INEQUALITIES ON THE LAMBERT W FUNCTION AND HYPERPOWER FUNCTION

ABDOLHOSSEIN HOORFAR AND MEHDI HASSANI
Department of Irrigation Engineering
College of Agriculture
University of Tehran
P.O. Box 31585-1518, Karaj, Iran
hoorfar@ut.ac.ir
Department of Mathematics
Institute for Advanced Studies in Basic Sciences
P.O. Box 45195-1159, ZanJan, IRAN
mmhassany@member.ams.org

Received 09 April, 2007; accepted 15 March, 2008
Communicated by S.S. Dragomir

Abstract

In this note, we obtain inequalities for the Lambert W function $W(x)$, defined by $W(x) e^{W(x)}=x$ for $x \geq-e^{-1}$. Also, we get upper and lower bounds for the hyperpower function $h(x)=x^{x^{x^{\prime}}}$.

Key words and phrases: Lambert W function, hyperpower function, special function, inequality.
2000 Mathematics Subject Classification 33E20, 26D07.

1. Introduction

The Lambert W function $W(x)$, is defined by $W(x) e^{W(x)}=x$ for $x \geq-e^{-1}$. For $-e^{-1} \leq$ $x<0$, there are two possible values of $W(x)$, which we take values not less than -1 . The history of the function goes back to J. H. Lambert (1728-1777). One can find in [2] a more detailed definition of W as a complex variable function, some historical background and various applications of it in Mathematics and Physics. The expansion

$$
W(x)=\log x-\log \log x+\sum_{k=0}^{\infty} \sum_{m=1}^{\infty} c_{k m} \frac{(\log \log x)^{m}}{(\log x)^{k+m}}
$$

holds true for large values of x, with $c_{k m}=\frac{(-1)^{k}}{m!} S[k+m, k+1]$, where $S[k+m, k+1]$ is Stirling cycle number [2]. The series in the above expansion is absolutely convergent and it can
be rearranged into the form

$$
W(x)=L_{1}-L_{2}+\frac{L_{2}}{L_{1}}+\frac{L_{2}\left(L_{2}-2\right)}{2 L_{1}^{2}}+\frac{L_{2}\left(2 L_{2}^{2}-9 L_{2}+6\right)}{6 L_{1}^{3}}+O\left(\left(\frac{L_{2}}{L_{1}}\right)^{4}\right)
$$

where $L_{1}=\log x$ and $L_{2}=\log \log x$. Note that by \log we mean logarithm in the base e. Since the Lambert W function appears in some problems in Mathematics, Physics and Engineering, it is very useful to have some explicit bounds for it. In [5] it is shown that

$$
\begin{equation*}
\log x-\log \log x<W(x)<\log x \tag{1.1}
\end{equation*}
$$

where the left hand side holds true for $x>41.19$ and the right hand side holds true for $x>e$. The aim of the present paper is to obtain some sharper bounds.

2. Some Sharp Bounds for the Lambert W Function

It is easy to see that $W\left(-e^{-1}\right)=-1, W(0)=0$ and $W(e)=1$. Also, for $x>0$, since $W(x) e^{W(x)}=x>0$ and $e^{W(x)}>0$, we have $W(x)>0$. An easy calculation yields that

$$
\frac{d}{d x} W(x)=\frac{W(x)}{x(1+W(x))}
$$

Thus, $x \frac{d}{d x} W(x)>0$ holds true for $x>0$ and consequently $W(x)$ is strictly increasing for $x>0$ (and also for $-e^{-1} \leq x \leq 0$, but not for this reason).
Theorem 2.1. For every $x \geq e$, we have

$$
\begin{equation*}
\log x-\log \log x \leq W(x) \leq \log x-\frac{1}{2} \log \log x \tag{2.1}
\end{equation*}
$$

with equality holding only for $x=e$. The coefficients -1 and $-\frac{1}{2}$ of $\log \log x$ both are best possible for the range $x \geq e$.
Proof. For the given constant $0<p \leq 2$ consider the function

