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1. Introduction

Uncertainty principles play an important role in harmonic analysis and have been
studied by many authors and from many points of vi@These principles state
that a functionf and its Fourier transforrﬁ cannot be simultaneously sharply lo-
calized. The theorems of Hardy, Morgan, Beurling, ... are established for several
Fourier transforms in4], [9], [13] and [14]. In this context, a remarkable Heisen-
berg uncertainty principlel)] states, according to Wey2p|] who assigned the result

to Pauli, that for all square integrable functiohenR™ with respect to the Lebesgue
measure, we have

(/R x§!f<x)!2d:c) ( Rnff!f(é)Pdﬁ) > (/R yf<x)12dx)2, je{l...n}

This inequality is called the Heisenberg-Pauli-Weyl inequality for the classical Fourier
transform.

Recently, many works have been devoted to establishing the Heisenberg-Pauli-
Weyl inequality for various Fourier transforms, Rosl2i]Jand Shimeno22] have
proved this inequality for the Dunkl transform, i8(] Résler and Voit have estab-
lished an analogue of the Heisenberg-Pauli-Weyl inequality for the generalized Han-
kel transform. In the same context, BattB has proved this inequality for wavelet
states, and WolfZ6], has studied this uncertainty principle for Gelfand pairs. We
cite also De Bruijn $] who has established the same result for the classical Fourier
transform by using Hermite Polynomials, and Rassl&s 18, 19] who gave several
generalized forms for the Heisenberg-Pauli-Weyl inequality.

In [2], the second author with others considered the singular partial differential
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operators defined by

Alza

oz’
Ay = g_:z 4 204190 8722; (r,x) €]0, +oo[xR; o > 0.

and they associated v, andA, the following integral transform, called the Riemann-
Liouville operator, defined of, (R?) (the space of continuous functions&h, even
with respect to the first variable) by

Ko(f)(r; )
%fjl fjl f(rsvI—==0a+rt)(1— 2)0732(1 — s2)> Ldtds; if a > 0,
- %f_llf(Tvl—tQ,errt) a__. if «=0.

V=)’

In addition, a convolution product and a Fourier transfo#yn connected with the
mappingZ,, have been studied and many harmonic analysis results have been estab-
lished for the Fourier transfor,, (Inversion formula, Plancherel formula, Paley-
Winer and Plancherel theorems, ...).

Our purpose in this work is to study the Heisenberg-Pauli-Wey! uncertainty prin-
ciple for the Fourier transforn#, connected with%,.More precisely, using La-
guerre and Hermite polynomials we establish firstly the Heisenberg-Pauli-Weyl in-
equality for the Fourier transform#,,, that is

e Forall f € L*(dv,), we have

</O+OO /IR(TQ + )| £ (r, x)|2clya(7°,x))é
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X (//F+(u2+2f)|%(f)(u, ) 2da (e, A))é

> 2 ([ [IPann).

2

with equality if and only if

_r2+x

fr,o)=Ce *% ; C€C,ty>0,

where

e dv,(r,x) is the measure defined @ x R by
7,204-{-1
dve(r, z) = dr @ dzx.
valr, o) 29T (a + 1)v27 rea

e dv,(p, N) is the measure defined on the set

Iy =Ry xRU{(it,z); (t,z) e Ry X R; t < |z},
by

/ /F ol )l )
" 2al(a i 1)v27 (/o+oo /Rg(u’ M 4+ 3% udjud

N
+ /R /0 gip, (N — MQ)“udeA) :
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Next, we give a generalization of the Heisenberg-Pauli-Weyl inequality, that is

e Forallf € L*(dv,),a,b € R; a,b > 1andn € R such thatja = (1 — n)b, we
have

</0+Oo /]R(T2 + 22)°| f(r, )| 2dvy (r, x)) 3

1—n Heisenberg-Pauli-Weyl

2 Nb| or 9 2z Uncertainty Principle
X r (M + 2)\ ) |</O‘(f) (’u’ )\)l d'Ya(l% )\) S. Omri and L.T. Rachdi
* " n 1 vol. 9, iss. 3, art. 88, 2008
2 ¢ o0 2
(252 ([ [rearanea)
0 " Title Page
with equality if and only if
2.2 Contents
a=b=1 and f(r,z)=Ce 2% ; CeC; ty>0. <« >
In the last section of this paper, building on the ideas of Fafisahd Price 15, 16], < N

we develop a family of inequalities in their sharpest forms, which constitute the
principle of local uncertainty. Page 6 of 45
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e For all real numbet; ¢ > @ there exists a positive constaitt, . such that

for all f € L?*(dv,), and for all measurable subséfsC T',; 0 < v,(E) <
~+00, we have

//I N Pdra(p, N)

< My eva(E) (/+°°/ | f(r, z)|2dvg(r, x)) S
« (/OM/R(H+x2)f|f(r,x)\2dua<r, x))mgs,

wherel/, ¢ is the best (the smallest) constant satisfying this inequality.
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2. The Fourier Transform Associated with the Riemann-Liouville
Operator

It is well known [2] that for all (i, ) € C?, the system

Ayu(r,z) = —idu(r, z),

Heisenberg-Pauli-Weyl

AQU(T I) — _NZU(,,, JI) Uncertainty Principle
’ ’ ’ S. Omri and L.T. Rachdi
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) < >
; e Joa(x) < (_1)n T\ 2n
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In particular, for allr, s € R, we have

2.2) a(rs)| < % /0 (1= )24 cos(rst)|dt
20(a+1) (1 a1
S—ﬁr(m%)/o(l 2yt = 1.

