at a distance of one apart. Since Euler discovered in 1736 a closed form ex-
pression for the Zeta function at the even integers, a comparable expression for
the odd integers has not been forthcoming. The current article derives sharp
bounds for the Zeta, Lambda and Eta functions at a distance of one apart. The
methods developed allow an accurate approximation of the function values at
the odd integers in terms of the neighbouring known function at even integer
values. The Dirichlet Beta function which has explicit representation at the odd
integer values is also investigated in the current work.

Čebyšev functional bounds are utilised to obtain tight upper bounds for the
Zeta function at the odd integers.

2000 Mathematics Subject Classification: Primary: 26D15, 11Mxx, 33Exx; Sec-
ondary: 11M06, 33E20, 65M15.
Key words: Euler Zeta function, Dirichlet beta, eta and lambda functions, Sharp

bounds, Čebyšev functional.

This paper is based on the talk given by the author within the “International
Conference of Mathematical Inequalities and their Applications, I”, December 06-
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conference ]
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1. Introduction
The present paper represents in part a review of the recent work of the author
in obtaining sharp bounds for expressions involving functions at a distance of
one apart. The main motivation for the work stems from the fact that Zeta
and related functions are explicitly known at either even function values (Zeta,
Lambda and Eta) or at odd function values as for the Dirichlet Beta function.

The approach of the current paper is to investigate integral identities for the
secant slope forη (x) andβ (x) from which sharp bounds are procured. The
results forη (x) of Section3 are extended to theζ (x) andλ (x) functions be-
cause of the relationship between them. The sharp bounds procured in theη (x)
for ζ (x) are obtained, it is argued, in a more straightforward fashion than in the
earlier work of Alzer [2]. Some numerical illustration of the results relating to
the approximation of the Zeta function at odd integer values is undertaken in
Section4.

The technique for obtaining theη (x) bounds is also adapted to developing
the bounds forβ (x) in Section5.

The final Section6 of the paper investigates the use of bounds for theČe-
byšev function in extracting upper bounds for the odd Zeta functional values
that are tighter than those obtained in the earlier sections. However, this ap-
proach does not seem to be able to provide lower bounds.
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2. The Euler Zeta and Related Functions
The Zeta function

(2.1) ζ(x) :=
∞∑

n=1

1

nx
, x > 1

was originally introduced in 1737 by the Swiss mathematician Leonhard Euler
(1707-1783) for realx who proved the identity

(2.2) ζ(x) :=
∏

p

(
1− 1

px

)−1

, x > 1,

wherep runs through all primes. It was Riemann who allowedx to be a complex
variablez and showed that even though both sides of (2.1) and (2.2) diverge for
Re(z) ≤ 1, the function has a continuation to the whole complex plane with
a simple pole atz = 1 with residue 1. The function plays a very significant
role in the theory of the distribution of primes (see [2], [4], [5], [15] and [16]).
One of the most striking properties of the zeta function, discovered by Riemann
himself, is the functional equation

(2.3) ζ(z) = 2zπz−1 sin
(πz

2

)
Γ(1− z)ζ(1− z)

that can be written in symmetric form to give

(2.4) π−
z
2 Γ
(z

2

)
ζ(z) = π−( 1−z

2 )Γ

(
1− z

2

)
ζ(1− z).
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In addition to the relation (2.3) between the zeta and the gamma function, these
functions are also connected via the integrals [13]

(2.5) ζ(x) =
1

Γ(x)

∫ ∞

0

tx−1dt

et − 1
, x > 1,

and

(2.6) ζ(x) =
1

C(x)

∫ ∞

0

tx−1dt

et + 1
, x > 0,

where

(2.7) C(x) := Γ(x)
(
1− 21−x

)
and Γ (x) =

∫ ∞

0

e−ttx−1dt.

In the series expansion

(2.8)
text

et − 1
=

∞∑
m=0

Bm (x)
tm

m!
,

whereBm (x) are the Bernoulli polynomials (after Jacob Bernoulli),Bm (0) =
Bm are the Bernoulli numbers. They occurred for the first time in the formula
[1, p. 804]

(2.9)
m∑

k=1

kn =
Bn+1(m + 1)−Bn+1

n + 1
, n, m = 1, 2, 3, . . . .
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One of Euler’s most celebrated theorems discovered in 1736 (Institutiones Cal-
culi Differentialis, Opera (1), Vol. 10) is

(2.10) ζ(2n) = (−1)n−1 22n−1π2n

(2n)!
B2n; n = 1, 2, 3, . . . .

The result may also be obtained in a straight forward fashion from (2.6) and a
change of variable on using the fact that

(2.11) B2n = (−1)n−1 · 4n
∫ ∞

0

t2n−1

e2πt − 1
dt

from Whittaker and Watson [25, p. 126].
We note here that

ζ(2n) = Anπ
2n,

where

An = (−1)n−1 · n

(2n + 1)!
+

n−1∑
j=1

(−1)j−1

(2j + 1)!
An−j

andA1 = 1
3!
.

Further, the Zeta function for even integers satisfy the relation (Borwein et
al. [4], Srivastava [21])

ζ(2n) =

(
n +

1

2

)−1 n−1∑
j=1

ζ(2j)ζ(2n− 2j), n ∈ N\ {1} .

