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ABSTRACT. New refinements for the celebrated Hermite-Hadamard inequality for convex func-
tions are obtained. Applications for special means are pointed out as well.
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1. I NTRODUCTION

The following result is well known in the literature as the Hermite-Hadamard integral in-
equality:

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

2
,

provided thatf : [a, b] → R is a convex function on[a, b] .
The following refinements of theH· −H· inequality were obtained in [2]

(1.2)
1

b− a

∫ b

a

f (x) dx− f

(
a + b

2

)
≥

∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣f (x) + f (a + b− x)

2

∣∣∣∣ dx−
∣∣∣∣f (

a + b

2

)∣∣∣∣∣∣∣∣ ≥ 0.
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and

(1.3)
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

≥


∣∣∣|f (a)| − 1

b−a

∫ b

a
|f (x)| dx

∣∣∣ if f (a) = f (b)∣∣∣ 1
f(b)−f(a)

∫ f(b)

f(a)
|x| dx− 1

b−a

∫ b

a
|f (x)| dx

∣∣∣ if f (a) 6= f (b)

for the general case of convex functionsf : [a, b] → R.
If one would assume differentiability off on (a, b) , then the following bounds in terms of its

derivative holds (see [3, pp. 30-31])

(1.4)
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt ≥ max {|A| , |B| , |C|} ≥ 0

where

A :=
1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ |f ′ (x)| dx− 1

4

∫ b

a

|f ′ (x)| dx,

B :=
f (b)− f (a)

4
− 1

b− a

[∫ a+b
2

a

f (x) dx−
∫ b

a+b
2

f (x) dx

]
and

C :=
1

b− a

∫ b

a

(
x− a + b

2

)
|f ′ (x)| dx.

A different approach considered in [1] led to the following lower bounds

(1.5)
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt ≥ max {|D| , |E| , |F |} ≥ 0,

where

D :=
1

b− a

∫ b

a

|xf ′ (x)| dx− 1

b− a

∫ b

a

|f ′ (x)| dx · 1

b− a

∫ b

a

|x| dx,

E :=
1

b− a

∫ b

a

x |f ′ (x)| dx− a + b

2
· 1

b− a

∫ b

a

|f ′ (x)|xdx

and

F :=
1

b− a

∫ b

a

|x| f ′ (x) dx− f (b)− f (a)

b− a
· 1

b− a

∫ b

a

|x| dx.

For other results connected to theH· −H· inequality see the recent monograph on line [3].
In the present paper, we use a different method to obtain other refinements of theH· − H·

inequality. Applications for special means are pointed out as well.

2. THE RESULTS

The following refinement of the Hermite-Hadamard inequality for differentiable convex func-
tions holds.
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HERMITE-HADAMARD INEQUALITY 3

Theorem 2.1. Assume thatf : [a, b] → R is differentiable convex on(a, b) . Then one has the
inequality:

(2.1)
1

b− a

∫ b

a

f (t) dt− f

(
a + b

2

)
≥

∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣f (x)− f

(
a + b

2

)∣∣∣∣ dx− b− a

4
·
∣∣∣∣f ′ (a + b

2

)∣∣∣∣∣∣∣∣ ≥ 0.

Proof. Sincef is differentiable convex on(a, b) , then for eachx, y ∈ (a, b) one has the in-
equality

(2.2) f (x)− f (y) ≥ (x− y) f ′ (y) .

Using the properties of modulus, we have

f (x)− f (y)− (x− y) f ′ (y) = |f (x)− f (y)− (x− y) f ′ (y)|(2.3)

≥ ||f (x)− f (y)| − |x− y| |f ′ (y)||

for eachx, y ∈ (a, b) .
If we choosey = a+b

2
in (2.3) we get

(2.4) f (x)− f

(
a + b

2

)
−

(
x− a + b

2

)
f ′

(
a + b

2

)
≥

∣∣∣∣∣∣∣∣f (x)− f

(
a + b

2

)∣∣∣∣− ∣∣∣∣x− a + b

2

∣∣∣∣ ∣∣∣∣f ′ (a + b

2

)∣∣∣∣∣∣∣∣
for anyx ∈ (a, b) .