From the properties of the Bessel function, we deduce that the eigenfungtion
satisfies the following properties

(2.3) sup |eua(r,z)| =1,
(r,z)ER?

if and only if (11, A) belongs to the set
I =R2U{(it,x); (t,z) € R? |t| < |=|}.

e The eigenfunctiorp,, , has the following Mehler integral representation

‘;Ou)\ (Tv l‘) -
Vi

In [2], using this integral representation, the authors have defined the Riemann-

Liouville integral transform associated witk,, A, by

%f_ll f_ll f(rsV1—8,z+rt) (1- )22 (1 — %) Ldtds; if o >0,

‘@Oé ) =
(f)(rz) % Lll f (Tm, x+ rt) —(ft_tz); if « =0.

o [1 [ cos(ursVT=8)e M@H0(1 — 12)073 (1 — s2)*Ldtds; if a >0,
%fjlcos<mm)e4xx+rt) dt . if « =0.
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wheref is a continuous function oR?, even with respect to the first variable.

The transforn¥Z,, generalizes the "mean operator" defined by

RHo(f)(r,z) / f(rsin@,z + rcosf)do.

In the following we denote by

e dv, the measure defined @, x R, by

P20t
dvy(r,x) = dr ® dx.
(r.) 2T (a4 1)V27

e [7(dv,) the space of measurable functiohsen R, x R such that

+o0 ,1,
HﬂmmZ(A l@ﬁ@@W¢Mﬂ@)<ﬂm i pe [1, 400l

”fHOOJ/a = €88 8UDP(yr z)eRr, xR ‘f(rv l’)’ < o0, if D = +0o0.

e ( / ), theinner product defined at?(dv,) by
+oo
(f/9)u. / /frx g(r, z)dv,(r, x).

o I'y =Ry xRU{(it,z); (t,z) e Ry x R; t < |z]}.
o %r. theco-algebra defined ofi;. by
%, = {074(B), B € B(R, xR)},
whered is the bijective function defined on the dét by

(2.4) 0, 0) = (ViZ+22.2)
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e dv, the measure defined o, by
(2.5) VAE Br; va(A) =va(0(A))

e [?(d~,) the space of measurable functiohenT'., such that

e = ([ [ 100 0P ) < oc, it pe 1,00,

HfHOO,’Ya - esssup(u,A)EFJr |f(/’b7 >\)| < OOJ If p - +OO

e ( / ), theinner product defined at¥(d~,) by

/9 / [ 1 g N ).

Then, we have the following properties.
Proposition 2.1.

i) For all non negative measurable functiopenT', , we have

@8 [ /F ol i)

N
+ /R /0 g(ip, A)(AQ—ALQ)"/wludA)-
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In particular

mdw(u, A).

(2.7) dYaq1(p;, A) =

i) For all measurable functiong on R, x R, the functionf o ¢ is measurable
onI',. Furthermore, iff is non negative or an integrable function &1 x R
with respect to the measui,,, then we have

(2.8) //F+ £ 00) (1, Ndva(p, \) /+oo/frxdyarx)

In the following, we shall define the Fourier transfor#f), associated with the
operatorZ,, and we give some properties that we use in the sequel.

Definition 2.2. The Fourier transform%, associated with the Riemann-liouville

operatorZ,, is defined on’! (dv,,) by
+oo
— [ [ 1000 0dva(rz).
0 R

By the relation £.5), we deduce that the Fourier transfog), is a bounded linear
operator fromZ!(dv, ) into L>°(d~, ), and that for allf € L*(dv,), we have

(2.10) [ Fa(Nlsone < 1fl1va-
Theorem 2.3 (Inversion formula) Let f € L'(dv,) such thatZ,(f) € L'(dv.),

(2.9) V(p, ) € T Falf)(p, )
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Theorem 2.4 (Plancherel).The Fourier transform#,, can be extended to an iso-
metric isomorphism fronh?(dv,,) onto L?(d~,,).

In particular, for allf, g € L*(dv,), we have the following Parseval’s equality

(2.11) / RGN EAGITRVER RS

_ /0 o /IR F(r, 2)g(r @) dva (r, ).
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3. Hilbert Basis of the Spaces.?(dv, ), and L?(dv,)

In this section, using Laguerre and Hermite polynomials, we construct a Hilbert basis
of the spaces.?(dv,,) and L*(d, ), and establish some intermediate results that we
need in the next section.

