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Abstract

In this paper we establish some new weighted multidimensional Grüss type
integral and discrete inequalities by using a fairly elementary analysis .
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1. Introduction
In 1935, G. Grüss [3] proved the following classical integral inequality (see,
also [4, p. 296]):∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x)−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

4
(P − p) (Q− q) ,

provided thatf andg are two integrable functions on[a, b] such that

p ≤ f (x) ≤ P, q ≤ g (x) ≤ Q,

for all x ∈ [a, b], wherep, P, q, Q are constants.
A large number of generalizations, extensions and variants of this inequality

have been given by several authors since its discovery, see [1, 2], [4] – [6] and
the references given therein. The main purpose of this paper is to establish new
weighted integral and discrete inequalities of the Grüss type involving functions
of several independent variables. The analysis used in the proofs is elementary
and our results provide new estimates on inequalities of this type.
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2. Statement of Results
In what follows,R andN denote the set of real and natural numbers respectively.

Let Di [a, b] = {xi : ai < xi < bi} for i = 1, . . . , n, ai, bi ∈ R, D =
n∏

i=1

Di [ai, bi] andD̄ be the closure ofD. For a differentiable functionu (x) :

D̄ → R, we denote the first order partial derivatives by∂u(x)
∂xi

(i = 1, . . . , n) and∫
D

u (x) dx then-fold integral∫ b1

a1

· · ·
∫ bn

an

u (x1, . . . , xn) dx1 . . . dxn.

If ∥∥∥∥ ∂u

∂xi

∥∥∥∥
∞

= sup
x∈D

∣∣∣∣∂u (x)

∂xi

∣∣∣∣ < ∞,

then we say that the partial derivatives∂u(x)
∂xi

are bounded. LetNi [0, ai] =

{0, 1, 2, . . . , ai} , ai ∈ N, (i = 1, . . . , n) andB =
n∏

i=1

Ni [0, ai]. For a func-

tion z (x) : B → R we define the first order forward difference operators as

∆1z (x) = z (x1 + 1, x2, . . . , xn)− z (x) , . . . , ∆nz (x)

= z (x1, . . . , xn−1, xn + 1)− z (x)

and denote then-fold sum overB with respect to the variabley = (y1, . . . , yn) ∈
B by ∑

y

z (y) =

a1−1∑
y1=0

· · ·
an−1∑
yn=0

z (y1, . . . , yn) .
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Clearly, ∑
y

z (y) =
∑

x

z (x) for x, y ∈ B.

If ‖∆iz‖∞ = sup
x∈B

|∆iz (x)| < ∞, then we say that the partial differences

∆iz (x) are bounded. The notation

xi−1∑
ti=yi

∆iz (y1, . . . , yi−1, ti, xi+1, . . . , xn) , xi, yi ∈ Ni [0, ai] (i = 1, . . . , n) ,

we mean fori = 1 it is
∑x1−1

t1=y1
∆1z (t1, x2, . . . , xn) and so on, and fori = n it is∑xn−1

tn=yn
∆n ×z (y1, . . . , yn−1, tn). We use the usual convention that the empty

sum is taken to be zero. We use the following notations to simplify the details
of presentation.

For continuous functionsp, q defined onD̄ and differentiable onD, w (x) a
real-valued nonnegative and integrable function for everyx ∈ D with

∫
D

w (x) dx
> 0 andxi, yi ∈ Di [ai, bi], we set

A [w, p, q] =

∫
D

w (x) p (x) q (x) dx

− 1∫
D

w (x) dx

(∫
D

w (x) p (x) dx

)(∫
D

w (x) q (x) dx

)
,

H [p, xi, yi] =
n∑

i=1

∥∥∥∥ ∂p

∂xi

∥∥∥∥
∞
|xi − yi| .
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For the functionsp, q : B → R whose forward differences∆ip, ∆iq exist,
w (x) a real-valued nonnegative function defined onB and

∑
x

w (x) > 0 and

xi, yi ∈ Ni [0, ai], we set

L [w, p, q]

=
∑

x

w (x) p (x) q (x)− 1∑
x

w (x)

(∑
x

w (x) p (x)

)(∑
x

w (x) q (x)

)
,

M [p, xi, yi] =
n∑

i=1

‖∆ip‖∞ |xi − yi| .