Despite several efforts to find a formula forζ(2n+1), (for example [22, 23]),
there seems to be no elegant closed form representation for the zeta function at
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the odd integer values. Several series representations for the valueζ(2n + 1)
have been proved by Srivastava and co-workers in particular.

From a long list of these representations, [22, 23], we quote only a few

(2.12) ζ(2n + 1) = (−1)n−1π2n

[
H2n+1 − log π

(2n + 1)!

+
n−1∑
k=1

(−1)k

(2n− 2k + 1)!

ζ(2k + 1)

π2k
+ 2

∞∑
k=1

(2k − 1)!

(2n + 2k + 1)!

ζ(2k)

22k

]
,

(2.13) ζ(2n + 1) = (−1)n (2π)2n

n(22n+1 − 1)

[
n−1∑
k=1

(−1)k−1k

(2n− 2k)!

ζ(2k)

π2k

+
∞∑

k=0

(2k)!

(2n + 2k)!

ζ(2k)

22k

]
,

and

(2.14) ζ(2n + 1) = (−1)n (2π)2n

(2n− 1)22n + 1

[
n−1∑
k=1

(−1)k−1k

(2n− 2k + 1)!

ζ(2k + 1)

π2k

+
∞∑

k=0

(2k)!

(2n + 2k + 1)!

ζ(2k)

22k

]
, n = 1, 2, 3, . . . .

There is also an integral representation forζ (n + 1) namely,

(2.15) ζ(2n + 1) = (−1)n+1 · (2π)2n+1

2δ (n + 1)!

∫ δ

0

B2n+1 (t) cot (πt) dt,
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whereδ = 1 or 1
2

([1, p. 807]). Recently, Cvijovíc and Klinkowski [12] have
given the integral representations

(2.16) ζ(2n + 1)

= (−1)n+1 · (2π)2n+1

2δ (1− 2−2n) (2n + 1)!

∫ δ

0

B2n+1 (t) tan (πt) dt,

and

(2.17) ζ(2n + 1) = (−1)n · π2n+1

4δ (1− 2−(2n+1)) (2n)!

∫ δ

0

E2n (t) csc (πt) dt.

Both the series representations (2.12) – (2.14) and the integral representa-
tions (2.15) – (2.16) are however both somewhat difficult in terms of computa-
tional aspects and time considerations.

We note that there are functions that are closely related toζ (x) . Namely, the
Dirichlet η (·) andλ (·) functions given by

(2.18) η (x) =
∞∑

n=1

(−1)n−1

nx
=

1

Γ (x)

∫ ∞

0

tx−1

et + 1
dt, x > 0

and

(2.19) λ (x) =
∞∑

n=0

1

(2n + 1)x =
1

Γ (x)

∫ ∞

0

tx−1

et − e−t
dt, x > 0.

These are related toζ (x) by

(2.20) η (x) =
(
1− 21−x

)
ζ (x) and λ (x) =

(
1− 2−x

)
ζ (x)

http://jipam.vu.edu.au/
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satisfying the identity

(2.21) ζ (x) + η (x) = 2λ (x) .

It should be further noted that explicit expressions for both ofη (2n) and
λ (2n) exist as a consequence of the relation toζ (2n) via (2.20).

The Dirichlet beta function or DirichletL−function is given by [14]

(2.22) β (x) =
∞∑

n=0

(−1)n

(2n + 1)x , x > 0

whereβ (2) = G, Catalan’s constant.
It is readily observed from (2.19) that β (x) is the alternating version of

λ (x) , however, it cannot be directly related toζ (x) . It is also related toη (x)
in that only the odd terms are summed.

The beta function may be evaluated explicitly at positive odd integer values
of x, namely,

(2.23) β (2n + 1) = (−1)n E2n

2 (2n)!

(π

2

)2n+1

,

whereEn are the Euler numbers generated by

sech (x) =
2ex

e2x + 1
=

∞∑
n=0

En
xn

n!
.

The Dirichlet beta function may be analytically continued over the whole
complex plane by the functional equation

β (1− z) =

(
2

π

)z

sin
(πz

2

)
Γ (z) β (z) .

http://jipam.vu.edu.au/
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The functionβ (z) is defined everywhere in the complex plane and has no sin-
gularities, unlike the Riemann zeta function,ζ (s) =

∑∞
n=1

1
ns , which has a

simple pole ats = 1.

The Dirichlet beta function and the zeta function have important applications
in a number of branches of mathematics, and in particular in Analytic number
theory. See for example [3], [13] – [17].

Further,β (x) has an alternative integral representation [14, p. 56]. Namely,

β (x) =
1

2Γ (x)

∫ ∞

0

tx−1

cosh (t)
dt, x > 0.

That is,

(2.24) β (x) =
1

Γ (x)

∫ ∞

0

tx−1

et + e−t
dt, x > 0.

The functionβ (x) is also connected to prime number theory [14] which may
perhaps be best summarised by

β (x) =
∏

p prime
p≡1 mod 4

(
1− p−x

)−1·
∏

p prime
p≡3 mod 4

(
1 + p−x

)−1
=
∏
p odd
prime

(
1− (−1)

p−1
2 p−x

)−1

,

where the rearrangement of factors is permitted because of absolute conver-
gence.