It is well known [11, 23] that for everya > 0, the Laguerre polynomials?, are
defined by the following Rodriguez formula Heisenberg-Pauli-Weyl
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hence the family{ef‘nn defined by

’ }(m,n)GN2

1
e%n(r’ l‘) _ 201‘+1P(CY + 1)m' ? eiﬂgﬁ L%(T2)Hn($),
’ 2" el (m +a+ 1)

is a Hilbert basis of the spadé(dv,,).
Using the relation4.6), we deduce that the famil{ggm}

mon (s A) = (€, 0 0) (11 A)

QO‘—HF(CY + 1)m' 2 _pP42a
= 1 6 2
2" epll'(m+a+ 1)
is a Hilbert basis of the spadé(d-, ), wheref is the function defined by the relation
(2.4).

In the following, we agree that the Laguerre and Hermite polynomials with neg-
ative index are zero.

Proposition 3.1. For all (m,n) € N?, (r,z) € R, x Rand(u, \) € 'y, we have

In+1 n
(31) a:e;ln,n(n iL') = 2 em n+1 (T x) + \/;efn,n—l<r7 IE)
n+1
2 mn+1 M7 gmn 1 :ua

, defined by

(m,n)eEN

2
L2 (4 + N Ho (M),

(3.2) A (s A) =
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(B4 (1 + N)Ent) (1, A) = V/2(a+ 1) +m + )&, (1, A)

m,n

—V2(a+ 1)(m+ )& 1 (1, A).

Proof. We know [L1] that the Hermite polynomials satisfy the following recurrence
formula

H,1(z) — 2¢H,(x) + 2nH, 1(z) =0; neN,
Therefore, for al(r, z) € R, x R, we have FEEERE s
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2 2n+%(” + 1)!F(m +a+ 1) m( ) H( ) Contents
1
n QQ—HF(OJ + 1)m' : - \(r,;)\Q o (TQ)H (J)) 44 44
2\ 23 (n— DIT(m + a + 1) min e < >

n+1 . n Page 16 of 45
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and
Lot (r) — Lt (r) = Ly (r); m e N,
Hence, we deduce that

repty (r, )
1
2a+2F<C\4 + 2)m' : _r?4a? Heisenberg-Pauli-Weyl
= _1 e 2 Hn (SC) Uncertainty Principle
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LY(dv,) N L?(dv,), hence by using Fubini’s theorem, we get

1
20M1IT (o + 1)m! ’
2" an!D(m 4 a + 1)

+00 20-+1
X (/ e’éL%(rz)ja <r\/u2 + )\2> r—l)dr)
0

20T (o +

FalCmn) (1, A) = (

and then the required result follows from the following equalitieq:[

+oo
Vim € N: / e EL () Ju(y/)rS dr = (—1)"2e 4y 5 L2 (y),
0

and
. 22 2
Vn € N; / e™e T H,(x)dx = i"V2me™ 7 H,(y),
R

where J, denotes the Bessel function of the first kind and indeaefined for all

x>0 by
oo (_1)” T\ 2nta
Jal@) :Zn!F(a+n+1) (5) '

n=0

[
Proposition 3.3. Let f € L?*(dv,) N L*(dv,.1) such thatZ,(f) € L*(dya.1), then
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and

ar a+1 _ &+m+1_i2mn eoz
(37) <‘/Oé(f)/€ g >’Ya+1 - 2(Oé+1) ( ) * <f/ m,n)’/

I,
St O b

Proof. We have
+oo
et = [ [ Fraesitadvnnto)

+oo
— +1/ /fr:p )yriest (r, x)dva(r, )
2(«a

hence by using the relatio.(3), we deduce that

/ 1 / 1
<f/ea+1 l/a+1 - +O{7:L_4]T f/ - i 1 f/ m+1 n

In the same manner, and by virtue of the relatiarn’), we have

(FalH)/E / [ D N e N s 1.)
1

T 20+ 1) // Fol )1, N (1 + N)E (11, N dya (1, N),

Iy
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using the relations3(4) and @.5), we deduce that

(Ful €5 = s [ [ Zalf) N (VT T 1650
V2(a+1) ry
— V1 >)d%<u, N
Heisenberg-Pauli-Weyl
Ohi__w((gﬁa(f)/( )2m+"f ( n)>%‘ Uncertainty Principle
2(0& + 1) " S. Omri and L.T. Rachdi
m+ 1 vol. 9, iss. 3, art. 88, 2008
ﬁa 2m+2+nf a
2(0f+-1)< (f)/( ) (enr+Ln)>7aa
Title Page
hence, according to the Parseval’'s equalityl {), we obtain

Contents

o at+tm+1 o a «“ >
(Fa D)t e =\ 5 ()" (f/epnva
2(a+1)
4 >
m + 1 N m-Tn o
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4. Heisenberg-Pauli-Weyl Inequality for the Fourier Transform
Fa