$$
f(x)=\log x-\frac{1}{p} \log \log x-W(x)
$$

for $x \geq e$. Obviously,

$$
\frac{d}{d x} f(x)=\frac{p \log x-1-W(x)}{p x(1+W(x)) \log x}
$$

and if $p=2$, then

$$
\frac{d}{d x} f(x)=\frac{(\log x-W(x))+(\log x-1)}{2 x(1+W(x)) \log x} .
$$

Considering the right hand side of 1.1 , we have $\frac{d}{d x} f(x)>0$ for $x>e$ and consequently $f(x)>f(e)=0$, and this gives right hand side of (2.1). Trivially, equality only holds for $x=e$. If $0<p<2$, then $\frac{d}{d x} f(e)=\frac{p-2}{2 e p}<0$, and this yields that the coefficient $-\frac{1}{2}$ of $\log \log x$ in the right hand side of (2.1) is the best possible for the range $x \geq e$.

For the other side, note that $\log W(x)=\log x-W(x)$ and the inequality $\log W(x) \leq$ $\log \log x$ holds for $x \geq e$, because of the right hand side of 1.1. Thus, $\log x-W(x) \leq \log \log x$ holds for $x \geq e$ with equality only for $x=e$. The sharpness of (2.1) with coefficient -1 for $\log \log x$ comes from the relation $\lim _{x \rightarrow \infty}(W(x)-\log x+\log \log x)=0$. This completes the proof.

Now, we try to obtain some upper bounds for the function $W(x)$ with the main term $\log x-$ $\log \log x$. To do this, we need the following lemma.

Lemma 2.2. For every $t \in \mathbb{R}$ and $y>0$, we have

$$
(t-\log y) e^{t}+y \geq e^{t},
$$

with equality for $t=\log y$.
Proof. Letting $f(t)=(t-\log y) e^{t}+y-e^{t}$, we have $\frac{d}{d t} f(t)=(t-\log y) e^{t}$ and $\frac{d^{2}}{d t^{2}} f(t)=$ $(t+1-\log y) e^{t}$. Now, we observe that $f(\log y)=\frac{d}{d t} f(\log y)=0$ and $\frac{d^{2}}{d t^{2}} f(\log y)=y>0$. These show that the function $f(t)$ takes its only minimum value (equal to 0) at $t=\log y$, which yields the result of Lemma 2.2 .
Theorem 2.3. For $y>\frac{1}{e}$ and $x>-\frac{1}{e}$ we have

$$
\begin{equation*}
W(x) \leq \log \left(\frac{x+y}{1+\log y}\right) \tag{2.2}
\end{equation*}
$$

with equality only for $x=y \log y$.
Proof. Using the result of Lemma 2.2 with $t=W(x)$, we get

$$
(W(x)-\log y) e^{W(x)}-\left(e^{W(x)}-y\right) \geq 0
$$

which, considering $W(x) e^{W(x)}=x$, gives $(1+\log y) e^{W(x)} \leq x+y$ and this is desired inequality for $y>\frac{1}{e}$ and $x>-\frac{1}{e}$. The equality holds when $W(x)=\log y$, i.e., $x=y \log y$.

Corollary 2.4. For $x \geq e$ we have

$$
\begin{equation*}
\log x-\log \log x \leq W(x) \leq \log x-\log \log x+\log \left(1+e^{-1}\right) \tag{2.3}
\end{equation*}
$$

where equality holds in the left hand side for $x=e$ and in the right hand side for $x=e^{e+1}$.
Proof. Consider 2.2) with $y=\frac{x}{e}$, and the left hand side of (2.1).
Remark 1. Taking $y=x$ in 2.2 we get $W(x) \leq \log x-\log \left(\frac{1+\log x}{2}\right)$, which is sharper than the right hand side of (2.1).
Theorem 2.5. For $x>1$, we have

