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ABSTRACT. Using a standard argument, the following inequality between the sum of squares
and the exponential of sum of a nonnegative sequence is established:

e2

4

n∑
i=1

x2
i ≤ exp

(
n∑

i=1

xi

)
,

wheren ≥ 2, xi ≥ 0 for 1 ≤ i ≤ n, and the constante
2

4 is the best possible.
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1. I NTRODUCTION

In the 2004 Master Graduate Admission Examination of Mathematical Analysis of the Bei-
jing Institute of Technology, the following inequality, which was brought up by one of the
author’s students, was asked to be shown: For(x, y) ∈ [0,∞)× [0,∞), show

(1.1)
x2 + y2

4
≤ exp(x + y − 2).

The aim of this paper is to give a generalization of inequality (1.1).
For our own convenience, we introduce the following notations:

(1.2) [0,∞)n , [0,∞)× [0,∞)× · · · × [0,∞)︸ ︷︷ ︸
n times

and

(1.3) (0,∞)n , (0,∞)× (0,∞)× · · · × (0,∞)︸ ︷︷ ︸
n times

for n ∈ N, whereN denotes the set of all positive integers.
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2 F. QI

The main results of this paper are the following theorems.

Theorem 1.1.For (x1, x2, . . . , xn) ∈ [0,∞)n andn ≥ 2, inequality

(1.4)
e2

4

n∑
i=1

x2
i ≤ exp

(
n∑

i=1

xi

)
is valid. Equality in(1.4)holds ifxi = 2 for some given1 ≤ i ≤ n andxj = 0 for all 1 ≤ j ≤ n

with j 6= i. So, the constante
2

4
in (1.4) is the best possible.

Theorem 1.2.Let{xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞. Then

(1.5)
e2

4

∞∑
i=1

x2
i ≤ exp

(
∞∑
i=1

xi

)
.

Equality in(1.5)holds ifxi = 2 for some giveni ∈ N andxj = 0 for all j ∈ N with j 6= i. So,
the constante

2

4
in (1.5) is the best possible.

Remark 1.3. Takingn = 2 and(x1, x2) = (x, y) in (1.4) easily leads to inequality (1.1).
Takingxi = x andxj = y for some giveni, j ∈ N andxk = 0 for all k ∈ N with k 6= i and

k 6= j in inequality (1.5) also clearly leads to inequality (1.1).

Remark 1.4. Inequality (1.4) can be rewritten as

(1.6)
e2

4

n∑
i=1

x2
i ≤

n∏
i=1

exi

or

(1.7)
e2

4
‖x‖2

2 ≤ exp ‖x‖1 ,

wherex = (x1, . . . , xn) and‖ · ‖p denotes thep-norm.

Remark 1.5. Inequality (1.5) can be rewritten as

(1.8)
e2

4

∞∑
i=1

x2
i ≤

∞∏
i=1

exi

which is equivalent to inequality (1.7) forx = (x1, x2, . . . ) ∈ [0,∞)∞.

Remark 1.6. Takingxi = 1
i

for i ∈ N in (1.4) and rearranging gives

(1.9) 2− 2 ln 2 + ln

(
n∑

i=1

1

i2

)
≤

n∑
i=1

1

i
.

Takingxi = 1
is

for i ∈ N ands > 1 in (1.5) and rearranging gives

(1.10) 2− 2 ln 2 + ln

(
∞∑
i=1

1

i2s

)
= 2− 2 ln 2 + ln[ζ(2s)] ≤

∞∑
i=1

1

is
= ζ(s),

whereζ denotes the well known Riemann Zeta function.
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2. PROOFS OF THEOREMS

Now we are in a position to prove our theorems.

Proof of Theorem 1.1.Let

(2.1) f(x1, x2, . . . , xn) = ln

(
n∑

i=1

x2
i

)
−

n∑
i=1

xi

for (x1, x2, . . . , xn) ∈ [0,∞)n \ {(0, 0, . . . , 0)}. Simple calculation results in

∂f(x1, x2, . . . , xn)

∂xk

=
2xk∑n
i=1 x2

i

− 1,(2.2)

∂2f(x1, x2, . . . , xn)

∂x2
k

=
2
(∑n

i6=k x2
i − x2

k

)
(
∑n

i=1 x2
i )

2 ,(2.3)

∂2f(x1, x2, . . . , xn)

∂x`∂xm

= − 4x`xm

(
∑n

i=1 x2
i )

2 ,(2.4)

where1 ≤ k, `, m ≤ n and` 6= m. The system of equations

(2.5)
∂f(x1, x2, . . . , xn)

∂xk

= 0 for 1 ≤ k ≤ n,

which is equivalent to

(2.6)
∑
i6=k

x2
i + (xk − 1)2 = 1 for 1 ≤ k ≤ n,

has a unique nonzero solutionxi = 2
n

for 1 ≤ i ≤ n. Thus, the point
(

2
n
, 2

n
, . . . , 2

n

)
is a unique

critical point of the functionf(x1, x2, . . . , xn), which is located in the interior of[0,∞)n \
{(0, 0, . . . , 0)}.