In this section, we will prove the main result of this work, that is the Heisenberg-
Pauli-Weyl inequality for the Fourier transfori, connected with the Riemann-
Liouville operatorZ,,. Next we give a generalization of this result, for this we need

the following important lemma. I RS P
Uncertainty Principle
Lemma4.1.Let f € L?(dv,), such that S. Omri and L.T. Rach

vol. 9, iss. 3, art. 88, 2008

1, 2)| fll2we < +oo and [[(1* +2X3%)2 Fa(f)ll2q. < +00,

then :
oo Title Page
(@2) (o)1 P H2X 220D, = S (20+4mt2043)|ay,. [ Contents
= «“ g3
wherea,, , = (f/eq )va;  (m,n) € N2, p R
Proof. Let f € L?(dv,,), such that
Page 21 of 45
+00
Vir,z) e Ry xR;  f(r,z) = Z A€o (75 T), Go Back
m,n=0 Full Screen
and assume that
Close

1
I1(r, )| fllowa < +o0 and [[(4® +20%)2 Zolf) |20 < +00,
. journal of inequalities
then the functiongr, x) — rf(r,z) and(r,z) — xf(r,x) belong to the space in pure and applied

L?(dv,,), in particularf € L?(dv,) N L*(dvey1). In the same manner, the functions mathematics

(1, A) — (12 + A3 Z0(F) (1, ), and (i, A) — AZu(f)(1, \)
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belong to the spacé?(d~,). In particular, by the relation2(7), we deduce that

Fof) € L*(dvs) N L*(dyay1), and we have

+oo
IrfIZ,. = / / 2| f(r, ) Pl (. 2)

=2(a+1) Hf||2,,a+1

2(a+1) Z (e v |

m,n=0

hence, according to the relatio®.¢), we obtain

+o0o
(42) ”erg,ua = Z | V & +m + 1am,n —vm + 1am+1,n‘2-

m,n=0

Similarly, we have

+oo
le IR, = / / 2| (r, ) vy (r, )

Z (@ f /€ m)val Z |(f /zemn

m,n=0 m,n=0

/n+1 \/7
amn+1+ amn 1

)

and by the relationd 1), we get

+oo

(4.3) 13,0, =

mnO

By the same arguments, and using the relatiGng,((3.7) and the Parseval’s equal-

ity (2.17), we obtain

,.\,
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@.4) (12 + )2 2.3, = Z|¢7a+m+1amn+\ﬁ1amm

m,n=0

n—i—l
mn+1 amn 1
mn= 0

Combining now the relationsgl(2), (4.3), (4.4) and ¢.5), we deduce that

() f13,, + (62 + 2)2)2 Za ()13,
= I fl3., + 110> + N2 Zal D3, + I 13,0, + INFal D30

“+oo
=2 3 (@t m+ Dlamal + (m+ Dlamsial?)

)

and

+oo

||2'ya -

(4.5) AFa(f)

m,n=0
n+1 s N 9
2 m,n a 1Ymn—
n mz( i+ Gl
+oo +oo
=2 ) (a+m+ Dlama* +2 > mlama|’
m,n=0 m,n=0
+00 +oo
n 9 n+1 9
23 a2 Y e,
m,n=0 m,n=0
+o0
- Z (2ac + 4m + 2n + 3)|am.|*.
m,n=0
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Remarkl. From the relation4.1), we deduce that for alf € L?(dv, ), we have
46) 0 )f3un + 112 + 222 Za( )3, = 2o+ 3)[If]3,..
with equality if and only if

7‘2+z2

V(r,z) e Ry xR;  f(r,x)=Ce” 2 ; CeC.
Lemma 4.2. Let f € L*(dv,) such that,
1, 2)|f |2 < +00 and  [[(12% + 2)2)2 Za(f) |12 < +o00,
then

1) Forall ¢t > 0,

1 1
G )| fll3,. + I + 232 a4, = 2a+3)f]3,..

2) The following assertions are equivalent

. 1
i) @) f a1+ 2X°)2 Za( |2 =
i1) There existg, > 0, such that

20+ 3
2

11150, -

1(r, )] fioll30, + 1% + 2X2)2 Zo(fio)l3 4, = 2+ 3)| fioll30,
wheref;, (r,xz) = f(tor, tox).

Proof. 1) Let f € L?*(dv,) satisfy the hypothesis.For all> 0 we put f;(r, ) =
f(tr,tz), and then by a simple change of variables, we get

1
(4.7) 1fll3,. = m”f”g,ua,
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and

1
9 e il = s 1 DB,
Forall (u, \) €T,
A
4.9 Ful 5N = s B0 (7).

and by using the relatior?(6), we deduce that

(4.10) (1 +2X%)2 Zo(fi)ll3,, = 752a+1|l(u +20)2 Za( 3,

Then, the desired result follows by replacifidpy f; in the relation {.6).