$$
\begin{equation*}
W(x) \geq \frac{\log x}{1+\log x}(\log x-\log \log x+1) \tag{2.4}
\end{equation*}
$$

with equality only for $x=e$.
Proof. For $t>0$ and $x>1$, let

$$
f(t)=\frac{t-\log x}{\log x}-(\log t-\log \log x)
$$

We have $\frac{d}{d t} f(t)=\frac{1}{\log x}-\frac{1}{t}$ and $\frac{d^{2}}{d t^{2}} f(t)=\frac{1}{t^{2}}>0$. Now, we observe that $\frac{d}{d t} f(\log x)=0$ and so

$$
\min _{t>0} f(t)=f(\log x)=0
$$

Thus, for $t>0$ and $x>1$ we have $f(t) \geq 0$, with equality at $t=\log x$. Putting $t=W(x)$ and simplifying, we get the result, with equality at $W(x)=\log x$, or, equivalently, at $x=e$.

Corollary 2.6. For $x>1$ we have

$$
W(x) \leq(\log x)^{\frac{\log x}{1+\log x}} .
$$

Proof. This refinement of the right hand side of (1.1) can be obtained by simplifying (2.4) with $W(x)=\log x-\log W(x)$.

The bounds we have obtained up to now have the form $W(x)=\log x-\log \log x+O(1)$. Now, we give bounds with the error term $O\left(\frac{\log \log x}{\log x}\right)$ instead of $O(1)$.
Theorem 2.7. For every $x \geq e$ we have

$$
\begin{equation*}
\log x-\log \log x+\frac{1}{2} \frac{\log \log x}{\log x} \leq W(x) \leq \log x-\log \log x+\frac{e}{e-1} \frac{\log \log x}{\log x} \tag{2.5}
\end{equation*}
$$

with equality only for $x=e$.
Proof. Taking the logarithm of the right hand side of (2.1), we have

$$
\log W(x) \leq \log \left(\log x-\frac{1}{2} \log \log x\right)=\log \log x+\log \left(1-\frac{\log \log x}{2 \log x}\right)
$$

Using $\log W(x)=\log x-W(x)$, we get

$$
W(x) \geq \log x-\log \log x-\log \left(1-\frac{\log \log x}{2 \log x}\right)
$$

which, considering $-\log (1-t) \geq t$ for $0 \leq t<1$ (see [1]) with $t=\frac{\log \log x}{2 \log x}$, implies the left hand side of (2.5). To prove the other side, we take the logarithm of the left hand side of (2.1) to get

$$
\log W(x) \geq \log (\log x-\log \log x)=\log \log x+\log \left(1-\frac{\log \log x}{\log x}\right)
$$

Again, using $\log W(x)=\log x-W(x)$, we obtain

$$
W(x) \leq \log x-\log \log x-\log \left(1-\frac{\log \log x}{\log x}\right) .
$$

Now we use the inequality $-\log (1-t) \leq \frac{t}{1-t}$ for $0 \leq t<1$ (see [1]) with $t=\frac{\log \log x}{\log x}$, to get

$$
-\log \left(1-\frac{\log \log x}{\log x}\right) \leq \frac{\log \log x}{\log x}\left(1-\frac{\log \log x}{\log x}\right)^{-1} \leq \frac{1}{m} \frac{\log \log x}{\log x}
$$

where

$$
m=\min _{x \geq e}\left(1-\frac{\log \log x}{\log x}\right)=1-\frac{1}{e}
$$

Thus, we have

$$
-\log \left(1-\frac{\log \log x}{\log x}\right) \leq \frac{e}{e-1} \frac{\log \log x}{\log x}
$$

which gives the desired bounds. This completes the proof.