Straightforward computation gives us

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

k

=
n− 2

2
,(2.7)

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x`∂xm

= −1,

Di =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

1

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x1∂x2

· · ·
∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x1∂xi

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2∂x1

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

2

· · ·
∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2∂xi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂xi∂x1

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂xi∂x2

· · ·
∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)
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=

∣∣∣∣∣∣∣∣∣∣∣∣

n− 2

2
−1 · · · −1

−1
n− 2

2
· · · −1

. . . . . . . . . . . . . . . . . . . . . . . . . .

−1 −1 · · · n− 2

2

∣∣∣∣∣∣∣∣∣∣∣∣
=
[n− 2

2
+ (i− 1)(−1)

][n− 2

2
− (−1)

]i−1

=
(n

2
− i
)(n

2

)i−1

.

Since

(2.9) Di


> 0, if i < n

2
,

= 0, if i = n
2
,

< 0, if i > n
2
,

it is affirmed that the critical point
(

2
n
, 2

n
, . . . , 2

n

)
located in the interior of[0,∞)n\{(0, 0, . . . , 0)}

is not an extremal point of the functionf(x1, x2, . . . , xn).
The boundary of[0,∞)n \ {(0, 0, . . . , 0)} is∪n−1

i=0 [0,∞)i × {0} × [0,∞)n−i−1.
On the set[0,∞)n−1 × {0} \ {(0, 0, . . . , 0)}, it is concluded that

(2.10) f(x1, . . . , xn−1, 0) = ln

(
n−1∑
k=1

x2
k

)
−

n−1∑
k=1

xk.

By the same standard argument as above, it is deduced that the unique critical point, located
in the interior of[0,∞)n−1 × {0} \ {(0, 0, . . . , 0)}, of f(x1, . . . , xn−1, 0) is

(
2

n−1
, . . . , 2

n−1
, 0
)

which is not an extremal point off(x1, . . . , xn−1, 0).
By induction, in the interior of the set[0,∞)i×{0} × · · · × {0}︸ ︷︷ ︸

n− i times

\{(0, 0, . . . , 0)} for 2 ≤ i ≤

n, there is no extremal point off(x1, . . . , xi, 0, . . . , 0).
On the set(0,∞)× {0} × · · · × {0}︸ ︷︷ ︸

n− 1 times

, it is easy to obtain that the function

f(x1, 0, . . . , 0) = 2 ln x1 − x1

has a maximal pointx1 = 2 and the maximal value equalsf(2, 0, . . . , 0) = 2 ln 2− 2.
Considering that the functionf(x1, x2, . . . , xn) is symmetric with respect to all permutations

of then variablesxi for 1 ≤ i ≤ n and by induction, we obtain the following conclusion: The
maximal value of the functionf(x1, . . . , xn) on the set[0,∞)n \ {(0, 0, . . . , 0)} is 2 ln 2 − 2.
Therefore, it follows that

(2.11) f(x1, x2, . . . , xn) = ln

(
n∑

i=1

x2
i

)
−

n∑
i=1

xi ≤ 2 ln 2− 2,

which is equivalent to inequality (1.4), on the set[0,∞)n \ {(0, 0, . . . , 0)}.
It is clear that inequality (1.4) holds also at the point(0, . . . , 0). Hence, the proof of Theorem

1.1 is complete. �

Proof of Theorem 1.2.This can be concluded by lettingn →∞ in Theorem 1.1. �
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3. OPEN PROBLEMS

Finally, the following problems can be proposed.

Open Problem 1. For (x1, x2, . . . , xn) ∈ [0,∞)n and n ≥ 2, determine the best possible
constantsαn, λn ∈ R and0 < βn, µn < ∞ such that

(3.1) βn

n∑
i=1

xαn
i ≤ exp

(
n∑

i=1

xi

)
≤ µn

n∑
i=1

xλn
i .

Open Problem 2. What is the integral analogue of the double inequality(3.1)?

Open Problem 3. Can one find applications and practical meanings in mathematics for in-
equality(3.1)and its integral analogues?
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