Our main results on weighted Grüss type integral inequalities involving func-
tions of many independent variables are embodied in the following theorem.

Theorem 2.1. Let f, g be real-valued continuous functions on̄D and differen-
tiable onD whose derivatives∂f

∂xi
, ∂g

∂xi
are bounded. Letw (x) be a real-valued,

nonnegative and integrable function forx ∈ D and
∫

D
w (x) dx > 0. Then

(2.1) |A [w, f, g]|

≤ 1

2
∫

D
w (x) dx

∫
D

w (x)

[
|g (x)|

∫
D

H [f, xi, yi] w (y) dy

+ |f (x)|
∫

D

H [g, xi, yi] w (y) dy

]
dx,
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(2.2) |A [w, f, g]|

≤ 1(∫
D

w (x) dx
)2 ∫

D

w (x)

(∫
D

H [f, xi, yi] w (y) dy

)
×
(∫

D

H [g, xi, yi] w (y) dy

)
dx.

Remark 2.1. If we taken = 1 andD = I = {a < x < b} in (2.1), then we get∣∣∣∣∣
∫ b

a

w (t) f (t) g (t) dt− 1∫ b

a
w (t) dt

(∫ b

a

w (t) f (t) dt

)(∫ b

a

w (t) g (t) dt

)∣∣∣∣∣
≤ 1

2
∫ b

a
w (t) dt

∫ b

a

w (t)

[
|g (t)|

∫ b

a

‖f ′‖∞ |t− s|w (s) ds

+ |f (t)|
∫ b

a

‖g′‖∞ |t− s|w (s) ds

]
dt.

Similarly, one can obtain the special version of (2.2). It is easy to see that the
upper bound given on the right side in the above inequality (whenw(t) = 1) is
different from those given by Grüss in [3].

The next theorem deals with the discrete versions of the inequalities in The-
orem2.1.

Theorem 2.2.Letf, g be real-valued functions defined onB and∆if, ∆ig are
bounded. Letw (x) be a real-valued nonnegative function defined onB and
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∑
x

w (x) > 0. Then

(2.3) |L [w, f, g]| ≤ 1

2
∑
x

w (x)

∑
x

w (x)

[
|g (x)|

∑
y

M [f, xi, yi]w (y)

+ |f (x)|
∑

y

M [g, xi, yi]w (y)

]
,

(2.4) |L (w, f, g)| ≤ 1(∑
x

w (x)

)2

∑
x

w (x)

×

(∑
y

M [f, xi, yi] w (y)

)(∑
y

M [g, xi, yi] w (y)

)
.

Remark 2.2. In a recent paper [6] the author gave multidimensional Grüss
type finite difference inequalities whose proofs were based on a certain finite
difference identity. Here we note that the inequalities established in (2.3) and
(2.4) are of more general type and can be considered as the weighted general-
izations of the similar inequalities given in [6].
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3. Proof of Theorem2.1
Let x = (x1, . . . , xn) ∈ D̄, y = (y1, . . . , yn) ∈ D. From then-dimensional
version of the mean value theorem we have (see [7, p. 174])

(3.1) f (x)− f (y) =
n∑

i=1

∂f (c)

∂xi

(xi − yi)

and

(3.2) g (x)− g (y) =
n∑

i=1

∂g (c)

∂xi

(xi − yi) ,

wherec = (y1 + α (x1 − y1) , . . . , yn + α (xn − yn)) (0 < α < 1). Multiply-
ing both sides of (3.1) and (3.2) by g(x) andf (x) respectively and adding we
get

(3.3) 2f (x) g (x)− g (x) f (y)− f (x) g (y)

= g (x)
n∑

i=1

∂f (c)

∂xi

(xi − yi) + f (x)
n∑

i=1

∂g (c)

∂xi

(xi − yi) .