Integrating (2.4) on[a, b] , dividing by (b− a) and using the properties of modulus, we have

1

b− a

∫ b

a

f (x) dx− f

(
a + b

2

)
− f ′

(
a + b

2

)
· 1

b− a

∫ b

a

(
x− a + b

2

)
dx

≥ 1

b− a

∫ b

a

∣∣∣∣∣∣∣∣f (x)− f

(
a + b

2

)∣∣∣∣− ∣∣∣∣x− a + b

2

∣∣∣∣ ∣∣∣∣f ′ (a + b

2

)∣∣∣∣∣∣∣∣ dx

≥
∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣f (x)− f

(
a + b

2

)∣∣∣∣ dx−
∣∣∣∣f ′ (a + b

2

)∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ dx

∣∣∣∣
and since

(2.5)
∫ b

a

(
x− a + b

2

)
dx = 0,

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ dx =
(b− a)2

4
,

we deduce by (2.5) the desired result (2.1). �

The second result is embodied in the following theorem.

Theorem 2.2. Assume thatf : [a, b] → R is differentiable convex on(a, b) . Then one has the
inequality

(2.6)
1

2

[
f (a) + f (b)

2
+ f

(
a + b

2

)]
− 1

b− a

∫ b

a

f (x) dx

≥ 1

2

∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣f (x)− f

(
a + b

2

)∣∣∣∣ dx− 1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ |f ′ (x)| dx

∣∣∣∣ ≥ 0.
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4 S.S. DRAGOMIR AND A. M CANDREW

Proof. We choosex = a+b
2

in (2.3) to get

(2.7) f

(
a + b

2

)
− f (y)−

(
a + b

2
− y

)
f ′ (y)

≥
∣∣∣∣∣∣∣∣f (

a + b

2

)
− f (y)

∣∣∣∣− ∣∣∣∣a + b

2
− y

∣∣∣∣ |f ′ (y)|
∣∣∣∣ .

Integrating (2.7) overy, dividing by(b− a) and using the modulus properties, we get

(2.8) f

(
a + b

2

)
− 1

b− a

∫ b

a

f (y) dy −
∫ b

a

(
a + b

2
− y

)
f ′ (y) dy

≥
∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣f (
a + b

2

)
− f (y)

∣∣∣∣ dy − 1

b− a

∫ b

a

∣∣∣∣a + b

2
− y

∣∣∣∣ |f ′ (y)| dy

∣∣∣∣ .

Since ∫ b

a

(
y − a + b

2

)
f ′ (y) dy =

f (a) + f (b)

2
(b− a)−

∫ b

a

f (t) dt,

then by (2.8) we deduce

f

(
a + b

2

)
+

f (a) + f (b)

2
− 2

b− a

∫ b

a

f (y) dy

≥
∣∣∣∣ 1

b− a

∫ b

a

∣∣∣∣f (y)− f

(
a + b

2

)∣∣∣∣ dy − 1

b− a

∫ b

a

∣∣∣∣y − a + b

2

∣∣∣∣ |f ′ (y)| dy

∣∣∣∣
which is clearly equivalent to (2.6). �

The following result holding for the subclass of monotonic and convex functions is whort to
mention.

Theorem 2.3.Assume thatf : [a, b] → R is monotonic and convex on(a, b) . Then we have:

(2.9)
1

2

[
f (a) + f (b)

2
+ f

(
a + b

2

)]
− 1

b− a

∫ b

a

f (x) dx

≥
∣∣∣∣14 [f (b)− f (a)] +

1

b− a

∫ b

a

sgn

(
a + b

2
− x

)
f (x) dx

∣∣∣∣ .

Proof. Since the class of differentiable convex functions in(a, b) is dense in uniform topology
in the class of all convex functions defined on(a, b) , we may assume, without loss of generality,
thatf is differentiable convex and monotonic on(a, b) .