Cerone et al. [8] developed the identity given in the following lemma and
the bounds in Theorem2.2which are used to obtain approximations to the odd
zeta function values in terms of the even function values.
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Lemma 2.1. The following identity involving the Zeta function holds. Namely,

(2.25)
∫ ∞

0

tx

(et + 1)2dt = C (x + 1) ζ (x + 1)− xC (x) ζ (x) , x > 0,

whereC (x) is as given by (2.7).

Theorem 2.2.The Zeta function satisfies the bounds

(1− b (x)) ζ (x) +
b (x)

8
≤ ζ (x + 1)(2.26)

≤ (1− b (x)) ζ (x) +
b (x)

2
, x > 0,

where

(2.27) b (x) :=
1

2x − 1
.

Theorem 2.3.The Zeta function satisfies the bounds

(1− b (x)) ζ (x) +
b (x)

8
≤ ζ (x + 1)(2.28)

≤ (1− b (x)) ζ (x) +
b (x)

2θ (λ∗, x)

:= U∗ (x)

whereb (x) is as given by (2.27),

θ (λ, x) = λx−1

(
λ

1− λ

)2(1−λ)

http://jipam.vu.edu.au/
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and

λ∗ =
1

z

with z the solution of
z = 1 + e−

x+1
2
·z.

The 1
2

on the right hand side is the best constant. The best constant for the
lower bound was shown to beln 2 − 1

2
by Alzer [2], on making use of Lemma

2.1and Theorem2.2, rather than1
8
.
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3. An Identity and Bounds Involving the Eta and
Related Functions

The following lemma was developed in Cerone [5] to obtain sharp bounds for
the eta function,η (x) as given in Theorem2.3.

Lemma 3.1. The following identity for the eta function holds. Namely,

(3.1) Q (x) :=
1

Γ (x + 1)

∫ ∞

0

tx

(et + 1)2dt = η (x + 1)− η (x) , x > 0.

Proof. From (2.18),

xΓ (x) η (x) =

∫ ∞

0

xtx−1

et + 1
dt, x > 0

= lim
T→∞

T x

eT + 1
+

∫ ∞

0

txet

(et + 1)2dt

and so we have

(3.2) Γ (x + 1) η (x) =

∫ ∞

0

ettx

(et + 1)2dt.

Thus, from (2.18) and (3.2),

Γ (x + 1) [η (x + 1)− η (x)] =

∫ ∞

0

tx

et + 1

[
1− et

et + 1

]
dt

=

∫ ∞

0

tx

(et + 1)2dt,

giving (3.1).

http://jipam.vu.edu.au/
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The following theorem presents sharp bounds for the secant slopeη (x) for
a distance of one apart.

Theorem 3.2.For real numbersx > 0, we have

(3.3)
c

2x+1
< η (x + 1)− η (x) <

d

2x+1

with the best possible constants

(3.4) c = 2 ln 2− 1 = 0.3862943 . . . and d = 1.

Proof. Let x > 0. We first establish the first inequality in (3.3). From the
identity (3.1) proved in Lemma3.1, it is readily evident that0 < Q (x) . We
further consider

(3.5) J =

∫ ∞

0

dt

(et + 1)2 =

∫ ∞

0

e−2t

(e−t + 1)2dt.

Thus, after some obvious simplifications

(3.6) J =

∫ 1

0

u

(u + 1)2du =

∫ 2

1

u− 1

u2
du = ln 2− 1

2
.

Now, let us examine
2x+1Q (x)− (2 ln 2− 1) .

http://jipam.vu.edu.au/
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That is, from (3.1), (3.5) and (3.6),

Γ (x + 1)
[
2x+1Q (x)− 2J

]
(3.7)

= 2x+1

∫ ∞

0

tx

(et + 1)2dt− 2 · Γ (x + 1)

∫ ∞

0

dt

(et + 1)2

= 2

∫ ∞

0

e−2t [(2t)x − Γ (x + 1)]

(1 + e−t)2 dt

=

∫ ∞

0

e−u [ux − Γ (x + 1)](
1 + e−

u
2

)2 du

=

∫ ∞

0

u (t, x) v (t) dt,

where

(3.8) u (t, x) = e−t [tx − Γ (x + 1)] , v (t) =
(
1 + e−

t
2

)−2

.

The functionv (t) is strictly increasing fort ∈ (0,∞) .

Now, let t0 = (Γ (x + 1))
1
x , then for0 < t < t0, u (t, x) < 0 andv (t) <

v (t0) . Also, for t > t0, u (t, x) > 0 andv (t) > v (t0) . Hence we have that
u (t, x) v (t) > u (t, x) v (t0) for t > 0 andt 6= t0. This implies that∫ ∞

0

u (t, x) v (t) dt > v (t0)

∫ ∞

0

e−t [tx − Γ (x + 1)] dt = 0.

Hence from (3.7) and (3.6)

(3.9) Q (x) >
2 ln 2− 1

2x+1
, x > 0.
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Now for the right inequality.
We have from (3.4) that

Γ (x + 1)
[
1− 2x+1Q (x)

]
= Γ (x + 1)− 2

∫ ∞

0

(2t)x e−2t

(1 + e−t)2dt

=

∫ ∞

0

e−ttx [1− v (t)] dt,

wherev (t) is as given by (3.8). We make the observation thate−ttx is positive
and1− v (t) is strictly decreasing and positive fort ∈ (0,∞) , which naturally
leads to the conclusion that

(3.10) Q (x) <
1

2x+1
, x > 0.