Multiplying both sides of (3.3) by w (y) and integrating the resulting identity
with respect toy overD we have

(3.4) 2

(∫
D

w (y) dy

)
f (x) g (x)

− g (x)

∫
D

w (y) f (y) dy − f (x)

∫
D

w (y) g (y) dy

http://jipam.vu.edu.au/
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= g (x)

∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy+f (x)

∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy.

Next, multiplying both sides of (3.4) byw (x) and integrating the resulting iden-
tity with respect tox onD we get

(3.5) 2

(∫
D

w (y) dy

)∫
D

w (x) f (x) g (x) dx

−
(∫

D

w (x) g (x) dx

)(∫
D

w (y) f (y) dy

)
−
(∫

D

w (x) f (x) dx

)(∫
D

w (y) g (y) dy

)
=

∫
D

w (x) g (x)

(∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

)
dx

+

∫
D

w (x) f (x)

(∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy

)
dx.

From (3.5) and using the properties of modulus we have

|A [w, f, g]|

≤ 1

2
∫

D
w (x) dx

[∫
D

w (x) |g (x)|

(∫
D

n∑
i=1

∣∣∣∣∂f (c)

∂xi

∣∣∣∣ |xi − yi|w (y) dy

)
dx

+

∫
D

w (x) |f (x)|

(∫
D

n∑
i=1

∣∣∣∣∂g (c)

∂xi

∣∣∣∣ |xi − yi|w (y) dy

)
dx

]

http://jipam.vu.edu.au/
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≤ 1

2
∫

D
w (x) dx

∫
D

w (x)

[
|g (x)|

∫
D

n∑
i=1

∥∥∥∥ ∂f

∂xi

∥∥∥∥
∞
|xi − yi|w (y) dy

+ |f (x)|
∫

D

n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
∞
|xi − yi|w (y) dy

]
dx

=
1

2
∫

D
w (x) dx

∫
D

w (x)

[
|g (x)|

∫
D

H [f, xi, yi] w (y) dy

+ |f (x)|
∫

D

H [g, xi, yi] w (y) dy

]
dx.

This is the required inequality in (2.1).
Multiplying both sides of (3.1) and (3.2) by w (y) and integrating the result-

ing identities with respect toy onD we get

(3.6)

(∫
D

w (y) dy

)
f (x)−

∫
D

w (y) f (y) dy

=

∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

and

(3.7)

(∫
D

w (y) dy

)
g (x)−

∫
D

w (y) g (y) dy

=

∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy.
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Multiplying the left sides and right sides of (3.6) and (3.7) we get

(3.8)

(∫
D

w (y) dy

)2

f (x) g (x)−
(∫

D

w (y) dy

)
f (x)

∫
D

w (y) g (y) dy

−
(∫

D

w (y) dy

)
g (x)

∫
D

w (y) f (y) dy

+

(∫
D

w (y) f (y) dy

)(∫
D

w (y) g (y) dy

)
=

(∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

)(∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy

)
.

Multiplying both sides of (3.8) by w (x) and integrating the resulting identity
with respect tox onD, by simple calculations we obtain

(3.9)
∫

D

w (x) f (x) g (x) dx

− 1∫
D

w (y) dy

(∫
D

w (x) f (x) dx

)(∫
D

w (x) g (x) dx

)
=

1(∫
D

w (y) dy
)2 ∫

D

w (x)

(∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

)

×

(∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy

)
dx.