Firstly, assume thatf is monotonic nondecreasing on[a, b] . Then∫ b

a

∣∣∣∣f (x)− f

(
a + b

2

)∣∣∣∣ dx =

∫ a+b
2

a

(
f

(
a + b

2

)
− f (x)

)
dx

+

∫ b

a+b
2

(
f (x)− f

(
a + b

2

))
dx

=

∫ b

a+b
2

f (x) dx−
∫ a+b

2

a

f (x) dx,
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HERMITE-HADAMARD INEQUALITY 5

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ |f ′ (x)| dx =

∫ a+b
2

a

(
a + b

2
− x

)
f ′ (x) dx +

∫ b

a+b
2

(
x− a + b

2

)
f ′ (x) dx

=

(
a + b

2
− x

)
f (x)

∣∣∣∣a+b
2

a

+

∫ a+b
2

a

f (x) dx

+

(
x− a + b

2

)
f (x)

∣∣∣∣b
a+b
2

−
∫ b

a+b
2

f (x) dx

= −b− a

2
f (a) +

∫ a+b
2

a

f (x) dx +
b− a

2
f (b)−

∫ b

a+b
2

f (x) dx.

Using (2.6) we have

1

2

[
f (a) + f (b)

2
+ f

(
a + b

2

)]
− 1

b− a

∫ b

a

f (x) dx

≥ 1

2 (b− a)

∣∣∣∣∣
∫ b

a+b
2

f (x) dx−
∫ a+b

2

a

f (x) dx

−

[
b− a

2
f (b)− b− a

2
f (a) +

∫ a+b
2

a

f (x) dx−
∫ b

a+b
2

f (x) dx

]∣∣∣∣∣
=

1

2 (b− a)

∣∣∣∣∣2
∫ b

a+b
2

f (x) dx− 2

∫ a+b
2

a

f (x) dx− b− a

2
[f (b)− f (a)]

∣∣∣∣∣ ,

which is clearly equivalent to (2.9).
A similar argument may be done iff is monotonic nonincreasing and we omit the details.�

3. APPLICATIONS FOR SPECIAL M EANS

Let us recall the following means:

a) Thearithmetic mean

A (a, b) :=
a + b

2
, a, b > 0,

b) Thegeometric mean

G (a, b) :=
√

ab; a, b ≥ 0,

c) Theharmonic mean

H (a, b) :=
2

1
a

+ 1
b

; a, b > 0,

d) Theidentric mean

I (a, b) :=


1

e

(
bb

aa

) 1
b−a

if b 6= a

a if b = a

; a, b > 0
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6 S.S. DRAGOMIR AND A. M CANDREW

e) Thelogarithmic mean

L (a, b) :=


b− a

ln b− ln a
if b 6= a

a if b = a

; a, b > 0

f) Thep−logarithmic mean

Lp (a, b) :=


(

bp+1 − ap+1

(p + 1) (b− a)

) 1
p

if b 6= a, p ∈ R\ {−1, 0}

a if b = a

; a, b > 0.

It is well known that, if, on denotingL−1 (a, b) := L (a, b) andL0 (a, b) := I (a, b) , then
the functionR 3 p → Lp (a, b) is strictly monotonic increasing and, in particular, the following
classical inequalities are valid

(3.1) min {a, b} ≤ H (a, b) ≤ G (a, b) ≤ L (a, b) ≤ I (a, b) ≤ A (a, b) ≤ max {a, b}
for anya, b > 0.

The following proposition holds:

Proposition 3.1. Let0 < a < b < ∞. Then we have the following refinement for the inequality
A ≥ L :

(3.2) A− L ≥ AL

b− a

[(
G

A

)2

− ln

(
G

A

)2

− 1

]
≥ 0.

The proof follows by Theorem 2.1 on choosingf : [a, b] → (0,∞), f (t) = 1/t and we omit
the details.

The following proposition contains a refinementof the following well known inequality
1

2

(
A−1 + H−1

)
≥ L−1.

Proposition 3.2. With the above assumption fora andb we have

(3.3)
1

2

(
A−1 + H−1

)
− L−1 ≥ 1

b− a

[(
A

G

)2

− ln

(
A

G

)2

− 1

]
≥ 0.

The proof follows by Theorem 2.3 for the same funcionf : [a, b] → (0,∞), f (t) = 1/t,
which is monotonic and convex on[a, b] , and the details are omitted.

One may state other similar results that improve classical inequalities for means by choosing
appropriate convex functionsf. However, they will not be stated below.
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