In summary we note that (3.9) and (3.11) provide lower and upper bounds
respectively forQ (x) . That the constants in (3.3) are best possible remains to
be shown.

Since (3.3) holds for all positivex, we have

(3.11) c < 2x+1Q (x) < d.

Now, from (3.1), we have

(3.12) 2x+1Q (x) =
2x+1

Γ (x + 1)

∫ ∞

0

e−2ttx

(1 + e−t)2dt

and so

(3.13) lim
x→0

2x+1Q (x) = 2

∫ ∞

0

e−2t

(1 + e−t)
dt = 2 · J = 2 ln 2− 1,
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where the permissable interchange of the limit and integration has been under-
taken and we have used (3.5) – (3.6).

Now, since for0 < w < 1 the elementary inequality1− 2w < (1 + w)−2 <
1 holds, then we have

1− 2e−t <
1

(1 + e−t)2 < 1.

Thus, from (3.12),

(3.14) 1− 2 ·
(

2

3

)x+1

< 2x+1Q (x) < 1,

where we have utilised the fact that,

(3.15)
∫ ∞

0

e−sttxdt =
Γ (x + 1)

sx+1
.

Finally, from (3.14) we conclude that

(3.16) lim
x→∞

2x+1Q (x) = 1.

From (3.11), (3.13) and (3.16) we havec ≤ 2 ln 2 − 1 and d ≥ 1 which
implies that the best possible constants in (3.3) are given byc = 2 ln 2 − 1
andd = 1.

Corollary 3.3. The bound

(3.17)

∣∣∣∣η (x + 1)− η (x)− d + c

2x+2

∣∣∣∣ < d− c

2x+2
, x > 0

holds, wherec = 2 ln 2− 1 andd = 1.
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Proof. From (3.3), let

L (x) = η (x) +
c

2x+1
and U (x) = η (x) +

d

2x+1

then
L (x) < η (x + 1) < U (x)

and so

−U (x)− L (x)

2
< η (x + 1)− U (x) + L (x)

2
<

U (x)− L (x)

2
.

Remark 1. The form of (3.17) is very useful since we may write

η (x + 1) = η (x) +
d + c

2x+2
+ E (x) ,

where|E (x)| < ε for

(3.18) x > x∗ :=
ln
(

d−c
4ε

)
ln 2

.

Corollary 3.4. The eta function satisfies the bounds

(3.19) L2 (x) < η (x + 1) < U2 (x) , x > 0,

where

(3.20) L2 (x) = η (x + 2)− d

2x+2
and U2 (x) = η (x + 2)− c

2x+2
.
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Proof. From (3.6)

− d

2x+1
< η (x)− η (x + 1) < − c

2x+1
.

Replacex by x + 1 and rearrange to give (3.19) – (3.20).

Remark 2. We note thatL (·) andU (·) will be used to denote the lower and
upper bounds respectively. If the bounds involve a previous value at a distance
of one away from the function that is bounded, then no subscript is used. If
it involves a subsequent value then a subscript of2 is used. This is shown in
Corollaries3.3and3.4above for the eta function. No distinction in the notation
is used when referring to other functions.

Given the sharp inequalities forη (x + 1) − η (x) in (3.3) – (3.4), then we
may readily obtain sharp bounds for expressions involving the zeta function and
the lambda function at a distance of one apart.

Corollary 3.5. For real numbersx > 0 we have

(3.21)

(
ln 2− 1

2

)
b (x) < ζ (x + 1)− (1− b (x)) ζ (x) <

b (x)

2
,

where

(3.22) b (x) =
1

2x − 1
.

Proof. From Theorem3.2 and (2.20) giving a relationship betweenη (x) and
ζ (x) we have

η (x + 1)− η (x) =
(
1− 2−x

)
ζ (x + 1)−

(
1− 21−x

)
ζ (x)
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and so from (3.3) and (3.4)

c

2
· b (x) < ζ (x + 1)− (1− b (x)) ζ (x) <

d

2
· b (x) .

Remark 3. Cerone et al. [8] obtained the upper bound in (3.21) and a coarser
lower bound ofb(x)

8
as presented in (2.26). Alzer [3] demonstrated that the

constantsln 2− 1
2

and 1
2

in (3.21) are sharp. The sharpness of the constant1
2

was
obtained by Alzer on utilising a different approach, other than the sharpness of
the constantd = 1 in (3.4) via the eta function and hence1

2
in (3.21).

Corollary 3.6. For real x > 0 we have(
ln 2− 1

2

)
b (x)

(
1− 2−(x+1)

)
< λ (x + 1)−

(
1− b (x)

1− b (x + 1)

)
λ (x)(3.23)

<
b (x)

2
·
(
1− 2−(x+1)

)
,

whereb (x) is as given by (3.22).

Proof. Again utilising Theorem3.2 and from (2.20) and (2.21) we have, after
some algebra,

(3.24) η (x) = (1− b (x)) λ (x)

and so from (3.3) and (3.4)

2 ln 2− 1

2x+1
< η (x + 1)− η (x)

= (1− b (x + 1)) λ (x + 1)− (1− b (x)) λ (x) <
1

2x+1
.
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Division by1− b (x + 1) and some simplification readily produces (3.23).

