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Abstract

We obtained the estimates of Normal structure coefficient N(X) by Neumann-
Jordan constant CNJ(X) of a Banach space X and found that X has uniform
normal structure if CNJ(X) < (3 +

√
5)/4. These results improved both Prus’

[6] and Kato, Maligranda and Takahashi’s [4] work.
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1. Introduction
Let X = (X, ‖ · ‖) be a real Banach space. Geometrical properties of a Banach
spaceX are determined by its unit ballBX = {x ∈ X : ‖x‖ ≤ 1} or its unit
sphereSX = {x ∈ X : ‖x‖ = 1}. A Banach spaceX is called uniformly non-
square if there exists aδ ∈ (0, 1) such that for anyx, y ∈ SX either‖x+y‖/2 ≤
1− δ or ‖x− y‖/2 ≤ 1− δ. The constant

J(X) = sup{min(‖x + y‖, ‖x− y‖) : x, y ∈ SX}

is called the non-square constant ofX in the sense of James. It is well-known
that

√
2 ≤ J(X) ≤ 2 if dim X ≥ 2. The Neumann-Jordan constantCNJ(X) of

a Banach spaceX is defined by

CNJ(X) = sup

{
‖x + y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, not both zero

}
.

Clearly,1 ≤ CNJ(X) ≤ 2. andX is a Hilbert space if and only ifCNJ(X) =
1. Kato, Maligranda and Takahashi [4] proved that for any non-trivial Banach
spaceX (dim X ≥ 2),

(1.1)
1

2
J(X)2 ≤ CNJ(X) ≤ J(X)2

(J(X)− 1)2 + 1
.

A Banach spaceX is said to have normal structure ifr(K) < diam(K) for
every non-singleton closed bounded convex subsetK of X, where diam(K) =
sup{‖x − y‖ : x, y ∈ K} is the diameter ofK andr(K) = inf{sup{‖x −
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y‖ : y ∈ K} : x ∈ K} is the Chebyshev radius ofK. The normal structure
coefficient ofX is the number

N(X) = inf{diam(K)/r(K) : K ⊂ X bounded and convex, diam(K) > 0}.

Obviously,1 ≤ N(X) ≤ 2. It is known [5], [2] that if the spaceX is reflexive,
then the infimum in the definition ofN(X) can be taken over all convex hulls
of finite subsets ofX. The spaceX is said to have uniform normal structure if
N(X) > 1. If X has uniform normal structure, thenX is reflexive and hence
X has fixed point property. Gao and Lau [3] showed that ifJ(X) < 3/2,
thenX has uniform normal structure. Prus [6] gave an estimate ofN(X) by
J(X) which contains Gao-Lau’s [3] and Bynum’s [1] results: For any non-
trivial Banach spaceX,

(1.2) N(X) ≥ J(X) + 1− {(J(X) + 1)2 − 4}
1
2 .

Kato, Maligranda and Takahashi [4] proved

(1.3) N(X) ≥
(

CNJ(X)− 1

4

)− 1
2

,

which implies that ifCNJ(X) < 5/4 thenX has uniform normal structure. This
result is a little finer than Gao-Lau’s condition byJ(X). This paper is devoted
to improving the above results.
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2. Main Results
Our proofs are based on the idea due to Prus [6], who estimatedN(X) by
modulus of convexity ofX. Let C be a convex hull of a finite subset of a
Banach spaceX. SinceC is compact, there exists an elementy ∈ C such that
sup{‖x−y‖ : x ∈ C} = r(C). Translating the setC we can assume thaty = 0.
Prus [6] gave the following

Proposition 2.1. Let C be a convex hull of a finite subset of a Banach space
X such thatsup{‖x‖ : x ∈ C} = r(C). Then there exist pointsx1, . . . , xn ∈
C, norm-one functionalsx∗1, . . . , x

∗
n ∈ X∗ and nonnegative numberλ1, . . . , λn

such that
∑n

i=1 λi = 1,
x∗i (xi) = ‖xi‖ = r(C)

for i = 1, . . . , n and
∑n

i=1 λix
∗
i (x) = 0 wheneverλx ∈ C for someλ > 0.

Without loss of generality, we assumer(C) = 1 thereforeC ⊂ BX .

Theorem 2.2. Let X be a non-trivial Banach space with the Neumann-Jordan
constantCNJ(X). Then

(2.1) N(X) ≥ 2√
8CNJ(X)− 1− 1

.

Proof. Let C be a convex hull of a finite subset ofX such thatsup{‖x‖ : x ∈
C} = r(C) = 1 and diamC = d. By Proposition2.1 we obtain elements
x1, . . . , xn ∈ C, norm-one functionalsx∗1, . . . , x

∗
n ∈ X∗ and nonnegative num-

bersλ1, . . . , λn such that
∑n

i=1 λi = 1, x∗i (xi) = 1 and
∑n

j=1 λjx
∗
j(xi) = 0 for

i = 1, . . . , n.
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Define

(2.2) xi,j =
1

d
(xi − xj), yi,j = xi

i, j = 1, . . . , n. Clearlyxi,j, yi,j ∈ BX andxi,j + yi,j = (1 + 1/d)xi − (1/d)xj,
xi,j − yi,j = (−1 + 1/d)xi − (1/d)xj. It follows that

n∑
i,j=1

λiλj

[
‖xi,j + yi,j‖2 + ‖xi,j − yi,j‖2

]
≥

n∑
j=1

λj

n∑
i=1

λi [x
∗
i (xi,j + yi,j)]

