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Abstract

For functions belonging to each of the subclasses M∗ (α) and N ∗ (α) of nor-
malized analytic functions in the open unit disk U, which are investigated in this
paper when α > 1, the authors derive several subordination results involving
the Hadamard product (or convolution) of the associated functions. A number
of interesting consequences of some of these subordination results are also
discussed.
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Key words: Analytic functions, Univalent functions, Convex functions, Subordination

principle, Hadamard product (or convolution), Subordinating factor se-
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1. Introduction, Definitions and Preliminaries
LetA denote the class of functionsf normalizedby

(1.1) f (z) = z +
∞∑

n=2

an zn,

which areanalytic in theopenunit disk

U = {z : z ∈ C and |z| < 1} .

We denote byM (α) andN (α) two interesting subclasses of the classA, which
are defined (forα > 1) as follows:

(1.2) M (α) :=

{
f : f ∈ A and R

(
zf ′ (z)

f (z)

)
< α (z ∈ U; α > 1)

}
and

(1.3) N (α) :=

{
f : f ∈ A andR

(
1 +

zf ′′ (z)

f ′ (z)

)
< α (z ∈ U; α > 1)

}
.

The classesM (α) andN (α) were introduced and studied by Owaet al.
([1] and [2]). In fact, for 1 < α 5 4

3
, these classes were investigated earlier by

Uralegaddiet al. (cf. [5]; see also [3] and [4]).
It follows from the definitions (1.2) and (1.3) that

(1.4) f (z) ∈ N (α) ⇐⇒ zf ′ (z) ∈M (α) .

We begin by recalling each of the following coefficient inequalities associ-
ated with the function classesM (α) andN (α).
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Theorem A (Nishiwaki and Owa [1, p. 2, Theorem 2.1]).If f ∈ A, given by
(1.1), satisfies the coefficient inequality:

∞∑
n=2

[(n− λ) + |n + λ− 2α|] |an| 5 2 (α− 1)(1.5)

(α > 1; 0 5 λ 5 1) ,

thenf ∈M (α).

Theorem B (Nishiwaki and Owa [1, p. 3, Theorem 2.3]).If f ∈ A, given by
(1.1), satisfies the coefficient inequality:

∞∑
n=2

n [(n− λ) + |n + λ− 2α|] |an| 5 2 (α− 1)(1.6)

(α > 1; 0 5 λ 5 1) ,

thenf ∈ N (α).

In view of TheoremA and TheoremB, we now introduce the subclasses

(1.7) M∗ (α) ⊂M (α) and N ∗ (α) ⊂ N (α) (α > 1) ,

which consist of functionsf ∈ A whose Taylor-Maclaurin coefficientsan sat-
isfy the inequalities (1.5) and (1.6), respectively. In our proposed investigation
of functions in the classesM∗ (α) andN ∗ (α), we shall also make use of the
following definitions and results.
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Defintition 1 (Hadamard Product or Convolution). Given two functionsf, g ∈
A, wheref(z) is given by(1.1) andg(z) is defined by

g(z) = z +
∞∑

n=2

bnz
n,

the Hadamard product(or convolution) f ∗ g is defined(as usual) by

(f ∗ g) (z) := z +
∞∑

n=2

an bn zn =: (g ∗ f) (z) .

Defintition 2 (Subordination Principle). For two functionsf andg, analytic
in U, we say that the functionf (z) is subordinate tog (z) in U, and write

f ≺ g or f (z) ≺ g (z) (z ∈ U) ,

if there exists a Schwarz functionw (z), analytic inU with

w (0) = 0 and |w (z)| < 1 (z ∈ U) ,

such that
f (z) = g

(
w (z)

)
(z ∈ U) .

