Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 6, Issue 3, Article 72, 2005

NOTE ON INEQUALITIES INVOLVING INTEGRAL TAYLOR'S REMAINDER

ZHENG LIU

Institute of Applied Mathematics, Faculty of Science Anshan University of Science and Technology ANSHAN 114044, Liaoning, China
lewzheng@163.net

Received 08 April, 2005; accepted 02 June, 2005
Communicated by H. Gauchman

Abstract

In this paper, some inequalities involving the integral Taylor's remainder are obtained by using various well-known methods.

Key words and phrases: Taylor's remainder, Leibniz formula, Variant of Grüss inequality, Taylor's formula, Steffensen inequality.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

In [4] - [5], H. Gauchman has derived some new types of inequalities involving Taylor's remainder.

In [1], L. Bougoffa continued to create several integral inequalities involving Taylor's remainder.

The purpose of this paper is to give some supplements and improvements for the results obtained in [1] - [3].

In [1], two notations $R_{n, f}(c, x)$ and $r_{n, f}(a, b)$ have been adopted to denote the nth Taylor's remainder of function f with center c and the integral Taylor's remainder respectively, i.e.,

$$
R_{n, f}(c, x)=f(x)-\sum_{k=0}^{n} \frac{f^{(n)}(c)}{n!}(x-c)^{k}
$$

and

$$
r_{n, f}(a, b)=\int_{a}^{b} \frac{(b-x)^{n}}{n!} f^{(n+1)}(x) d x
$$

However, it is evident that

$$
R_{n, f}(a, b)=\int_{a}^{b} \frac{(b-x)^{n}}{n!} f^{(n+1)}(x) d x=r_{n, f}(a, b)
$$

[^0]and
$$
(-1)^{n} R_{n, f}(b, a)=\int_{a}^{b} \frac{(x-a)^{n}}{n!} f^{(n+1)}(x) d x=(-1)^{n} r_{n, f}(b, a) .
$$

So, we would like only to keep the notation $R_{n, f}(\cdot, \cdot)$ in what follows.
We start by changing the order of integration to give a simple different proof of Lemma 1.1 and Lemma 1.2 in [5] and [1]. i.e.,

$$
\begin{aligned}
\int_{a}^{b} R_{n, f}(a, x) d x & =\int_{a}^{b}\left(\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t\right) d x \\
& =\int_{a}^{b}\left(\int_{t}^{b} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d x\right) d t \\
& =\int_{a}^{b} \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, x) d x & =\int_{a}^{b}\left(\int_{x}^{b} \frac{(t-x)^{n}}{n!} f^{(n+1)}(t) d t\right) d x \\
& =\int_{a}^{b}\left(\int_{a}^{t} \frac{(t-x)^{n}}{n!} f^{(n+1)}(t) d x\right) d t \\
& =\int_{a}^{b} \frac{(t-a)^{n+1}}{(n+1)!} f^{(n+1)}(t) d t
\end{aligned}
$$

2. Results Obtained via the Leibniz Formula

We prove the following theorem by using the Leibniz formula.
Theorem 2.1. Let f be a function defined on $[a, b]$. Assume that $f \in C^{n+1}([a, b])$. Then

$$
\begin{equation*}
\left|\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} R_{n-k, f}(a, b)\right| \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(a)\right| \frac{(b-a)^{n-k}}{(n-k)!}, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{k=0}^{p}(-1)^{n-k+1} C_{p}^{k} R_{n-k, f}(b, a)\right| \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(b)\right| \frac{(b-a)^{n-k}}{(n-k)!}, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} \int_{a}^{b} R_{n-k, f}(a, x) d x\right| \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(a)\right| \frac{(b-a)^{n-k+1}}{(n-k+1)!} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{k=0}^{p}(-1)^{n-k+1} C_{p}^{k} \int_{a}^{b} R_{n-k, f}(b, x) d x\right| \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(b)\right| \frac{(b-a)^{n-k+1}}{(n-k+1)!} \tag{2.4}
\end{equation*}
$$

where $C_{p}^{k}=\frac{p!}{(p-k)!k!}$.
Proof. We apply the following Leibniz formula

$$
(F G)^{(p)}=F^{(p)} G+C_{p}^{1} F^{(p-1)} G^{(1)}+\cdots+C_{p}^{p-1} F^{(1)} G^{(p-1)}+F G^{(P)},
$$

provided the functions $F, G \in C^{p}([a, b])$.