The advantage of having sharp inequalities such as (3.3), (3.21) and (3.23)
involving function values at a distance of one apart is that if we placex =
2n, then sinceζ (2n) is known explicitly, we may approximateζ (2n + 1) and
provide explicit bounds. This is so forη (·) andλ (·) as well because of their
relationship toζ (·) via (2.20) – (2.21).
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4. Some Zeta Related Numerics
In what follows, we investigate some numerical results associated with bound-
ing the unknownζ (2n + 1) by expressions involving the explicitly knownζ (2n) .
The following corollaries hold.

Corollary 4.1. The bound

(4.1)

∣∣∣∣ζ (x + 1)− (1− b (x)) ζ (x)− ln 2

2
b (x)

∣∣∣∣ ≤ 1− ln 2

2
b (x) , x > 0

holds, whereb (x) is as given by (3.2).

Proof. Let

L (x) = (1− b (x)) ζ (x) +

(
ln 2− 1

2

)
b (x) , and(4.2)

U (x) = (1− b (x)) ζ (x) +
b (x)

2

then from (3.21) we have

L (x) ≤ ζ (x + 1) ≤ U (x) .

Hence

−U (x)− L (x)

2
≤ ζ (x + 1)− U (x) + L (x)

2
≤ U (x)− L (x)

2

which may be expressed as the stated result (4.1) on noting the obvious corre-
spondences and simplification.
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Remark 4. The form (4.1) is a useful one since we may write

(4.3) ζ (x + 1) = (1− b (x)) ζ (x) +
ln 2

2
b (x) + E (x) ,

where
|E (x)| < ε

for

x > x∗ := ln

(
1 +

1− ln 2

2ε

)/
ln 2.

That is, we may approximateζ (x + 1) by (1− b (x)) ζ (x) + ln 2
2

b (x) within an
accuracy ofε for x > x∗.

We note that both the result of Corollary3.5and Corollary4.1as expressed
in (3.21) and (4.1) respectively rely on approximatingζ (x + 1) in terms of
ζ (x) . The following result involves approximatingζ (x + 1) in terms ofζ (x + 2) ,
the subsequent zeta values within a distance of one rather than the former zeta
values.

Theorem 4.2.The zeta function satisfies the bounds

(4.4) L2 (x) ≤ ζ (x + 1) ≤ U2 (x) ,

where

L2 (x) =
ζ (x + 2)− b(x+1)

2

1− b (x + 1)
and(4.5)

U2 (x) =
ζ (x + 2)−

(
ln 2− 1

2

)
b (x + 1)

1− b (x + 1)
.
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Proof. From (3.21) we have

0 ≤
(

ln 2− 1

2

)
b (x) ≤ ζ (x + 1)− (1− b (x)) ζ (x) ≤ b (x)

2

and so

−b (x)

2
≤ (1− b (x)) ζ (x)− ζ (x + 1) ≤ −

(
ln 2− 1

2

)
b (x)

to produce

ζ (x + 1)− b (x)

2
≤ (1− b (x)) ζ (x) ≤ ζ (x + 1)−

(
ln 2− 1

2

)
b (x) .

A rearrangement and change ofx to x + 1 produces the stated result (4.4) –
(4.5).

Remark 5. Some experimentation using the Maple computer algebra package
indicates that the lower boundL2 (x) is better than the lower boundL (x) for
x > x∗ = 1.30467865 . . . and vice versa forx < x∗. In a similar manner the
upper boundU2 (x) is better thanU (x) for x < x∗ = 3.585904878 . . . and vice
versa forx > x∗.

The following corollary is valid in whichζ (x + 1) may be approximated in
terms ofζ (x + 2) and an explicit bound is provided for the error.

Corollary 4.3. The bound

(4.6)

∣∣∣∣∣ζ (x+1)−
ζ (x + 2)−

(
ln 2− 1

2

)
b(x+1)

1− b (x + 1)

∣∣∣∣∣ ≤ 1− ln 2

2
· b (x+1)

1− b (x+1)
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holds, whereb (x) is as defined by (3.22).

Proof. The proof is straight forward and follows that of Corollary4.1with L (x)
andU (x) replaced byL2 (x) andU2 (x) as defined by (4.5).

Corollary 4.4. The zeta function satisfies the bounds

(4.7) max {L (x) , L2 (x)} ≤ ζ (x + 1) ≤ min {U (x) , U2 (x)} ,

whereL (x) , U (x) are given by (4.2) andL2 (x) , U2 (x) by (4.5).

Table 1 provides lower and upper bounds forζ (2n + 1) for n = 1, . . . , 5,
utilising Corollaries3.6 and4.3 for x = 2n. We notice thatL2 (2n) is better
thanL (2n) andU2 (2n) is better thanU (2n) only for n = 1 (see also Remark
5). Tables 2 and 3 give the use of Corollaries4.1and4.3 for x = 2n. Thus, the
table providesζ (2n + 1), its approximation and the bound on the error.

n L (2n) L2 (2n) ζ (2n + 1) U (2n) U2 (2n)
1 1.161005104 1.179377107 1.202056903 1.263289378 1.230519243
2 1.023044831 1.034587831 1.036927755 1.043501685 1.044816259
3 1.004260588 1.008077971 1.008349277 1.009131268 1.010513311
4 1.000897239 1.001976919 1.002008393 1.002100583 1.002578591
5 1.000204892 1.000490588 1.000494189 1.000504847 1.000640564