2) Let f € L?(dvy,); f # 0.

e Assume that

1 2a + 3
10, @) fll2we (1 + 22%)2 Za(Fll200 = =—5— a+ IF1I2.0..-

By Theorem2.3, we havel| (12 + 2)2)2.%,(f 2. # 0, then for

\/ I1(r. )11z,
(12 + 2)2)2.Z0 ()2

we have

1 1
2l )| fIl5,. + @I 4+ 232 Za (N5 . = 2a+3)f]3,.,
0

and this is equivalent to

1
10 @) frollz, + 1% + 222 Za(fio) |2, = 20+ 3) | fro 2.0, -
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e Conversely, suppose that there extsts- 0, such that

1
1, 2)| fes 3.0, + 1117 + 2072 Falfo) ., = 200+ 3| fus 12,0,
This is equivalent to

(4.11) QHW D13, + B + 232 Zu( )3, = (20 +3)If 13,
Heisenberg-Pauli-Weyl

However, leth be the function defined df, +oof, by Uncertainty Principle

S. Omri and L.T. Rachdi

h(t) = H|(T x)lfHQ Va +t2H(N + 2)‘2) olf )”2% vol. 9, iss. 3, art. 88, 2008

then, the minimum of the functiohis attained at the point

[|(r, = |f||2Va Title Page
H 'u + 2)‘2 ( )HQ Yo Contents
and b .

h(to) = 20||(r, )| fll2wn (17 + 2X%)2 Za(f) 2176
Thus by1) of this lemma, we have

h(tr) > hito) = 2[[|(r, 2)|flawe | (1 +2X°)2 Za(f)llaa > (20 +3) f]13,.,.

< >

Page 26 of 45

. . Go Back
According to the relation4.11), we deduce that
o1 ) Full Screen
h(ta) = hto) = 20[|(r, 2) Fllase | (2”20 Za(Fll2s, = (20 +3)] £, cone
O : . ”
journal of inequalities
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with equality if and only if
242
V(r,z) € Ry x R; f(r,z)=Ce % ; t;,>0,CeC.
Proof. Itis obvious that iff = 0, orif |||(r, )| f||2.. = +00, OF || (12+222)2.Z0 (f)||24.
= 400, then the inequality4.12) holds.

Let us suppose thit(r, )| fll2., + || (1% +2X%)2 Zu(f)||25, < -+00, andf # 0, e
By 1) of Lemma4. 2, we have for alk > 0 Uncertainty Principle
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and the result follows if we pick

Title Page
[ (r, 2 |f||2ua
H 1?2+ 2)\2 ( )”2 o Contents
By 2) of Lemma4.2, we have < >
2a + 3 < [ 2

110 2)] Fllzwa | (12 + 2X2)2 Zo ()20 =

if and only if there existg, such that

11150,

Page 27 of 45
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1
11, 2)] froll3., + 117 +2X3%)2 Za(fio) 13, = 2+ 3)| fuoll2,0,
Full Screen
and according to Remark, this is equivalent to
Close
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The following gives a generalization of the Heisenberg-Pauli-Weyl inequality.

Theorem 4.4.Leta,b > 1 andn € R such thatna = (1 — 7)b, then for all
[ € L*(dv,) we have

b 2 3\
s 1, N+ 223 Zal D82 = (252 e

Heisenberg-Pauli-Weyl
with equality if and only it: = b = 1 and Uncertainty Principle
S. Omri and L.T. Rachdi

_r2+:c2 5
V(r, z) c R+ % R; f(T’, l‘) — Ce ztg : tO > 0’ C c C vol. 9, iss. 3, art. 88, 2008
Proof. Let f € L?(dv,), f # 0, such that
Title Page
b
H|(T $)| f“? ve T ”(M + 2)‘2)2 ( )”2 Yo < +00. Contents
Then for alla > 1, we have < >
1 (r, )| fllzyallf\lm = Hl(r 2P 12w 11212 Vo < >
whered' is defined as usual by = -%-. By Holder’s inequality we get Page 28 of 45
1 1 Go Back
() Fll 3 L1150, > N1 2) [ f ]2
Full Screen
The strict inequality here is justified by the fact thatfif~ 0, then the functions o
|(r, 2)|**| f]? and| f]? cannot be proportional. Thus for all> 1, we have ose
et 7, 2)| fl2.0a journal of inequalities
4.13) )15y, > WE D e, AR
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In the same manner and using Plancherel’s Thearenwe have for alb > 1

@1 (2, 2 L T Dl
17D,

||(H +2X2)2.Z,(f )||m_

||f||2 v Heisenberg-Pauli-Wey!
¢ Uncertainty Principle

with equality if and only ifb = 1.
Letn = then by the relations!(13), (4.14) and for alla, b > 1, we have

