INEQUALITIES BETWEEN THE SUM OF SQUARES AND THE EXPONENTIAL OF SUM OF A NONNEGATIVE SEQUENCE

FENG QI

Research Institute of Mathematical Inequality Theory
Henan Polytechnic University
Jiaozuo City, Henan Province, 454010, China
EMail: qifeng@hpu.edu.cn

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.
Key words:

Abstract:

11 April, 2007
08 September, 2007
A. Sofo

26D15.
Inequality, Sum of square, Exponential of sum, Nonnegative sequence, Critical point, Extremal point, Open problem.

Using a standard argument, the following inequality between the sum of squares and the exponential of sum of a nonnegative sequence is established:

$$
\frac{e^{2}}{4} \sum_{i=1}^{n} x_{i}^{2} \leq \exp \left(\sum_{i=1}^{n} x_{i}\right)
$$

where $n \geq 2, x_{i} \geq 0$ for $1 \leq i \leq n$, and the constant $\frac{e^{2}}{4}$ is the best possible.

Inequalities Between Sum of Squares and Exponential of Sum

Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

44

4

Page 1 of 10
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

Contents

1 Introduction 3
2 Proofs of Theorems 6
3 Open Problems 1010 Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 2 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

In the 2004 Master Graduate Admission Examination of Mathematical Analysis of the Beijing Institute of Technology, the following inequality, which was brought up by one of the author's students, was asked to be shown: For $(x, y) \in[0, \infty) \times[0, \infty)$, show

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{4} \leq \exp (x+y-2) \tag{1.1}
\end{equation*}
$$

The aim of this paper is to give a generalization of inequality (1.1).
For our own convenience, we introduce the following notations:

$$
\begin{equation*}
[0, \infty)^{n} \triangleq \underbrace{[0, \infty) \times[0, \infty) \times \cdots \times[0, \infty)}_{n \text { times }} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(0, \infty)^{n} \triangleq \underbrace{(0, \infty) \times(0, \infty) \times \cdots \times(0, \infty)}_{n \text { times }} \tag{1.3}
\end{equation*}
$$

for $n \in \mathbb{N}$, where \mathbb{N} denotes the set of all positive integers.
The main results of this paper are the following theorems.
Theorem 1.1. For $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0, \infty)^{n}$ and $n \geq 2$, inequality

$$
\begin{equation*}
\frac{e^{2}}{4} \sum_{i=1}^{n} x_{i}^{2} \leq \exp \left(\sum_{i=1}^{n} x_{i}\right) \tag{1.4}
\end{equation*}
$$

is valid. Equality in (1.4) holds if $x_{i}=2$ for some given $1 \leq i \leq n$ and $x_{j}=0$ for all $1 \leq j \leq n$ with $j \neq i$. So, the constant $\frac{e^{2}}{4}$ in (1.4) is the best possible.

Inequalities Between Sum of Squares and Exponential of Sum

Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 3 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.2. Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a nonnegative sequence such that $\sum_{i=1}^{\infty} x_{i}<\infty$. Then

$$
\begin{equation*}
\frac{e^{2}}{4} \sum_{i=1}^{\infty} x_{i}^{2} \leq \exp \left(\sum_{i=1}^{\infty} x_{i}\right) \tag{1.5}
\end{equation*}
$$

Equality in (1.5) holds if $x_{i}=2$ for some given $i \in \mathbb{N}$ and $x_{j}=0$ for all $j \in \mathbb{N}$ with $j \neq i$. So, the constant $\frac{e^{2}}{4}$ in (1.5) is the best possible.

Remark 1. Taking $n=2$ and $\left(x_{1}, x_{2}\right)=(x, y)$ in (1.4) easily leads to inequality (1.1).

Taking $x_{i}=x$ and $x_{j}=y$ for some given $i, j \in \mathbb{N}$ and $x_{k}=0$ for all $k \in \mathbb{N}$ with $k \neq i$ and $k \neq j$ in inequality (1.5) also clearly leads to inequality (1.1).
Remark 2. Inequality (1.4) can be rewritten as

$$
\begin{equation*}
\frac{e^{2}}{4} \sum_{i=1}^{n} x_{i}^{2} \leq \prod_{i=1}^{n} e^{x_{i}} \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{e^{2}}{4}\|\boldsymbol{x}\|_{2}^{2} \leq \exp \|\boldsymbol{x}\|_{1} \tag{1.7}
\end{equation*}
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\|\cdot\|_{p}$ denotes the p-norm.
Remark 3. Inequality (1.5) can be rewritten as

$$
\begin{equation*}
\frac{e^{2}}{4} \sum_{i=1}^{\infty} x_{i}^{2} \leq \prod_{i=1}^{\infty} e^{x_{i}} \tag{1.8}
\end{equation*}
$$

which is equivalent to inequality (1.7) for $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots\right) \in[0, \infty)^{\infty}$.