Table 1. Table ofL (2n) , L2 (2n) , ζ (2n + 1), U (2n) andU2 (2n) as given by (4.2)
and (4.5) for n = 1, . . . , 5.
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n ζ (2n + 1) U(2n)+L(2n)
2

U(2n)−L(2n)
2

1 1.202056903 1.212147241 0.0511421366
2 1.036927755 1.033273258 0.010228842731
3 1.008349277 1.006695928 0.002435339836
4 1.002008393 1.001498911 0.000601672195
5 1.000494189 1.000354870 0.0001499769401

Table 2. Table ofζ (2n + 1), its approximationU(2n)+L(2n)
2 and its bound

U(2n)−L(2n)
2 for n = 1, . . . , 5 whereU (2n) andL (2n) are given by (4.2).

n ζ (2n + 1) U2(2n)+L2(2n)
2

U2(2n)−L2(2n)
2

1 1.202056903 1.202056903 0.02557106828
2 1.036927755 1.039702045 0.00511421366
3 1.008349277 1.009295641 0.001217669918
4 1.002008393 1.002277755 0.0003008360975
5 1.000494189 1.000565576 0.0000749884700

Table 3. Table ofζ (2n + 1), its approximationU2(2n)+L2(2n)
2 and its bound

U2(2n)−L2(2n)
2 for n = 1, . . . , 5 whereU2 (2n) andL2 (2n) are given by (4.5).
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5. An Identity and Bounds Involving the Beta
Function

The following lemma was developed in Cerone [5] to obtain sharp bounds for
the Dirichlet beta function,β (x) at a distance of one apart as presented in The-
orem5.2.

The techniques closely follow those presented in Section3 for the eta func-
tion.

Lemma 5.1.The following identity for the Dirichlet beta function holds. Namely,

(5.1) P (x) :=
2

Γ (x + 1)

∫ ∞

0

e−t

(et + e−t)2 · t
xdt = β (x + 1)− β (x) .

The following theorem produces sharp bounds for the secant slope ofβ (x) .

Theorem 5.2.For real numbersx > 0, we have

(5.2)
c∗

3x+1
< β (x + 1)− β (x) <

d∗

3x+1
,

with the best possible constants

(5.3) c∗ = 3

(
π

4
− 1

2

)
= 0.85619449 . . . and d∗ = 2.

The following corollaries were also given in Cerone [5] which prove useful
in approximatingβ (2n) in terms of knownβ (2n + 1) . This is so since (5.2)
may be written as

(5.4) L (x) < β (x + 1) < U (x) ,
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where

(5.5) L (x) = β (x) +
c∗

3x+1
and U (x) = β (x) +

d∗

3x+1
.

Corollary 5.3. The bound

(5.6)

∣∣∣∣β (x + 1)− β (x)− d∗ + c∗

2 · 3x+1

∣∣∣∣ < d∗ − c∗

2 · 3x+1

holds wherec∗ = 3
(

π
4
− 1

2

)
andd∗ = 2.

Remark 6. The form (5.6) is useful since we may write

β (x + 1) = β (x) +
d∗ + c∗

2 · 3x+1
+ E (x) ,

where|E (x)| < ε for

x > x∗ :=
ln
(

d∗−c∗

2·ε

)
ln (3)

− 1.

Corollary 5.4. The Dirichlet beta function satisfies the bounds

(5.7) L2 (x) < β (x + 1) < U2 (x) ,

where

(5.8) L2 (x) = β (x + 2)− d∗

3x+2
and U2 (x) = β (x + 2)− c∗

3x+2
.
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Remark 7. Some experimentation with the Maple computer algebra package
indicates that the lower boundL2 (x) is better thanL (x) for x > x∗ ≈ 0.65827
and vice versa forx < x∗. Similarly,U (x) is better thanU2 (x) for x > x∗ ≈
3.45142 and vice versa forx < x∗.

Corollary 5.5. The Dirichlet beta function satisfies the bounds

max {L (x) , L2 (x)} < β (x + 1) < min {U (x) , U2 (x)} ,

whereL (x) , U (x) are given by (5.5) andL2 (x) , U2 (x) by (5.8).

Remark 8. Table 4 provides lower and upper bounds forβ (2n) for n = 1, . . . , 5
utilising Theorem5.2and Corollary5.4withx = 2n−1. That is, the bounds are
in terms ofβ (2n− 1) andβ (2n + 1) where these may be obtained explicitly
using the result (2.23).

n L (2n− 1) L2 (2n− 1) β (2n) U (2n− 1) U2 (2n− 1)
1 .8805308843 .8948720722 .9159655942 1.007620386 .9372352393
2 .9795164487 .9879273754 .9889445517 .9936375043 .9926343940
3 .9973323061 .9986400132 .9986852222 .9989013123 .9991630153
4 .9996850054 .9998480737 .9998499902 .9998593395 .9999061850
5 .9999641840 .9999830849 .9999831640 .9999835544 .9999895417

Table 4: Table ofL (2n− 1) , L2 (2n− 1) , β (2n) , U (2n− 1) and
U2 (2n− 1) as given by (5.5) and (5.8) for n = 1, . . . , 5.
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6. Zeta Bounds viaČebyšev
It is instructive to introduce some techniques for approximating and bounding
integrals of the product of functions.