S. Omri and L.T. Rachdi

+b’ vol. 9, iss. 3, art. 88, 2008
na
b (s 2)1f |2 | (122 + 222)2 Zoo (f) |12
() 1130, 1 (12 420%)2 Za( )l > "y . , Title Page
115,
with equality if and only ifa = b = 1. Contents
Applying Theorem?.3, we obtain <« »
. 20 + 3\ ™ < >
02 N = 208 2 (2252)
. L . Page 29 of 45
with equality if and only ifa = b =1 and
'r2+z2 Go Back
V(r,x) € Ry x R; f(r,x)=Ce *% ; t,>0,CeC. N
O
Close
Remark2. In the particular case when= b = 2, the previous result gives us the
Heisenberg-Pauli-Weyl inequality for the fourth moment of Heisenberg journal of inequalities
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5. The Local Uncertainty Principle

Theorem 5.1. Let ¢ be a real number such that < ¢ < 222, then for all f ¢

L3(dvy), [ # 0, and for all measurable subset8' C T',; 0 < 7,(F) < 400, we
have

2
(51) // |f | d’Ya (,U” )\) < ng (’Ya(E)) - || | <T7 ZL‘) |£f||§’yo" Heisenberg-Pauli-Weyl
Uncertainty Principle
where 26 S. Omri and L.T. Rachdi
Ko 200 + 3 — 2¢ sos ( 2004 3 )2 vol. 9, iss. 3, art. 88, 2008
ot 522a+%r (a + %) 200+3—-26)
Proof. For all s > 0, we put Title Page
B, = {(7”, r) ERL xR r? 4+ 2% < 82}. Contents
Let f € L*(dv,). By Minkowski's inequality, we have pp >
1
2 4 >
5.2) ( | [ 1200 P A))
Page 30 of 45
= | Za( /)22, e
< [|Fa (les)lEHz vo T I1Fa(f1Be)1E2.
Full Screen
< (1a(E D21 Za(f1e ) locnn + 1 Fa(f15:)
Applying the relation £.10), we deduce that for every> 0, we have Close
1 journal of inequalities
(5.3) (// | Fa(f) (1, A)] d%(u,)\)) in pure and applied
mathematics
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On the other hand, by Hélder’s inequality we have

5-4) /15w < 0 2)Ef 2l (r, )~ 18,

(5.5) = [[[(r, 2) [ f(r, ) |20

2.V
2a+43-2¢
S 2

D=

(24T (0 + 3) (20 + 3 - 26))
By Plancherel’s theorem.4, we have also
(5.6) ||§a(f1Bg) 2,0 — ||le§

< M1, @) Fll2w 11, 2) |~ Lg | o,
= s~ I1(r, 2) [ f |20

Combining the relationsy(3), (5.5 and 6.6), we deduce that for all > 0 we have

2,V

(5.7) ( / / 2 (1, V)Pl 1 A)) < gue (N, D)L, ) e
whereg, ¢ is the function defined o}, +oco[ by
Jae(s) = s¢+ i a(E) s
20%2T (a+ 3) (20 + 3 — 2€)

Thus, the inequality=.7) holds for

. ( €240 (o + 3)) )
0 — ) )

Yo(E)(2a + 3 — 2
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however
ga,é(so) = ('Ya(E)) 2a+3 ch &

where 9
[ 20+3-% RO 2043 \?
g — 5220¢+%I“(a + %) 200 + 3 — 2€ .
Heisenberg-Pauli-Weyl
Let us prove that the equality i (1) cannot hold. Indeed, suppose that Uncertain?y Principley
2 S. Omri and L.T. Rachdi
// | Za () (1, M) Pda(pt, A) = Kag(va(E)) 23| (r, x)|ff||§ya vol. 9, iss. 3, art. 88, 2008
Then ) ) Title Page
[ [ 1Zu00 D Era(0.3) = goslso 1 )R,

Contents
and therefore by the relations.p), (5.3) and (.4), we get <« >
(5.8) | Z0(f18,,)1El20. = (Va(E)) [ Za(f1B.) oo S 2

Page 32 of 45

Go Back
(59) ”f BSO Lva — H (-f Bso)”Oo’Ya?

Full Screen
and
Close

2, Va "

(5.10) 115, e = W1 2) Fllzg 1|, 2) 15,
. - . . journal of inequalities
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hence
. _ i®(r,x —2
(5.11) Y(r,z) e R xR;  f(r,z) = Ce®T|(r, z)| ‘1,

where® is a real measurable function & x R.
But if f satisfies the relatiorb(9), then there exist&u, Ag) € I';, such that

Hf” Lva — ”’-@a(f) HOO,'Yoz = ‘ga(f) (lu07 )\0) | : Heisenberg-Pauli-Weyl
So, there existd, € R satisfying neerany Princpie

S. Omri and L.T. Rachdi
Fa(f) (0, Xo) = €| f

1,vas vol. 9, iss. 3, art. 88, 2008

and therefore

| oo ' ' ' Title Page
06190 / / |(7,’ x)|—2§1BSO (7‘, 517) (ezé(r,x)—z)\ox—zé()ja (7” /M% + A%) — 1) dv, (7“, :B) =0.
0 R

