Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON COMMUTATIVE BANACH ALGEBRAS

TAKASHI SANO
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 990-8560, Japan.
EMail: sano@sci.kj.yamagata-u.ac.jp
volume 7 , issue 2 , article 68, 2006.

Received 09 March, 2006; accepted 06 April, 2006.
Communicated by: C.-K. Li

Abstract
Contents
Gome Page
Go Back
Close

Abstract

Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. In this note, several characterizations of commutativity of \mathcal{A} are given. For instance, it is shown that \mathcal{A} is commutative if

$$
\|A B\|=\|B A\|
$$

for all $A, B \in \mathcal{A}$, or if the spectral radius on \mathcal{A} is a norm.

2000 Mathematics Subject Classification: 46J99, 47A30.
Key words: Commutative Banach algebra; Norm; Similarity transformation; Spectral radius.

The author is grateful to the referee for careful reading of the manuscript and for helpful comments.

Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. In this note, several characterizations of the commutativity of \mathcal{A} are studied.

The following theorem is a simple characterization of commutativity in terms of norm inequalities, whose proof depends on complex analysis as the wellknown one for the Fuglede-Putnum theorem, for instance, see [2, p. 278].

Theorem 1. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|_{0}$. If there is a norm $\|\cdot\|$ on \mathcal{A} and positive constants γ, κ such that

$$
\|A\| \leqq \gamma\|A\|_{0}, \quad\|A B\| \leqq \kappa\|B A\|
$$

for all $A, B \in \mathcal{A}$, then \mathcal{A} is commutative, that is, $A B=B A$ for all $A, B \in \mathcal{A}$.

A Note on Commutative Banach Algebras

Takashi Sano

Title Page
Contents

Go Back
Close
Quit
Page 2 of 6

Before giving a proof, we recall the definition of e^{A} for $A \in \mathcal{A}$:

$$
e^{A}:=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n} \in \mathcal{A} .
$$

The assumption that \mathcal{A} is a complete, unital normed algebra with a submultiplicative norm guarantees the convergence of this infinite series in \mathcal{A} and implies

$$
\frac{d}{d z} e^{z A}=A e^{z A} \quad(z \in \mathbb{C})
$$

Proof. Let $A, B \in \mathcal{A}$. Let us consider the normed space $(\mathcal{A},\|\cdot\|)$. For each bounded linear functional φ on this normed space, we define a complex-valued function f on \mathbb{C} by

$$
f(z):=\varphi\left(e^{z A} B e^{-z A}\right) \quad(z \in \mathbb{C})
$$

Then the first assumption of $\|\cdot\|$ guarantees that f is an entire analytic function. f is also bounded: in fact, by the second assumption

$$
\begin{aligned}
|f(z)| & \leqq\|\varphi\|\left\|e^{z A} B e^{-z A}\right\| \\
& \leqq \kappa\|\varphi\|\left\|B e^{-z A} \cdot e^{z A}\right\| \\
& =\kappa\|\varphi\|\|B\|<\infty \quad(z \in \mathbb{C})
\end{aligned}
$$

Thus, by the Liouville theorem, f is constant. Hence,

$$
0=f^{\prime}(z)=\varphi\left(\left(A e^{z A}\right) B e^{-z A}+e^{z A} B\left(-A e^{-z A}\right)\right)
$$

Putting $z=0$ yields

$$
\varphi(A B-B A)=0
$$

for each bounded linear functional φ on \mathcal{A}. By the Hahn-Banach theorem, $A B=B A$ and the proof is completed.

Remark 1.

1. By considering completion, we find it sufficient to assume in Theorem 1 that \mathcal{A} is a unital normed algebra over \mathbb{C} with submultiplicative norm $\|\cdot\|_{0}$.
2. The assumption that

$$
\|A B\| \leqq \kappa\|B A\|
$$

for all $A, B \in \mathcal{A}$ can be replaced with a weaker one

$$
\left\|S A S^{-1}\right\| \leqq \kappa\|A\|
$$

for all $A \in \mathcal{A}$ and all invertible $S \in \mathcal{A}$, or even further

$$
\left\|e^{z A} B e^{-z A}\right\| \leqq \kappa\|B\|
$$

for all $A, B \in \mathcal{A}$ and all $z \in \mathbb{C}$. In fact, it is essential to the proof of Theorem 1 that for given A, B

$$
\sup \left\{\left\|e^{z A} B e^{-z A}\right\|: z \in \mathbb{C}\right\}<\infty
$$

A Note on Commutative Banach Algebras

Takashi Sano

Title Page
Contents
Go Back
Close
Quit
Page 4 of 6

Theorem 1 and Remark 1 (2) yield:

Corollary 2. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. Suppose that there is a positive constant γ such that

$$
\|A B\| \leqq \gamma\|B A\|
$$

for all $A, B \in \mathcal{A}$. Then \mathcal{A} is commutative. In particular, if $\|A B\|=\|B A\|$ for all $A, B \in \mathcal{A}$, then \mathcal{A} is commutative.

Corollary 3 ([1, Exercise IV 4.1]). On the set of all complex n-square matrices for $n \geqq 2$ no norm is invariant under all similarity transformations.

See [1, p.102] for similarity transformations.
Corollary 4. Let \mathcal{A} be a unital Banach algebra over \mathbb{C} with norm $\|\cdot\|$. If the spectral radius is a norm on \mathcal{A}, then \mathcal{A} is commutative.

This follows from Theorem 1 and the properties of the spectral radius $r(A)$ that $r(A B)=r(B A)$ and $r(A) \leqq\|A\|$ for $A, B \in \mathcal{A}$.
Remark 2. There is a unital Banach algebra whose spectral radius is not a norm but a semi-norm. This semi-norm condition is not sufficient for commutativity.

In fact, let $\mathcal{A}\left(\subseteq M_{n}(\mathbb{C})\right)$ be the set of upper triangular matrices whose diagonal entries are identical; \mathcal{A} consists of $A:=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$ such that $a_{11}=a_{22}=\cdots=a_{n n}(=: \alpha)$ and $a_{i j}=0 \quad(i>j)$. For this $A, r(A)=|\alpha|$ and the spectral radius on \mathcal{A} is a semi-norm. Therefore, the unital Banach algebra \mathcal{A} is a non-commutative example.

A Note on Commutative Banach Algebras

Takashi Sano

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 5 of 6

References

[1] R. BHATIA, Matrix Analysis, Springer-Verlag (1996).
[2] J.B. CONWAY, A Course in Functional Analysis, 2nd Ed., Springer-Verlag, (1990).

A Note on Commutative Banach Algebras

Takashi Sano

Title Page
Contents
Go Back
Close
Quit

[^0]http://jipam.vu.edu.au

[^0]: J. Ineq. Pure and Appl. Math. 7(2) Art. 68, 2006

