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Abstract

We generalize some results due to Pappalardo and Passacantando [10]. We
prove necessary and sufficient conditions for the monotonicity of a trajectory
of an autonomous dynamical system with locally Lipschitz data, by means of
Clarke's generalized Jacobian. Some of the results are developed in the frame-
work of variational inequalities.
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Existence of solutions to a dynamical system has been variously investigated
(see e.g. q4]). Recently, in [L(] the authors prove, in the framework of vari-
ational inequalities, necessary and sufficient conditions for the existence of
monotone trajectories of the autonomous dynamical system

v'(t) = =F (x (1))

whereF : R® — R" is assumed to b€'. However, existence and uniqueness '\égfr‘lgmf; fg:g;gezn‘g
of solutions of the latter problem are known to hold under weaker assumptions ciarke's Generalized Jacobian
on F'. Namely, in ] one can find local Lipschitzianity aof is sufficient. _ _ :
. i _ Giovanni P. Crespi and
Here we propose a generalization of Theorems 2.2. and 2.5]rtq the Matteo Rocca
case wheréd" is locally Lipschitz. We develop necessary and sufficient condi-

tions to have monotone trajectories of the autonomous (projected) dynamical

. . - . Title Page
system, expressed in terms of Clarke’s generalized Jacoljiaifilje main re-
sults are proved in Sectidd) while Section? is devoted to preliminary results Contents
and definitions. <« b
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Throughout the paper we make use of some relations between differential in-
clusions and variational inequalities. For the sake of completeness, we recall
some of them together with the standard notation. We shall consider a convex
and closed feasible regidd C R™ and an upper semi-continuous (u.s.c.) map

F from R" to 2%", with nonempty convex and compact values.

We start by recalling from] the following result about projection:

Theorem 2.1.We can associate to evetyc R™ a unique elementy (z) € K,
satisfying:
|l = 7 ()| = min [l — y]].

It is characterized by the following inequality:
(r(z) —x,mr(x) —y) <0, VyeK.
Furthermore the map(-) is non expansive, i.e.:
I7x(z) = 7 ()| < llz =yl

The mapry is said to be the projector (of best approximation) ohto
When K is a linear subspace, thetx is linear (see]). For our aims, we set

also:
mi(A) = | 7 (2).

z€EA
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The following notation should be common:
C™={velR": (v,a) <0,Ya e C}
is the (negative) polar cone of the getC R", while:
T(C,x)={veR": Jv, = v, a, >0, a, = 0, z+ v, € C}

is the Bouligand tangent cone to the etz € clC andN (C,z) = [T(C, x)]~
stands for the normal cone @0atx € clC.

It is known thatT'(C, x) and N (C, ) are closed sets an¥él(C, x) is convex.
Furthermore, when we consider a closed convexset R”, thenT(K, z) =
clcone (K — z) (cone A denotes the cone generated by the4gtso that also
the tangent cone is convex.

Given a mapi : K C R* — 2R" a differential inclusion is the problem
of finding an absolutely continuous functief-), defined on an interval, 77,
such that:

vt € [0,T], x(t) € K,
{ for a.a.t € [0,7], 2/'(t) € G(x(t)).
The solutions of the previous problem are also cattapkctoriesof the differ-
ential inclusion.

We are concerned with the following problem, which is a special case of

differential inclusion.

Problem 1. Find an absolutely continuous functiati-) from [0, 7] into R",
satisfying:
vt € (0,77, z(t) € K,

(PDI(F, K)) { for aa. te0,7], 2(t) € mrwau) (—F(z(t)),
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The previous problem is usually named “projected differential inclusion”
(for short,PDI).

Theorem 2.2. The solutions of Problerh are the solutions of the “differential
variational inequality” (DV I):

DVI(F K vVt € (0,717, x(t) € K,
( (7, K) for a.a. t € [0,7], 2'(t) € —F(x(t)) — N(K,x(t))

and conversely.

Remark 1. We recall that wherF is a single-valued operator, then the corre-
sponding “projected differential equation” and its applications have been stud-
ied for instance in§, 9, 10].

Definition 2.1. A pointz* € K is an equilibrium point forP D (F, K'), when:
0€ —F(z") — N(K,z").

In our main results we make use of the monotonicity of a trajectory of
PDI(F, K), as stated in1].

Definition 2.2. LetV be a function froni toR*. Atrajectoryx(t) of PDI(F, K)
is monotone (with respect 10) when:

Vi >s, V(x(t)) —V(z(s)) <0.

If the previous inequality holds strictlyt > s, then we say that(t) is strictly
monotone w.r.tV.
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We apply the previous definition to the function:

- l — 2*|”

‘/LB*('I) = 2 )

wherez* is an equilibrium point of? D/ (F, ).