Contents

This implies that for almost every,, ) € R, x R, <« »

ei@(’r‘,x)fi)\oxflﬂoja (7,, /Mg + )\%) — 1 < }

Page 33 of 45
Hence, we deduce that for alle R,

Go Back
Ja <T‘\ [ ud + A%) =1 Full Screen
. . . 9 9 . Close
Using the relationZ.2), it follows thatug + A\j = 0, or uy = i|\o|, and then
pi®(ra) _ ifotidor journal of inequalities
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Now, the relation %.8) means that for almost evefy, \) € E, we have
| Za(£) (11, )] = [ Za(Flloona = [Falf) (1o, M),
which implies that for almost ever()u, A) € E, we have

Fa( )11 A) = €N F(£) (0, M),

H H Heisenberg-Pauli-Weyl
wherey is a real measurable function @i and therefore i
) +oo ) ) ) S. Omri and L.T. Rachdi
Cri) /0 /R |(r, x)!*%lBso (r, ) (672)\x+l/\oziw(u’)\)3ar V 2+ A2 — 1) dva(r,x) = 0. vol. 9, iss. 3, art. 88, 2008
Consequently for allr, z) € R, x R,
Title Page
—iAx+i oz —ip(u,\) /.2 2\ _
¢ Ja (7‘ B A ) =1 Contents
which impli_es thath = )\ ant_:iu = Ho- < >
However, sincey, (F) > 0, this contradicts the fact that for almost evéy \) € E,
< »
Ea M| = [Za() (o, 2o)]
Page 34 of 45
and shows that the inequallty |5.(L) is strlctly satisfied. O o Back
O bac
Lemma 5.2. Let ¢ be a real number such thagt > @ then for all measurable
functionf onR, x R we have Full Screen
) 9 (2a+3) (20+3) Close
(5.12) 112, < Magllfllan, © M)l | o
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Mg = m mathematics
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with equality in §£.12) if and only if there exist, b > 0 such that
[f(r,2)] = (a+b](r,2)*) "

Proof. We suppose naturally thgt=~ 0. It is obvious that the inequalitys(12) holds
i 11f 1200, = +00 OF [||(r, 2) £ £ |2, = +o00.

Assume that |2, + |l|(r, 2)[* f||2., < +o0.From the hypothesi& > 2a + 3,
we deduce that for all, b > 0, the function

(r,z) — (a+b|(r,z)[*) ™"

belongs tal'(dv,) N L?(dv,) and by Hélder’s inequality, we have

(1+ |(r2) 24|

2,V
< (113, + N 2) AU, |1+ 1) 262

However, by standard calculus, we have

(613 |IfI5., <[ @+ 102

2
2,V
2

2,V

™

T, T % _%2 = .
e i o ()

Thus
(5.14) [IfI3.. <

™

§23T (o + §) sin (m (2522

)) (A1 + M 2) £,

with equality in 6.14) if and only if we have equality inf 13, that is there exists
C' > 0 satisfying

(1 +|(r, 2)2)2| f(r,2)] = C(1 + |(r,2)|%) "3,
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or

(5.15) [f(r,2)l = C(L+|(r,2)*)~"

Fort > 0, we put as abovef;(r, z) = f(tr, tz), then we have
1

(5.16) 1fll? . = WWH%,V&,

and
1

(5.17) 1, 2)[* fill3,, = aerzara (T o) fl30.-

Replacingf by f; in the relation $.14), we deduce that for all > 0, we have

™
A1 . <

£273T (a+ §) sin (7 (%522))

In particular, for

_9q — epnz \ %
t:t0:<<% 20 3)|||(7',fv)|fH2,ya> |

(2a + 31 £115,0,,
we get
9 2 (2a§+3) ¢ (2&2»3)
1fF v < Magll fllap, & M 2)Ffllans
where
T
MQ:& = —2a o °
203 (+3) (26 — 200 — 3)25 e +3(204 + 3)% sin <7r (2”2—23>)

(B 11+ 2 1R, ).
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Now suppose that we have equality in the last inequality. Then we have equality in

(5.14) for f;, and by means ofy(15), we obtain
[ fuo(r )] = C(L+ |(r,2)[*) 7,

and then
£ (r,2)] = (a+0|(r, 2)[*) 7"
O

Theorem 5.3.Let¢ be a real number such that> 24, Then for allf € L*(dv,),
f # 0, and for all measurable subsetsC T, ; 0 < ,(F) < +oo, we have

2a+3

(5.18) / / Fa( £t M dra(it, N) < MagraEfm, & 11 2) s,

where

™
26— oc+3

Mg =

2D (a+3) (26— 20— 3) "% (2a+3) "% sin (w (%552) )

Moreover,M, ¢ is the best (the smallest) constant satisfying §).