In particular, if the functiong is univalent inU, the above subordination is
equivalent to

f (0) = g (0) and f (U) ⊂ g (U) .
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Defintition 3 (Subordinating Factor Sequence).A sequence{bn}∞n=1 of com-
plex numbers is said to be a subordinating factor sequence if, wheneverf (z) of
the form(1.1) is analytic, univalent and convex inU, we have the subordination
given by

(1.8)
∞∑

n=1

an bn zn ≺ f (z) (z ∈ U; a1 := 1) .

Theorem C (cf. Wilf [ 6]). The sequence{bn}∞n=1 is a subordinating factor
sequence if and only if

(1.9) R

(
1 + 2

∞∑
n=1

bn zn

)
> 0 (z ∈ U) .
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2. Subordination Results for the ClassesM∗(α) and
M(α)

Our first main result (Theorem1 below) provides a sharp subordination result
involving the function classM∗ (α).

Theorem 1. Let the functionf (z) defined by(1.1) be in the classM∗ (α). Also
letK denote the familiar class of functionsf ∈ A which are also univalent and
convex inU. Then

(2− λ) + |2 + λ− 2α|
2 [(2α− λ) + |2 + λ− 2α|]

(f ∗ g)(z) ≺ g(z)(2.1)

(z ∈ U; 0 5 λ 5 1; α > 1; g ∈ K)

and

(2.2) R
(
f(z)

)
> − (2α− λ) + |2 + λ− 2α|

(2− λ) + |2 + λ− 2α|
(z ∈ U) .

The following constant factor in the subordination result(2.1):

(2− λ) + |2 + λ− 2α|
2 [(2α− λ) + |2 + λ− 2α|]

cannot be replaced by a larger one.

Proof. Let f(z) ∈M∗(α) and suppose that

g(z) = z +
∞∑

n=2

cn zn ∈ K.
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Then we readily have

(2.3)
(2− λ) + |2 + λ− 2α|

2 [(2α− λ) + |2 + λ− 2α|]
(f ∗ g)(z)

=
(2− λ) + |2 + λ− 2α|

2 [(2α− λ) + |2 + λ− 2α|]

(
z +

∞∑
n=2

cn an zn

)
.

Thus, by Definition3, the subordination result (2.1) will hold true if

(2.4)

{
(2− λ) + |2 + λ− 2α|

2 [(2α− λ) + |2 + λ− 2α|]
an

}∞
n=1

is a subordinating factor sequence (with, of course,a1 = 1). In view of Theorem
C, this is equivalent to the following inequality:

(2.5) R

(
1 +

∞∑
n=1

(2− λ) + |2 + λ− 2α|
(2α− λ) + |2 + λ− 2α|

an zn

)
> 0 (z ∈ U) .

Now, since

(n− λ) + |n + λ− 2α| (0 5 λ 5 1; α > 1)

is anincreasingfunction ofn, we have

R

(
1 +

∞∑
n=1

(2− λ) + |2 + λ− 2α|
(2α− λ) + |2 + λ− 2α|

an zn

)
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= R

(
1 +

(2− λ) + |2 + λ− 2α|
(2α− λ) + |2 + λ− 2α|

z

+
1

(2α− λ) + |2 + λ− 2α|

∞∑
n=2

[(2− λ) + |2 + k − 2α|] an zn

)

= 1− (2− λ) + |2 + λ− 2α|
(2α− λ) + |2 + λ− 2α|

r

− 1

(2α− λ) + |2 + λ− 2α|

∞∑
n=2

[(n− λ) + |n + λ− 2α|] |an| rn

> 1− (2− λ) + |2 + λ− 2α|
(2α− λ) + |2 + λ− 2α|

r − 2(α− 1)

[(2α− λ) + |2 + λ− 2α|]
r

> 0 (|z| = r < 1) ,(2.6)

where we have also made use of the assertion (1.5) of TheoremA. This evi-
dently proves the inequality (2.5), and hence also the subordination result (2.1)
asserted by Theorem1.

