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ABSTRACT. New refinements for the celebrated Hermite-Hadamard inequality for convex func-
tions are obtained. Applications for special means are pointed out as well.
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1. INTRODUCTION

The following result is well known in the literature as the Hermite-Hadamard integral in-
equality:

(1.1) f(a;b)ﬁbia/bf(t)dtgw’

provided thatf : [a,b] — R is a convex function ofu, b] .
The following refinements of th&. — H. inequality were obtained in [2]
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for the general case of convex functiofis [a, b] — R.
If one would assume differentiability gfon (a, b) , then the following bounds in terms of its
derivative holds (see [3, pp. 30-31])

f(a)+ f(b) I
(1.4) = [ 1 ®aez max (a8 (1) 2 0
where
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B := 1 _b—a[/a f(x)da:—/a;bf(x)dx]
and
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A different approach considered in [1] led to the following lower bounds
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For other results connected to the — H. inequality see the recent monograph on line [3].
In the present paper, we use a different method to obtain other refinementsiof théf.
inequality. Applications for special means are pointed out as well.

2. THE RESULTS

The following refinement of the Hermite-Hadamard inequality for differentiable convex func-
tions holds.
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Theorem 2.1. Assume thaf : [a,b] — R is differentiable convex ofu, b) . Then one has the
inequality:

2.1) ﬁ[f(t)dt—f(azb)
2[5 [l (57) (5)]|=e

Proof. Since f is differentiable convex offa, b) , then for eachr,y € (a,b) one has the in-
equality
(2.2) fla)=fy)=@-y) fy).

Using the properties of modulus, we have

(2.3) f@)—f)—(@—y) fy)=If(@)—fy) —(=-y) f Y
> If () = fF @) = |z =yl W]l

b—a

dr — 1

for eachz,y € (a,b).
If we choosey = £ in (2.3) we get

(2.4) f(x)—f(a;_b>_(x_a—zi-b)f,(a—;—b)
e () - (20
foranyz € (a,b).

Integrating [(2.%) oria, b] , dividing by (b — a) and using the properties of modulus, we have
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and since
b a+b b a+b (b—a)?
(2.5) /Q<x— 5 )dx—(), /a T — dr = 1
we deduce by (2]5) the desired resplt]2.1). O

The second result is embodied in the following theorem.

Theorem 2.2. Assume thaf : [a,b] — R is differentiable convex ofu, b) . Then one has the
inequality
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Proof. We chooser = “£* in (2.3) to get
en () rw- (50 rw

Hf (a+b) —f(y)‘
Integrating[(Z.) ovey, dividing by (b — a) and using the modulus properties, we get
e 1(*57) 52 /f - [ (452 -0) r o
(52) sl [
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then by [2.8) we deduce
f(a;b)+f(a)2 b—a/f
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a—l—b

Z ‘

1 Wl
which is clearly equivalent tg (2.6). O

The following result holding for the subclass of monotonic and convex functions is whort to
mention.

Theorem 2.3. Assume thaf : [a,b] — R is monotonic and convex dn, b) . Then we have:

@9) | Mw(“;b)}—biafﬂwm

> a+b

1 1
Lo s [ (o) o
Proof. Since the class of differentiable convex functiongdnb) is dense in uniform topology
in the class of all convex functions defined @nb) , we may assume, without loss of generality,
that f is differentiable convex and monotonic ¢n b) .
Firstly, assume thaf is monotonic nondecreasing @n b] . Then
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aTer a b a
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Using (2.6) we have
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which is clearly equivalent t¢ (2.9).
A similar argument may be donejfis monotonic nonincreasing and we omit the detailsl

3. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means:
a) Thearithmetic mean

b) Thegeometric mean
G (a,b) = Vab; a,b >0,

¢) Theharmonic mean

2
H(a,b)::£+%,ab>0
d) Theidentric mean
AN
- (_a) |f b;éa
I(a,b):=¢ € \@ ;a,b>0
a if b=a
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e) Thelogarithmic mean

b-a ey +a
L(a,b) := Inb—1Ina ; a,b>0
a if b=a
f) The p—logarithmic mean
prt — qrt! )11’ .
if b#a, peR\{-1,0}
L, (a,b) = ((p+1)(b—a) :a,b> 0.

a if b=a

It is well known that, if, on denotind._; (a,b) := L (a,b) and Ly (a,b) := I (a,b), then
the functionR > p — L, (a, b) is strictly monotonic increasing and, in particular, the following
classical inequalities are valid

(3.1) min {a,b} < H (a,b) < G (a,b) < L(a,b) < I(a,b) < A(a,b) <max{a,b}

foranya,b > 0.
The following proposition holds:

Proposition 3.1. Let0 < a < b < co. Then we have the following refinement for the inequality

A>L:
G\? G\?
(Z) ‘1“(2) !

The proof follows by Theoremn 3.1 on choosifig [a,b] — (0, ), f (t) = 1/t and we omit
the details.
The following proposition contains a refinementof the following well known inequality

(3.2) A_p> AL

“b—a

> 0.

1
— (A H Y >Lh

S (AT ) >
Proposition 3.2. With the above assumption ferandb we have

Loy os L (AY Cn(AY
(A'+H )~ L a) —In(g) -1

2 “b—a
The proof follows by Theorerh 2.3 for the same funcipn [a,b] — (0,00), f (t) = 1/t,
which is monotonic and convex da, b] , and the details are omitted.
One may state other similar results that improve classical inequalities for means by choosing
appropriate convex functions However, they will not be stated below.

(3.3) > 0.
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