Proof. e Suppose that the right-hand side 8f19) is finite. Then, according to
Lemmab5.2, the functionf belongs tol.!(dv,,) and we have

/ / 2 () (s NPt N) < Vel VN Fa (I r,
< Y DV e
(2a+3) (2a+3)

< Yol EYMagl fllz, © 110 2)Ef It
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where

™

2T (a+ 8) (26 — 20— 3) T (20 +3) 5 sin (v (252))

Mo =

e Let us prove that the equality ih (18 cannot hold.
Indeed, suppose that
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Contents
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(5.20) [ Fa(Nlsora = 1100 p >
and Page 38 of 45
9 (2a+3)
(5.21) 12 o = Maclfllom © N2 Go Back
Applying Lemma5.2 and the relation.21), we deduce that Full Screen

Close

(5.22) V(r,z) e Ry x R;  f(r,z) = o(r,z)(a + b|(r, z)|*) 71,

with |¢o(r, z)| = 1; a,b > 0.
On the other hand, there exisis, \¢) € I';. such that
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Combining now the relation$(20), (5.22 and .23, we get

/0+°°/R {1 — (r,x)jq (m/,ug + )\3) e—ikow} (a+b|(r, 2)[2) " dug(r, ) = 0.

This implies that for almost everfy, ) € R, x R,

i\ 0 Heisenberg-Pauli-Weyl
e T 0p(r x)jo | T/ pE + A3 ) = 1. Uncertainty Principle
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Ja (T\ [ud + )\(2)) =1. Title Page
. . . Contents
Using the relationZ.2), it follows thatu2 + A2 = 0, or uy = ||, and therefore
<« >
__—1ibgy iXox
r,x)=e e 0.
o(r, z) p R
Replacing in £.22), we get Page 39 of 45
flr,z) = Ce™(a+b|(r.a)*)7  [C]=1. Go Back
Now, the relation%.19 means that Full Screen
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Let W(u, A) € R, such that

| Fa(f) (1, N)| = € BN Z0(f) (1, M),

Then from §.24), for almost every{u, \) € F,
VN T () (1 A) = €% F o) (110, M),

and therefore

+oo
/ /(a + b|(r, 2)|*) [1 — PNz i (1A) 5 (r\//ﬂ + )\2)] dv,(r,z) = 0.
0 R
Consequently, for allr, z) € Ry x R,

et Po= Nzt (1) 5 <r\/u2 + )\2> =1,

which implies that\ = \q andu = py.

However, sincey, (E) > 0, this contradicts the fact that for almost evémy \) € E,

N ()1 A) = €% Fa(f) (10, Mo,

and shows that the inequality iA.(L9) is strictly satisfied.

e Let us prove that the constaif, . is the best one satisfying (L9).

Let A be a positive constant, such that for AlE L?(dv,,),

c25) | / Za ()0 NP1, 3) < Ava BN N ) I
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We assume thal|(r, z)|* f||2..., < +oo. Then by Lemm& .2, f belongs toL!(dv,).
Replacingf by f;(r,z) = f(tr, tx) in (5.25, and using the relationg (7), (4.9) and
(5.17, we deduce that for atl > 0

|z (2]

Using the dominate convergence theorem and the relationy (2.3), (2.9 and
(2.10, we deduce that

7. (f) (%%) 2

Consequently, for alf € L?(dv,), such that||(r, z)|* f|l2... < +oo,

2a+3

2—
da(p, A) < A||f||2ua e ) fllas, -

Va1, A) = [Za()(0,0)*7a(E).

t——+o00

a 2a+3

(5.26) Za(£)0,0) < Al fll5,,, © i ) flla, -

Now, let f € L*(dv,), such that||(r, z)|¢ f||2... < +oo, and let(u, ) € T. Putting

9(r,w) = jo (/124 02) e f (1),

theng € L*(dv,), and|||(r, z)[*gl|2.., < +oo. Moreover,Z,(g)(0,0) = Z,(f)(u, A),

and by £.26), it follows that

9_ 2a 2a+3

[ Za(F) (1 M < Allfll5,0, © it ) flla, -

Thus, for allf € L?(dv,) such that||(r, z)|* f||2... < o0, we have

a+ a+3

(5.27) | Zal D, < Allfllaw, © NI, $)\§f|bya :
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Taking fo(r, z) = (1 + |(r,2)|*) "', we have

2
e
10 (fo)ll2e s = I foll3 ., = ,
A 52‘”%1" (a + %) sin <7r <2"§z3>>
9 (26 —2a—3)7
||f0 2va > Heisenberg-Pauli-Wey!
"o 5
522a+§f‘01{_%)Sﬂl<ﬂ'<2%§§)> Uncertainty Principle
11, 2)[€foll,,. = (20 + 37 5,85, 20
) 2V . T T e e
240 (o + 3) sin (v (252))
Replacingf by f, in the relation §.27), we obtainA > M. Title Page
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