From (3.9) and following the proof of the inequality (2.1) with suitable modifi-
cations we get the required inequality in (2.2). The proof is complete. �
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Remark 3.1. Multiplying the left sides and right sides of (3.1) and (3.2), then
multiplying the resulting identity byw (y), integrating it with respect toy onD,
again multiplying the resulting identity byw (x), integrating it with respect tox
overD and following the similar arguments as in the proofs of (2.1), (2.2) we
have

(3.10) |A [w, f, g]|

≤ 1

2
∫

D
w (x) dx

∫
D

w (x)

(∫
D

H [f, xi, yi] H [g, xi, yi] w (y) dy

)
dx.
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4. Proof of Theorem2.2
For x = (x1, . . . , xn) , y = (y1, . . . , yn) in B, it is easy to observe that the
following identities hold (see [6]):

(4.1) f (x)− f (y) =
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}

and

(4.2) g (x)− g (y) =
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
.

Multiplying both sides of (4.1) and (4.2) by g (x) andf (x) respectively, and
adding we obtain

(4.3) 2f (x) g (x)− g (x) f (y)− f (x) g (y)

= g (x)
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}

+ f (x)
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
.
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Multiplying both sides of (4.3) byw (y) and summing both sides of the resulting
identity with respect toy overB, we have

(4.4) 2
∑

y

w (y) f (x) g (x)− g (x)
∑

y

w (y) f (y)− f (x)
∑

y

w (y) g (y)

= g (x)
∑

y

(
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y)

+ f (x)
∑

y

(
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y) .

Now, multiplying both sides of (4.4) by w (x) and summing the resulting iden-
tity with respect tox onB we have

(4.5) 2

(∑
y

w (y)

)∑
x

w (x) f (x) g (x)

−

(∑
x

w (x) g (x)

)(∑
y

w (y) f (y)

)
−

(∑
x

w (x) f (x)

)(∑
y

w (y) g (y)

)

=
∑

x

w (x) g (x)

[∑
y

(
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y)

]

+
∑

x

w (x) f (x)

[∑
y

(
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y)

]
.
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From (4.5) and using the properties of modulus we have

|L (w, f, g)| |

≤ 1

2
∑
x

w (x)

[∑
x

w (x) |g (x)|

×
∑

y

(
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
)

w (y)

+
∑

x

w (x) |f (x)|

×
∑

y

(
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
)

w (y)

]

≤ 1

2
∑
x

w (x)

∑
x

w (x)

[
|g (x)|

∑
y

(
n∑

i=1

∣∣∣∣∣
{
‖∆if‖∞

xi−1∑
ti=yi

1

}∣∣∣∣∣
)

w (y)

+ |f (x)|
∑

y

(
n∑

i=1

‖∆ig‖∞ |xi − yi|

)
w (y)

]

=
1

2
∑
x

w (x)

∑
x

w (x)

[∑
x

w (x) |g (x)|
∑

y

(
n∑

i=1

‖∆if‖∞ |xi − yi|

)
w (y)

+ |f (x)|
∑

y

(
n∑

i=1

‖∆ig‖∞ |xi − yi|

)
w (y)

]
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=
1

2
∑
x

w (x)

∑
x

w (x)

[
|g (x)|

∑
y

M [f, xi, yi] w(y)

+ |f(x)|
∑

y

M [g, xi, yi] w(y)

]
,

which is the required inequality in (2.3).
The proof of the inequality (2.4) can be completed by following the proof of

(2.3) and closely looking at the proof of (2.2). Here we omit the details. �

Remark 4.1. Multiplying the left sides and right sides of (4.1) and (4.2), then
multiplying the resulting identity byw (y), summing it with respect toy overB,
again multiplying the resulting identity byw (x), summing it with respect tox
overB and closely looking at the proof of the inequality (2.3) we get

(4.6) |L (w, f, g)|

≤ 1

2
∑
x

w (x)

∑
x

w (x)

(∑
y

M [f, xi, yi] M [g, xi, yi] w (y)

)
.

In concluding we note that in [2] Fink has given some Grüss type inequali-
ties for measures other than the Lebesgue measure, including signed measures
which provide different upper bounds. In addition, in [2] new proofs to some
old results are also given. However, the inequalities established here are differ-
ent and cannot be compared with those of given in [2].
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