Let $F(x)=f^{(n-p+1)}(x), G(x)=\frac{(b-x)^{n}}{n!}$. Then

$$
\left(f^{(n-p+1)}(x) \frac{(b-x)^{n}}{n!}\right)^{(p)}=\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} f^{(n-k+1)}(x) \frac{(b-x)^{n-k}}{(n-k)!} .
$$

Integrating both sides of the preceding equation with respect to x from a to b gives us

$$
\left[\left(f^{(n-p+1)}(x) \frac{(b-x)^{n}}{n!}\right)^{(p-1)}\right]_{x=a}^{x=b}=\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} \int_{a}^{b} f^{(n-k+1)}(x) \frac{(b-x)^{n-k}}{(n-k)!} d x .
$$

The integral on the right is $R_{n-k, f}(a, x)$, and to evaluate the term on the left hand side, we must again apply the Leibniz formula, obtaining

$$
-\sum_{k=0}^{p-1}(-1)^{k} C_{p-1}^{k} f^{(n-k)}(a) \frac{(b-a)^{n-k}}{(n-k)!}=\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} R_{n-k, f}(a, b) .
$$

Consequently,

$$
\left|\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} R_{n-k, f}(a, b)\right| \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(a)\right| \frac{(b-a)^{n-k}}{(n-k)!},
$$

which proves (2.1).
For the proof of (2.2), we take

$$
F(x)=f^{(n-p+1)}(x), \quad G(x)=\frac{(x-a)^{n}}{n!}
$$

For the proof of (2.3), we take

$$
F(x)=f^{(n-p+1)}(x), \quad G(x)=\frac{(b-x)^{n+1}}{(n+1)!}
$$

For the proof of (2.4), we take

$$
F(x)=f^{(n-p+1)}(x), \quad G(x)=\frac{(x-a)^{n+1}}{(n+1)!}
$$

Remark 2.2. It should be noticed that (2.3) and (2.4) have been mentioned and proved in [1] with some misprints in the conclusion.

3. Results Obtained by a Variant of the Grüss Inequality

The following is a variant of the Grüss inequality which has been proved almost at the same time by X.L. Cheng and J. Sun in [3] as well as M. Matić in [6] respectively.
Let $h, g:[a, b] \rightarrow \mathbb{R}$ be two integrable functions such that $\gamma \leq g(x) \leq \Gamma$ for some constants γ, Γ for all $x \in[a, b]$. Then

$$
\begin{align*}
\left\lvert\, \int_{a}^{b} h(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} h(x)\right. & d x \int_{a}^{b} g(x) d x \mid \tag{3.1}\\
\leq & \frac{1}{2}\left(\int_{a}^{b}\left|h(x)-\frac{1}{b-a} \int_{a}^{b} h(y) d y\right| d x\right)(\Gamma-\gamma)
\end{align*}
$$

Theorem 3.1. Let $f(x)$ be a function defined on $[a, b]$ such that $f \in C^{n+1}([a, b])$ and $m \leq$ $f^{(n+1)}(x) \leq M$ for each $x \in[a, b]$, where m and M are constants. Then

$$
\begin{gather*}
\left|R_{n, f}(a, b)-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+1)!}(b-a)^{n}\right| \leq \frac{n(b-a)^{n+1}(M-m)}{(n+1)!(n+1) \sqrt[n]{n+1}} \tag{3.2}\\
\left|(-1)^{n+1} R_{n, f}(b, a)-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+1)!}(b-a)^{n}\right| \leq \frac{n(b-a)^{n+1}(M-m)}{(n+1)!(n+1) \sqrt[n]{n+1}} \tag{3.3}
\end{gather*}
$$

$$
\begin{equation*}
\left|\int_{a}^{b} R_{n, f}(a, x) d x-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+2)!}(b-a)^{n+1}\right| \leq \frac{(n+1)(b-a)^{n+2}(M-m)}{(n+2)!(n+2) \sqrt[n+1]{n+2}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, x) d x-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+2)!}(b-a)^{n+1}\right| \tag{3.5}\\
& \quad \leq \frac{(n+1)(b-a)^{n+2}(M-m)}{(n+2)!(n+2) \sqrt[n+1]{n+2}}
\end{align*}
$$

Proof. To prove 3.2 , setting $g(x)=f^{(n+1)}(x)$ and $h(x)=\frac{(b-x)^{n}}{n!}$ in 3.1, we obtain

$$
\begin{aligned}
\left|R_{n, f}(a, b)-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+1)!}(b-a)^{n}\right| & \leq \frac{M-m}{2} \int_{a}^{b}\left|\frac{(b-x)^{n}}{n!}-\frac{(b-a)^{n}}{(n+1)!}\right| d x \\
& =\frac{n(b-a)^{n+1}(M-m)}{(n+1)!(n+1) \sqrt[n]{n+1}}
\end{aligned}
$$

The proofs of (3.3), (3.4) and (3.5) are similar and so are omitted.
Remark 3.2. It should be noticed that Theorem 3.1 improves Theorem 3.1 in [1] and Theorem 2.1 in [5].