The weighteďCebyšev functional defined by

(6.1) T (f, g; p) := M (fg; p)−M (f ; p)M (g; p) ,

where

(6.2) P · M (f ; p) :=

∫ b

a

p (x) h (x) dx, P =

∫ b

a

p (x) dx

the weighted integral mean, has been extensively investigated in the literature
with the view of determining its bounds.

There has been much activity in procuring bounds forT (f, g; p) and the
interested reader is referred to [9]. The functionalT (f, g; p) is known to satisfy
a number of identities. Included amongst these, are identities of Sonin type,
namely

(6.3) P · T (f, g; p)

=

∫ b

a

p (t) [f (t)− γ] [g (t)−M (g; p)] dt, for γ a constant.

The constantγ ∈ R but in the literature some of the more popular values have
been taken as

0,
∆ + δ

2
, f

(
a + b

2

)
andM (f ; p) ,
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where−∞ < δ ≤ f (t) ≤ ∆ < ∞ for t ∈ [a, b] .
An identity attributed to Korkine viz

(6.4) P 2 · T (f, g; p)

=
1

2

∫ b

a

∫ b

a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy

may also easily be shown to hold.
Here we shall mainly utilize the following results bounding theČebyšev

functional to determine bounds on the Zeta function. (See [6] for more general
applications to special functions).

From (6.1) and (6.3) we note that

(6.5) P · |T (f, g; p)| =
∣∣∣∣∫ b

a

p (x) (f (x)− γ) (g (x)−M (g; p)) dx

∣∣∣∣
to give

(6.6) P · |T (f, g; p)| ≤



inf
γ∈R

‖f (·)− γ‖
∫ b

a
p (x) |g (x)−M (g; p)| dx,

(∫ b

a
p (x) (f (x)−M (f ; p))2 dx

) 1
2

×
(∫ b

a
p (x) (g (x)−M (g; p))2 dx

) 1
2
,

where

(6.7)
∫ b

a

p (x) (h (x)−M (h; p))2 dx =

∫ b

a

p (x) h2 (x) dx− P · M2 (h; p)
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and it may be easily shown by direct calculation that,

(6.8) P · inf
γ∈R

[∫ b

a

p (x) (f (x)− γ)2 dx

]
=

∫ b

a

p (x) (f (x)−M (f ; p))2 dx.

The following result was obtained by the author [7] by utilising the above
Čebyšev functional bounds.

Theorem 6.1.For α > 1 the Zeta function satisfies the inequality

(6.9)

∣∣∣∣ζ (α)− 2α−1 · π2

6

∣∣∣∣ ≤ κ · 2α−1

[
2Γ (2α− 1)

Γ2 (α)
− 1

] 1
2

,

where

(6.10) κ =

[
π2

(
1− π2

72

)
− 7ζ (3)

] 1
2

= 0.319846901 . . .

Theorem 6.2.For α > 1 andm = bαc the zeta function satisfies the inequality

(6.11)
∣∣Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

∣∣
≤ 2(α−m+ 1

2) · E ·
[
Γ (2α− 2m + 1)− Γ2 (α−m + 1)

] 1
2 ,

where

(6.12) E2 = 22mΓ (2m + 1) [λ (2m)− λ (2m + 1)]

− 1

2
Γ2 (m + 1) ζ2 (m + 1) ,

with λ (·) given by (2.19).
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Proof. Let

τ (α) = Γ (α + 1) ζ (α + 1) =

∫ ∞

0

xα

ex − 1
dx(6.13)

=

∫ ∞

0

e−
x
2

xm

e
x
2 − e−

x
2

· xα−mdx, α > 1

wherem = bαc .

Make the associations

(6.14) p (x) = e−
x
2 , f (x) =

xm

e
x
2 − e−

x
2

, g (x) = xα−m

then we have from (6.6)

(6.15)



P =

∫ ∞

0

e−
x
2 dx = 2,

M (f ; p) = 1
2

∫ ∞

0

e−
x
2 xm

e
x
2 − e−

x
2

dx =
1

2
Γ (m + 1) ζ (m + 1) ,

M (g; p) = 1
2

∫ ∞

0

e−
x
2 xα−mdx = 2α−mΓ (α−m + 1) .

Thus, from (6.1) – (6.3), we have

P · T (f, g; p) = Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

=

∫ ∞

0

e−
x
2

(
xα−m − γ

)( xm

e
x
2 − e−

x
2

− Γ (m + 1) ζ (m + 1)

2

)
dx.
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Now, from (6.6) and (6.7), the best value forγ when utilising the Euclidean
norm is the integral mean and so we have from (6.6),∣∣Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

∣∣
≤
(∫ ∞

0

e−
x
2

(
xα−m − 2α−mΓ (α−m + 1)

)2
dx

) 1
2

×

(∫ ∞

0

e−
x
2

(
xm

e
x
2 − e−

x
2

− Γ (m + 1) ζ (m + 1)

2

)2

dx

) 1
2

.

That is, on using (6.7), we have

(6.16)
∣∣Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

∣∣
≤ E2

m

[∫ ∞

0

e−
x
2 x2(α−m)dx− 22(α−m)+1Γ2 (α−m + 1)

] 1
2

,

where

(6.17) E2
m =

∫ ∞

0

e−
x
2

x2m(
e

x
2 − e−

x
2

)2dx− 2

(
Γ (m + 1) ζ (m + 1)

2

)2

.