Inequalities Between Sum of Squares and Exponential of Sum

Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

Page 4 of 10
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 4. Taking $x_{i}=\frac{1}{i}$ for $i \in \mathbb{N}$ in (1.4) and rearranging gives

$$
\begin{equation*}
2-2 \ln 2+\ln \left(\sum_{i=1}^{n} \frac{1}{\bar{i}^{2}}\right) \leq \sum_{i=1}^{n} \frac{1}{\bar{i}} \tag{1.9}
\end{equation*}
$$

Taking $x_{i}=\frac{1}{i^{s}}$ for $i \in \mathbb{N}$ and $s>1$ in (1.5) and rearranging gives
(1.10) $2-2 \ln 2+\ln \left(\sum_{i=1}^{\infty} \frac{1}{i^{2 s}}\right)=2-2 \ln 2+\ln [\zeta(2 s)] \leq \sum_{i=1}^{\infty} \frac{1}{i^{s}}=\zeta(s)$,
where ζ denotes the well known Riemann Zeta function.
Inequalities Between Sum of Squares and Exponential of Sum

Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page	
Contents	
$\mathbf{4}$	
$\boldsymbol{4}$	
Page 5 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Proofs of Theorems

Now we are in a position to prove our theorems.

Proof of Theorem 1.1. Let

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\ln \left(\sum_{i=1}^{n} x_{i}^{2}\right)-\sum_{i=1}^{n} x_{i} \tag{2.1}
\end{equation*}
$$

for $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0, \infty)^{n} \backslash\{(0,0, \ldots, 0)\}$. Simple calculation results in

$$
\begin{align*}
\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{k}} & =\frac{2 x_{k}}{\sum_{i=1}^{n} x_{i}^{2}}-1 \tag{2.2}\\
\frac{\partial^{2} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{k}^{2}} & =\frac{2\left(\sum_{i \neq k}^{n} x_{i}^{2}-x_{k}^{2}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \tag{2.3}\\
\frac{\partial^{2} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{\ell} \partial x_{m}} & =-\frac{4 x_{\ell} x_{m}}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \tag{2.4}
\end{align*}
$$

where $1 \leq k, \ell, m \leq n$ and $\ell \neq m$. The system of equations

$$
\begin{equation*}
\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{k}}=0 \quad \text { for } \quad 1 \leq k \leq n, \tag{2.5}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{i \neq k} x_{i}^{2}+\left(x_{k}-1\right)^{2}=1 \quad \text { for } \quad 1 \leq k \leq n \tag{2.6}
\end{equation*}
$$

has a unique nonzero solution $x_{i}=\frac{2}{n}$ for $1 \leq i \leq n$. Thus, the point $\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)$ is a unique critical point of the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which is located in the interior of $[0, \infty)^{n} \backslash\{(0,0, \ldots, 0)\}$.
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

Page 6 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Straightforward computation gives us

$$
\begin{align*}
D_{i} & =\left|\begin{array}{llll}
\frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{1}^{2}} & \frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{1} \partial x_{i}} \\
\frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{2} \partial x_{i}} \\
\cdots \ldots \\
\frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{i} \partial x_{1}} & \frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{i} \partial x_{2}} & \cdots & \frac{\partial^{2} f\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)}{\partial x_{i}^{2}}
\end{array}\right| \tag{2.8}\\
& =\left|\begin{array}{cccc}
\frac{n-2}{2} & -1 & \cdots & -1 \\
-1 & \frac{n-2}{2} & \cdots & -1 \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
-1 & -1 & \cdots & \frac{n-2}{2}
\end{array}\right| \\
& =\left[\begin{array}{ccc}
\left.\frac{n-2}{2}+(i-1)(-1)\right]\left[\frac{n-2}{2}-(-1)\right.
\end{array}\right] \\
& =\left(\begin{array}{ccc}
\left.\frac{n}{2}-i\right)\left(\frac{n}{2}\right)^{i-1} &
\end{array}\right.
\end{align*}
$$