4. Results Obtained via the Steffensen Inequality

In [2] we can find a general version of the well-known Steffensen inequality as follows: Let $h:[a, b] \rightarrow \mathbb{R}$ be a nonincreasing mapping on $[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ be an integrable mapping on $[a, b]$ with

$$
\phi \leq g(x) \leq \Phi, \text { for all } x \in[a, b]
$$

then
(4.1) $\phi \int_{a}^{b-\lambda} h(x) d x+\Phi \int_{b-\lambda}^{b} h(x) d x \leq \int_{a}^{b} h(x) g(x) d x \leq \Phi \int_{a}^{a+\lambda} h(x) d x+\phi \int_{a+\lambda}^{b} h(x) d x$,
where

$$
\begin{equation*}
\lambda=\int_{a}^{b} G(x) d x, \quad G(x)=\frac{g(x)-\phi}{\Phi-\phi}, \quad \Phi \neq \phi \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping such that $f(x) \in C^{n+1}([a, b])$ and $m \leq$ $f^{(n+1)}(x) \leq M$ for each $x \in[a, b]$, where m and M are constants. Then

$$
\begin{align*}
\frac{m(b-a)^{n+1}+(M-m) \lambda^{n+1}}{(n+1)!} & \leq R_{n, f}(a, b) \tag{4.3}\\
& \leq \frac{M(b-a)^{n+1}-(M-m)(b-a-\lambda)^{n+1}}{(n+1)!}
\end{align*}
$$

$$
\begin{align*}
\frac{m(b-a)^{n+1}+(M-m) \lambda^{n+1}}{(n+1)!} & \leq(-1)^{n+1} R_{n, f}(b, a) \tag{4.4}\\
& \leq \frac{M(b-a)^{n+1}-(M-m)(b-a-\lambda)^{n+1}}{(n+1)!} \\
\frac{m(b-a)^{n+2}+(M-m) \lambda^{n+2}}{(n+2)!} & \leq \int_{a}^{b} R_{n, f}(a, x) d x \tag{4.5}\\
& \leq \frac{M(b-a)^{n+2}-(M-m)(b-a-\lambda)^{n+2}}{(n+2)!}
\end{align*}
$$

and

$$
\begin{align*}
\frac{m(b-a)^{n+2}+(M-m) \lambda^{n+2}}{(n+2)!} & \leq(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, x) d x \tag{4.6}\\
& \leq \frac{M(b-a)^{n+2}-(M-m)(b-a-\lambda)^{n+2}}{(n+2)!}
\end{align*}
$$

where $\lambda=\frac{f(b)-f(a)-m(b-a)}{M-m}$.
Proof. Observe that $\frac{(b-x)^{n}}{n!}$ is a decreasing function of x on $[a, b]$, then by 4.1 and 4.2 we have

$$
\begin{aligned}
m \int_{a}^{b-\lambda} \frac{(b-x)^{n}}{n!} d x+M \int_{b-\lambda}^{b} \frac{(b-x)^{n}}{n!} d x & \leq \int_{a}^{b} \frac{(b-x)^{n}}{n!} f^{(n+1)}(x) d x \\
& \leq M \int_{a}^{a+\lambda} \frac{(b-x)^{n}}{n!} d x+m \int_{a+\lambda}^{b} \frac{(b-x)^{n}}{n!} d x
\end{aligned}
$$

with

$$
\lambda=\int_{a}^{b} \frac{f^{(n+1)}(x)-m}{M-m} d x=\frac{f^{(n)}(b)-f^{(n)}(a)-m(b-a)}{M-m},
$$

and (4.3) follows.
Since $\frac{(x-a)^{n}}{n!}$ is a increasing function of x on $[a, b]$, then

$$
\begin{aligned}
M \int_{a}^{a+\lambda} \frac{(x-a)^{n}}{n!} d x+m \int_{a+\lambda}^{b} \frac{(x-a)^{n}}{n!} d x & \leq \int_{a}^{b} \frac{(x-a)^{n}}{n!} f^{(n+1)}(x) d x \\
& \leq m \int_{a}^{b-\lambda} \frac{(x-a)^{n}}{n!} d x+M \int_{b-\lambda}^{b} \frac{(x-a)^{n}}{n!} d x
\end{aligned}
$$

and (4.4) follows.
The proofs of (4.5) and (4.6) are similar and so are omitted.
Remark 4.2. It should be mentioned that (4.5) and (4.6) have also been proved in [4]

References

[1] L. BOUGOFFA, Some estimations for the integral Taylor's remainder, J. Inequal. Pure and Appl. Math., 4(5) (2003), Art. 86. [ONLINE: http://jipam.vu.edu.au/article.php?sid= 327].
[2] P. CERONE, Generalised trapezoidal rules with error involving bounds of the nth derivative, Math. Ineq. and Applic., 5(3) (2002), 451-462.
[3] X.L.CHENG and J. SUN, A note on the perturbed trapezoid inequality, J. Inequal. Pure and Appl. Math., 3(2) (2002), Art. 29. [ONLINE: http://jipam.vu.edu.au/article.php?sid= 181].
[4] H. GAUCHMAN, Some integral inequalities involving Taylor's remainder. I, J. Inequal. Pure and Appl. Math., 3(2) (2002), Art. 26. [ONLINE: http://jipam.vu.edu.au/article.php? sid=178].
[5] H. GAUCHMAN, Some integral inequalities involving Taylor's remainder. II, J. Inequal. Pure and Appl. Math., 4(1) (2003), Art. 1. [ONLINE: http://jipam.vu.edu.au/article.php? sid=237].
[6] M. MATIĆ, Improvement of some estimations related to the remainder in generalized Taylor's formula, Math. Ineq. and Applic., 5(4) (2002), 617-648.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 111-04