3. Studying the Hyperpower Function $h(x)=x^{x^{x}}$

Consider the hyperpower function $h(x)=x^{x^{x^{x}}}$. One can define this function as the limit of the sequence $\left\{h_{n}(x)\right\}_{n \in \mathbb{N}}$ with $h_{1}(x)=x$ and $h_{n+1}(x)=x^{h_{n}(x)}$. It is proven that this sequence converges if and only if $e^{-e} \leq x \leq e^{\frac{1}{e}}$ (see [4] and references therein). This function satisfies the relation $h(x)=x^{h(x)}$, which, on taking the logarithm of both sides and a simple calculation yields

$$
h(x)=\frac{W\left(\log \left(x^{-1}\right)\right)}{\log \left(x^{-1}\right)} .
$$

In this section we obtain some explicit upper and lower bounds for this function. Since the obtained bounds for $W(x)$ hold for large values of x and since for such values of x the value of $\log \left(x^{-1}\right)$ is negative, we cannot use these bounds to approximate $h(x)$.

Theorem 3.1. Taking $\lambda=e-1-\log (e-1)=1.176956974 \ldots$, for $e^{-e} \leq x \leq e^{\frac{1}{e}}$ we have

$$
\begin{equation*}
\frac{1+\log (1-\log x)}{1-2 \log x} \leq h(x) \leq \frac{\lambda+\log (1-\log x)}{1-2 \log x} \tag{3.1}
\end{equation*}
$$

where equality holds in the left hand side for $x=1$ and in the right hand side for $x=e^{\frac{1}{e}}$.
Proof. For $t>0$, we have $t \geq \log t+1$, which taking $t=z-\log z$ with $z>0$, implies

$$
z\left(1-2 \log \left(z^{\frac{1}{z}}\right)\right) \geq \log \left(1-\log \left(z^{\frac{1}{z}}\right)\right)+1
$$

and putting $z^{\frac{1}{z}}=x$, or equivalently $z=h(x)$, yields that $h(x)(1-2 \log x) \geq \log (1-\log x)+1$; this is the left hand side (3.1), since $1-2 \log x$ is positive for $e^{-e} \leq x \leq e^{\frac{1}{e}}$. Note that equality holds for $t=z=x=1$.

For the right hand side, we define $f(z)=z-\log z$ with $\frac{1}{e} \leq z \leq e$. We immediately see that $1 \leq f(z) \leq e-1$; in fact it takes its minimum value 1 at $z=1$. Also, consider the function $g(t)=\log t-t+\lambda$ for $1 \leq t \leq e-1$, with $\lambda=e-1-\log (e-1)$. Since $\frac{d}{d t} g(t)=\frac{1}{t}-1$ and $g(e-1)=0$, we obtain the inequality $\log t-t+\lambda \geq 0$ for $1 \leq t \leq e-1$, and putting $t=z-\log z$ with $\frac{1}{e} \leq z \leq e$ in this inequality, we obtain

$$
\log (1-\log z)+\lambda \geq z\left(1-2 \log \left(z^{\frac{1}{z}}\right)\right)
$$

Taking $z^{\frac{1}{z}}=x$, or equivalently $z=h(x)$ yields the right hand side 3.1. Note that equality holds for $x=e^{\frac{1}{e}}(z=e, t=e-1)$. This completes the proof.

References

[1] M. ABRAMOWITZ and I.A. STEGUN, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972. [ONLINE: http://www. convertit.com/Go/ConvertIt/Reference/AMS55.aspl.
[2] R.M. CORLESS, G.H. GONNET, D.E.G. HARE, D.J. JEFFREY AND D.E. KNUTH, On the Lambert W function, Adv. Comput. Math., 5(4) (1996), 329-359.
[3] R.M. CORLESS, D.J. JEFFREY AND D.E. KNUTH, A sequence of series for the Lambert W function, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), 197-204 (electronic), ACM, New York, 1997.
[4] I. GALIDAKIS and E.W. WEISSTEIN, "Power Tower." From MathWorld-A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/PowerTower.html].
[5] M. HASSANI, Approximation of the Lambert W function, RGMIA Research Report Collection, 8(4) (2005), Art. 12.
[6] E.W. WEISSTEIN, Lambert W-Function, from MathWorld-A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/LambertW-Function.html.