Definition 2.3. A pointz* € K is a solution of a Strong Minty Variational
Inequality (for short,SMV I), when:

(SMVI(F, K)) (Ey—ax") >0, YyeK, Ve F(y).

Definition 2.4. A pointz* € K is a solution of a Weak Minty Variational In-
equality (for short W MV I), whenvy € K, 3¢ € F(y) such that:

Definition 2.5. If in Definition 2.3 (resp. 2.4), strict inequality holds7y € K,
y # x*, then we say that* is a “strict” solution of SMV I(F, K) (resp. of
WMVI(F, K)).

(WMVI(F, K))

Remark 2. WhenF is single valued, Definition&.3 and 2.4 reduce to the
classical notion of MV I).

The following results relate the monotonicity of trajectories b (F, i)
w.r.t. V.« to solutions of Minty Variational Inequalities.
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Definition 2.6. A set valued mag’ : R* = 2%" is said to be upper semicon-
tinuous (u.s.c.) aty € R", when for every open sét containing# (x), there
exists a neighborhoodl/ of z, such thatF'(M) C N.

Fis said to be u.s.c. when it is so at evegye R".

Theorem 2.3 ({]). If * € K is a solution ofSMV'I(F, K'), whereF'is u.s.c.
with nonempty convex compact values, then every trajecteyyf P D1(F, K)
is monotone w.r.t. functiof,-.

Theorem 2.4 (F]). Letz* be an equilibrium point o DI (F, K). If for any Monotone Trajectories of
pointz € K there exists a trajectory of DI (F, K) starting atz and monotone Dynamical Systems and

s B Clarke’s Generalized Jacobian
w.r.t. functionV,, thenz* solvesW MV I(F, K).
Giovanni P. Crespi and

Proposition 2.5 ([]). Letz* be a strict solution o6 MV I(F, K), then: Matteo Rocca
i) =* is the unique equilibrium point o DI (F, K); Title Page
i) every trajectory of°D/(F, K'), starting at a pointr, € K and defined on Contents
[0, +00) is strictly monotone w.r.tV,- and converges to*. « N
Example 2.1. Let K = R? and consider the system of autonomous differential < >
equations:
7'(t) = —=F(a(t)), Go Back
whereF : R? — R? is a single-valued map defined as: Close
Quit
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Clearly (z*,y*) = (0, 0) is an equilibrium point and one hd#'(z, y), (z,y)) >
0V(x,y) € R?, so that(0,0) is a solution of MV I(F, K) and hence, accord-
ing to Theoren®.3, every solution:(¢) of the considered system of differential
equations is monotone w.r.i/,-. Anyway, not all the solutions of the system
converge to(0,0). In fact, passing to polar coordinates, the system can be

written as:
pt)=—p(t)]1 - p*(t)]
0'(t) =—1
and solving the system, one can easily see that the solutions that start at a point “é‘;ﬂzﬁ?faf ;"325;&?;";
(p,0), with p > 1 do not converge t@0, 0), while the solutions that start at G CanerE el JeeaEn
a point (p,0) with p < 1 converge to(0,0). This last fact can be checked Giovanni P. Crespi and
on observing that for every < 1, (0,0) is a strict solution ofSMVI(F, K.) Matteo Rocca
where:
K. :={(x,y) € R?: 22+ 42 < c}. Title Page
Proposition2.5is useful in the proof of necessary and sufficient conditions Contents
for the existence of monotone trajectories/of ('), expressed by means of « NS
Clarke’s generalized Jacobias] .
< >
Definition 2.7. Let G be a locally Lipschitz function frork to R™. Clarke’s
generalized Jacobian @F at z is the subset of the spaB&*™ of n. x m matri- Go Back
ces, defined as: Close
JoG(z) = conv{lim JG(xy) : xx — x, G is differentiable atc; } Quit
Page 9 of 18
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The following proposition summarizes the main properties of the generalized
Jacobian.

Proposition 2.6.
i) JoF(z)is a nonempty, convex and compact subs@&'of";
i) the mapr — JoF(z)isu.s.c,;

iii) (Mean value Theorem) For all, y € K we have
F(y) = F(z) € conv{JoF(z +0(y —x))(y — =), d€[0,1]}.

Definition 2.8. LetG(-) be a map fronR™ into the subsets of the spaRé*" of
n X n matrices. We say that(-) is positively defined at (respectively weakly
positively defined) o when:

inf u'Gu>0, YueT(K,z)
GeG(x)

sup ' Gu >0, YuecT (K, )
GeG(x)

If the inequality is strict (foru # 0), we say thatG(x) is strictly positively
defined (resp. strictly weakly positively defined).
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Theorem 3.1.Let F' : K — R” be locally Lipschitz and lei* be an equi-
librium point of PDI(F, K). If there exists a positive numbérsuch that for
anyz, € K with ||zy — z*|| < ¢, there exists a trajectory(t) of PDI(F, K)
starting atz, and monotone w.r.f,, then Clarke’s generalized Jacobian bf
at x* is weakly positively defined ak.