M

Inequalities Between Sum of Squares and Exponential of Sum

Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

Page 7 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since

$$
D_{i} \begin{cases}>0, & \text { if } i<\frac{n}{2}, \tag{2.9}\\ =0, & \text { if } i=\frac{n}{2}, \\ <0, & \text { if } i>\frac{n}{2},\end{cases}
$$

it is affirmed that the critical point $\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)$ located in the interior of $[0, \infty)^{n} \backslash$ $\{(0,0, \ldots, 0)\}$ is not an extremal point of the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

The boundary of $[0, \infty)^{n} \backslash\{(0,0, \ldots, 0)\}$ is $\cup_{i=0}^{n-1}[0, \infty)^{i} \times\{0\} \times[0, \infty)^{n-i-1}$.
On the set $[0, \infty)^{n-1} \times\{0\} \backslash\{(0,0, \ldots, 0)\}$, it is concluded that

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n-1}, 0\right)=\ln \left(\sum_{k=1}^{n-1} x_{k}^{2}\right)-\sum_{k=1}^{n-1} x_{k} \tag{2.10}
\end{equation*}
$$

By the same standard argument as above, it is deduced that the unique critical point, located in the interior of $[0, \infty)^{n-1} \times\{0\} \backslash\{(0,0, \ldots, 0)\}$, of $f\left(x_{1}, \ldots, x_{n-1}, 0\right)$ is $\left(\frac{2}{n-1}, \ldots, \frac{2}{n-1}, 0\right)$ which is not an extremal point of $f\left(x_{1}, \ldots, x_{n-1}, 0\right)$.

By induction, in the interior of the set $[0, \infty)^{i} \times \underbrace{\{0\} \times \cdots \times\{0\}}_{n-i \text { times }} \backslash\{(0,0, \ldots, 0)\}$ for $2 \leq i \leq n$, there is no extremal point of $f\left(x_{1}, \ldots, x_{i}, 0, \ldots, 0\right)$.

On the set $(0, \infty) \times \underbrace{\{0\} \times \cdots \times\{0\}}_{n-1 \text { times }}$, it is easy to obtain that the function

$$
f\left(x_{1}, 0, \ldots, 0\right)=2 \ln x_{1}-x_{1}
$$

has a maximal point $x_{1}=2$ and the maximal value equals $f(2,0, \ldots, 0)=2 \ln 2-2$.
Considering that the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is symmetric with respect to all permutations of the n variables x_{i} for $1 \leq i \leq n$ and by induction, we obtain the

Inequalities Between Sum of Squares and Exponential of Sum Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

Page 8 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
following conclusion: The maximal value of the function $f\left(x_{1}, \ldots, x_{n}\right)$ on the set $[0, \infty)^{n} \backslash\{(0,0, \ldots, 0)\}$ is $2 \ln 2-2$. Therefore, it follows that

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\ln \left(\sum_{i=1}^{n} x_{i}^{2}\right)-\sum_{i=1}^{n} x_{i} \leq 2 \ln 2-2 \tag{2.11}
\end{equation*}
$$

which is equivalent to inequality (1.4), on the set $[0, \infty)^{n} \backslash\{(0,0, \ldots, 0)\}$.
It is clear that inequality (1.4) holds also at the point $(0, \ldots, 0)$. Hence, the proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. This can be concluded by letting $n \rightarrow \infty$ in Theorem 1.1.
Inequalities Between Sum of Squares and Exponential of Sum

Feng Qi
vol. 8, iss. 3, art. 78, 2007
\square
\qquad
Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 9 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Open Problems

Finally, the following problems can be proposed.
Open Problem 1. For $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0, \infty)^{n}$ and $n \geq 2$, determine the best possible constants $\alpha_{n}, \lambda_{n} \in \mathbb{R}$ and $0<\beta_{n}, \mu_{n}<\infty$ such that

$$
\begin{equation*}
\beta_{n} \sum_{i=1}^{n} x_{i}^{\alpha_{n}} \leq \exp \left(\sum_{i=1}^{n} x_{i}\right) \leq \mu_{n} \sum_{i=1}^{n} x_{i}^{\lambda_{n}} . \tag{3.1}
\end{equation*}
$$

Open Problem 2. What is the integral analogue of the double inequality (3.1)?
Open Problem 3. Can one find applications and practical meanings in mathematics for inequality (3.1) and its integral analogues?

Inequalities Between Sum of Squares and Exponential of Sum Feng Qi
vol. 8, iss. 3, art. 78, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 10 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