2 +
n∑

i=1

λi

n∑
j=1

λj

[
x∗j(xi,j − yi,j)

]2

=
n∑

j=1

λj

n∑
i=1

λi

[
1 +

1

d
− 1

d
x∗i (xj)

]2

+
n∑

i=1

λi

n∑
j=1

λj

[
1

d
+

(
1− 1

d

)
x∗j(xi)

]2

=

(
1− 1

d

)2

− 2

(
1− 1

d

)
1

d

n∑
j=1

λj

n∑
i=1

λix
∗
i (xj) +

1

d2

n∑
j=1

λj

n∑
i=1

λi[x
∗
i (xj)]

2

+
1

d2
+ 2

(
1− 1

d

)
1

d

n∑
i=1

λi

n∑
j=1

λjx
∗
j(xi) +

(
1− 1

d

)2 n∑
i=1

λi

n∑
j=1

λj[x
∗
j(xi)]

2

≥
(

1 +
1

d

)2

+
1

d2
.

Therefore there existi, j such that

‖xi,j + yi,j‖2 + ‖xi,j − yi,j‖2 ≥
(

1 +
1

d

)2

+
1

d2
.
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From the definition of Neumann-Jordan constant we see that

(2.3) CNJ(X) ≥ ‖xi,j + yi,j‖2 + ‖xi,j − yi,j‖2

4
≥ 1

4

[(
1 +

1

d

)2

+
1

d2

]
.

This inequality is equivalent to the following one

(2.4) d ≥ 2√
8CNJ(X)− 1− 1

.

Therefore, we obtain the desired estimate (2.1) sinceC ⊂ X is arbitrary. The
proof is finished.

It is easy to check that

1√
CNJ(X)− 1

4

<
2√

8CNJ(X)− 1− 1

when1 < CNJ(X) < 5/4. Therefore, the estimate of the above theorem im-
proves (1.3). It is also not difficult to check that

(2.5)
√

2CNJ(X)+1−
(
(
√

2CNJ(X) + 1)2 − 4
) 1

2
<

2√
8CNJ(X)− 1− 1

when 1 < CNJ(X) < 5/4. SinceJ(X) ≤
√

2CNJ(X), and the function
x + 1− ((x + 1)2 − 4)1/2 is decreasing, we have (1.2) from (2.1) and (2.5). So
(1.2) becomes a corollary of (2.1).
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Prus [6] gave the result that ifJ(X) < 4/3, thenN(X) > 1. Gao and Lau [3]
gave a condition that ifJ(X) < 3/2 thenN(X) > 1. Then they asked whether
the estimateJ(X) < 3/2 is sharp forX to have uniform normal structure. Kato,
Maligranda and Takahashi [4] found that if CNJ(X) < 5/4, which implies
J(X) <

√
10/2, thenN(X) > 1. The following theorem will give a wider

interval ofCNJ(X) for X to have uniform normal structure.

Theorem 2.3. Let X be a non-trivial Banach space with the Neumann-Jordan
constantCNJ(X) and normal structure coefficientN(X). Then

(2.6) CNJ(X) ≥

(√
N2(X)

4
+ 1

N2(X)
+ N(X)− 1

N(X)

)2

+ 1
N2(X)

2

[
1 +

(√
N2(X)

4
+ 1

N2(X)
+ N(X)− 2

N(X)

)2
] .

Moreover, ifCNJ(X) < (3 +
√

5)/4 or J(X) < (1 +
√

5)/2, thenN(X) > 1
and henceX has uniform normal structure.

Proof. We modify the first step in the proof of Theorem2.2. In (2.2), let

(2.7) xi,j =
1

d
(xi − xj), yi,j = txi

with t > 0. Then‖xi,j‖ ≤ 1, ‖yi,j‖ = t. Similar to (2.3), we obtain

(2.8) CNJ(X) ≥
(
t + 1

d

)2
+ 1

d2

2(1 + t2)
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for anyt > 0. The function

f(t) =

(
t + 1

d

)2
+ 1

d2

2(1 + t2)

reach the maximum at the point

t0 =

√
d2

4
+

1

d2
+ d− 2

d
.

It is decreasing ont > t0 and increasing on0 < t < t0. Therefore, we have

(2.9) CNJ(X) ≥

(√
d2

4
+ 1

d2 + d− 1
d

)2

+ 1
d2

2

[
1 +

(√
d2

4
+ 1

d2 + d− 2
d

)2
] .

Since the function

c = g(d) :=

(√
d2

4
+ 1

d2 + d− 1
d

)2

+ 1
d2

2

[
1 +

(√
d2

4
+ 1

d2 + d− 2
d

)2
]

is strictly decreasing and continuous on1 ≤ d ≤ 2, we know that the in-
verse functiond = g−1(c) exists and must also be decreasing. Thus, we have
from (2.9) that d ≥ g−1(CNJ(X)). It follows by take the infimum ofd that
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N(X) ≥ g−1(CNJ(X)). Equivalently, we have (2.6). From the above state-
ments of monotony property, we deduce thatN(X) = 1 is corresponding to
CNJ(X) = (3+

√
5)/4. Therefore, ifCNJ(X) < (3+

√
5)/4, thenN(X) > 1.

Since the non-square constantJ(X) ≤
√

2CNX , we have in other word that if
J(X) < (1 +

√
5)/2, thenN(X) > 1.
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