Now ∫ ∞

0

e−
x
2

(
xm

e
x
2 − e−

x
2

)2

dx(6.18)

=

∫ ∞

0

e−
3
2
xx2m

(
1 + 2e−x + 3e−2x + · · ·

)
dx
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=
∞∑

n=1

n

∫ ∞

0

e(
2n+1

2 )xx2mdx

=
∞∑

n=1

n
22m+1Γ (2m + 1)

(2n + 1)2m+1

= 22mΓ (2m + 1)
∞∑

n=1

2n

(2n + 1)2m+1

= 22mΓ (2m + 1) [λ (2m)− λ (2m + 1)] ,

whereλ (·) is as given by (2.19), where we have used (3.15) and have under-
taken the permissable interchange of summation and integration.

Substitution of (6.18) into (6.17) and using (6.16) gives the stated results
(6.11) and (6.12) after some simplification.

The following corollary provides upper bounds for the zeta function at odd
integers.

Corollary 6.3. The inequality

(6.19) Γ (2m + 1)
[
2 ·
(
22m − 1

)
ζ (2m)−

(
22m+1 − 1

)
ζ (2m + 1)

]
− Γ2 (m + 1) ζ2 (m + 1) > 0

holds form = 1, 2, . . . .

Proof. From equation (6.12) of Theorem6.2, we haveE2 > 0. Utilising the
relationship betweenλ (·) andζ (·) given by (2.20) readily gives the inequality
(6.19).
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Remark 9. In (6.19), if m is odd, then2m and m + 1 are even so that an
expression in the form

(6.20) α (m) ζ (2m)− β (m) ζ (2m + 1)− γ (m) ζ2 (m + 1) > 0,

results, where

α (m) = 2
(
22m − 1

)
Γ (2m + 1) ,

β (m) =
(
22m+1 − 1

)
Γ (2m + 1) and(6.21)

γ (m) = Γ2 (m + 1) .

Thus form oddwe have

(6.22) ζ (2m + 1) <
α (m) ζ (2m)− γ (m) ζ2 (m + 1)

β (m)
.

That is, form = 2k − 1, we have from (6.22)

(6.23) ζ (4k − 1) <
α (2k − 1) ζ (4k − 2)− γ (2k − 1) ζ2 (2k)

β (2k − 1)

giving fork = 1, 2, 3, for example,

ζ (3) <
π2

7

(
1− π2

72

)
= 1.21667148,

ζ (7) <
2π6

1905

(
1− π2

2160

)
= 1.00887130,

ζ (11) <
62π10

5803245

(
1− π2

492150

)
= 1.00050356,
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Guo [15] obtained ζ (3) < π4

72
and the above bound forζ (3) was obtained

previously by the author in [7] from (6.10). (See also [18] and [19]).
If m is eventhen form = 2k we have from (6.22)

(6.24) ζ (4k + 1) <
α (2k) ζ (4k)− γ (2k) ζ2 (2k + 1)

β (2k)
, k = 1, 2, . . . .

We notice that in (6.24), or equivalently (6.20) with m = 2k there are two zeta
functions with odd arguments. There are a number of possibilities for resolving
this, but firstly it should be noticed thatζ (x) is monotonically decreasing for
x > 1 so thatζ (x1) > ζ (x2) for 1 < x1 < x2.

Firstly, we may use a lower bound obtained in Section4 as given by (4.2) or
(4.5). But from Table 1, it seems thatL2 (x) > L (x) for positive integerx and
so we have from (6.24)

(6.25) ζL (4k + 1) <
α (2k) ζ (2k)− γ (2k) L2

2 (2k)

β (2k)
,

where we have used the fact thatL2 (x) < ζ (x + 1) .
Secondly, since the even argumentζ (2k + 2) < ζ (2k + 1) , then from (6.24)

we have

(6.26) ζE (4k + 1) <
α (2k) ζ (4k)− γ (2k) ζ2 (2k + 2)

β (2k)
.

Finally, we have thatζ (m + 1) > ζ (2m + 1) so that from (6.20) we have, with
m = 2k on solving the resulting quadratic equation that

(6.27) ζQ (4k + 1) <
−β (2k) +

√
β2 (2k) + 4γ (2k) α (2k) ζ (4k)

2γ (2k)
.
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For k = 1 we have from (6.25) – (6.27) that

ζL (5) <
π4

93
− 1

186

(
7π4

540
− 1

12

)2

= 1.039931461,

ζE (5) <
π4

93

(
1− π4

16200

)
= 1.041111605,

ζQ (5) < −93 +
√

8649 + 2π4 = 1.04157688;

and fork = 2

ζL (9) <
17

160965
π8 − 1

35770

(
31

28350
π6 − 1

60

)2

= 1.002082506,

ζE (9) <
17

160965
π8

(
1− π4

337650

)
= 1.0020834954,

ζQ (9) < −17885 +
1

3

√
2878859025 + 34π8 = 1.00208436.

It should be noted that the above results give tighter upper bounds for the odd
zeta function evaluations than were possible using the methodology developed
earlier in the paper, the numerics of which are presented in Table 1.

Numerical experimentation using Maple seems to indicate that the upper
bounds for

ζL (4k + 1) , ζE (4k + 1) and ζQ (4k + 1)

are in increasing order.
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