The inequality (2.2) follows from (2.1) upon setting

(2.7) g (z) =
z

1− z
= z +

∞∑
n=2

zn ∈ K.

Next we consider the function:

(2.8) q(z) := z − 2(α− 1)

(2− λ) + |2 + λ− 2α|
z2 (0 5 λ 5 1; α > 1) ,
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which is a member of the classM∗(α). Then, by using (2.1), we have

(2.9)
(2− λ) + |2 + λ− 2α|

2 [(2α− λ) + |2 + λ− 2α|]
q(z) ≺ z

1− z
(z ∈ U) .

It is also easily verified for the functionq (z) defined by (2.7) that

(2.10) min

{
R

(
(2− λ) + |2 + λ− 2α|

2 [(2α− λ) + |2 + λ− 2α|]
q(z)

)}
= −1

2
(z ∈ U) ,

which completes the proof of Theorem1.

Corollary 1. Let the function f(z) defined by(1.1) be in the classM(α).
Then the assertions(2.1) and (2.2) of Theorem1 hold true. Furthermore, the
following constant factor:

(2− λ) + |2 + λ− 2α|
2 [(2α− λ) + |2 + λ− 2α|]

cannot be replaced by a larger one.

By takingλ = 1 and1 < α 5
3

2
in Corollary1, we obtain

Corollary 2. Let the function f(z) defined by(1.1) be in the classM(α).
Then (

1− 1

2
α

)
(f ∗ g)(z) ≺ g(z)(2.11) (

z ∈ U; 1 < α 5
3

2
; g ∈ K

)

http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:aattiy@mans.edu.eg
http://jipam.vu.edu.au/


Some Subordination Results
Associated with Certain
Subclasses of Analytic

Functions

H.M. Srivastava and A.A. Attiya

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 14

J. Ineq. Pure and Appl. Math. 5(4) Art. 82, 2004

http://jipam.vu.edu.au

and

(2.12) R
(
f(z)

)
> − 1

2− α
(z ∈ U) .

The constant factor1− 1
2
α in the subordination result(2.11) cannot be replaced

by a larger one.
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3. Subordination Results for the ClassesN ∗(α) and
N (α)

Our proof of Theorem2 below is much akin to that of Theorem1. Here we
make use of TheoremB in place of TheoremA.

Theorem 2. Let the functionf(z) defined by(1.1) be in the classN ∗(α). Then

(2− λ) + |2 + λ− 2α|
2 [(α + 1− λ) + |2 + λ− 2α|]

(f ∗ g)(z) ≺ g(z)(3.1)

(z ∈ U; 0 5 λ 5 1; α > 1; g ∈ K)

and

(3.2) R
(
f(z)

)
> − (α + 1− λ) + |2 + λ− 2α|

(2− λ) + |2 + λ− 2α|
(z ∈ U) .

The following constant factor in the subordination result(3.1):

(2− λ) + |2 + λ− 2α|
2 [(α + 1− λ) + |2 + λ− 2α|]

cannot be replaced by a larger one.

Corollary 3. Let the function f(z) defined by(1.1) be in the classN (α).
Then the assertions(3.1) and (3.2) of Theorem2 hold true. Furthermore, the
following constant factor:

(2− λ) + |2 + λ− 2α|
2 [(α + 1− λ) + |2 + λ− 2α|]

cannot be replaced by a larger one.
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By letting λ = 1 and1 < α 5
3

2
in Corollary3, we obtain the following

further consequence of Theorem2.

Corollary 4. Let the functionf(z) defined by(1.1) be in the classN (α). Then

2− α

2(3− α)
(f ∗ g)(z) ≺ g(z)(3.3) (

z ∈ U; 1 < α 5
3

2
; g ∈ K

)
.

and

(3.4) R
(
f(z)

)
> − 3− α

2− α
(z ∈ U) .

The following constant factor in the subordination result(3.3):

2− α

2 (3− α)

cannot be replaced by a larger one.
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