Proof. Let B(z*,d) be the open ball with center in* and radius). Fix z €
B(z*,0) N K and lety(«) = z* + a(z — z*), for a € [0, 1] (clearlyy(a) €
B(z*,0) N K). Letx(t) be a trajectory of?DI(F, K') starting aty(«); for
v(t) = Ve (2()), we have:
0 = v'(0) = {«(0),y(a) — z7),
and:
l‘l(()) = _F(y<04)) —n, nec N (K,y(&))
so that:
(F'(y (@), y(a) —a7) > =(n,y(a) —27) > 0.

Now, applying the mean value theorem, sintés an equilibrium ofP D (F, K),
we get, for some*(a) € N (K, z*):
Fly(e)) +n*(e) = F(y(a)) — F(z")

€ conv{aJoF(z* + p(z — 2*))(z — z*), € [0,0]} = A(a).

SinceJoF(+) is u.s.c.,Ye > 0 and forp “small enough”, say € [0, 5(¢)]

we have:

JoF(x* 4+ p(z —x%)) C JoF(x*) + eB = J.F(z")
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(hereB denotes the open unit ball &"*™). So, it follows, fora = 3(¢):
A(B(e)) € Ble) JF(x")(z — ™),

and hence, for any > 0, F'(y(5(¢))) € B(e)J.F(z*)(z — z*).
Now, lete,, = 1/n anda,, = ((e,). We have(F (y(a,,)) + n* (o), y(on) —
x*) > 0, that is:

ap(z =) " (d(an) +7(an))(z — %) > 0,
with y(a,) € 1B andd(a,) € JoF(z*). So we obtain:

(z—a") " d(an)(z—2") > —(z—2") "y(an)(z —27) = —%(z —a")bn (2 —27),

with b, € B. Sendingn to +oo we can can assuméa,,) — d € JoF(z*)
while the right side converges toband we get:

(z—2%)"d(z —2%) > 0.

Sincez is arbitrary inB(z*,§) N K.
Hence

sup (z—a2)TA(z—2%)>0 Vze B(z*6)NK.
AeJcF(x*)

Now lety = lim A, (z, — z*), 2z, € B(z*,9) N K be some element if (K, z*).
We have

sup  y'Ay >0
AeJcF(x*)
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and

sup y Ay>0 VyeT(K,z%).
AeJcoF(x*)

that is, Jo F'(z*) is weakly positive defined oA’. O

Example 3.1. The condition of the previous theorem is necessary but not suffi-

cient for the existence of monotone trajectories (Wif). Consider the locally
Lipschitz functiont” : R — R defined as:

2?sint, #0
- {7

0, z=0
and the autonomous differential equatiofit) = —F(z(t)). Clearlyz* = 0
is an equilibrium point and it is known thaf-F'(0) = [-1,1]. Hence the

necessary condition of Theorednl is satisfied, but it is easily seen that any
trajectory x(t) of the considered differential equation (apart from the trivial
solutionz(t) = 0) is not monotone w.r.t/-.

Theorem 3.2. Assume that/ F'(z*) is strictly positively defined. Then, ev-
ery trajectoryz(t) of PDI(F) starting “sufficiently near”z* and defined on
[0, +00) is strictly monotone w.r.tV,.- and converges to*.

Proof. By assumption:

inf ' Au >0,

UL o Vue T(K,x )\{O} ,

and this condition is equivalent to the existence of a positive numiserch that
inf s jor@sy v Av > m, Yo € S' N (T(K,2*)\{0}) (whereS* is the unit
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sphere inR™). Indeed, if this is not the case, there would exist some sequence

{v,} € St converging to some € S*, such that:

1
inf v} Av, < —

A€JoF(x*) n
by compactness of- F'(z*), we would have, for every someA,, € JoF(z*)
such that:

inf v; Av,, = UJ A, v,

AeJoF(a*)

andA, — A € JoF(z*). Therefore we have, A,v, — vTAv < 0 for
n — +oo and the contradiction

inf  u'Au<0.
AcJoF(z%)

Lete > 0 and consider the set:
J.F(z*) == JoF(x") + eB.

We claim:
. T *
Ae}:lFf(x*)u Au>0, YueT(K,z*)\{0},
for ¢ “small enough”. Indeedd € J.F(z*) ifand only if A = A" + A”, with
A" € JoF(xz*)andA” € eB and hence, for € R"\{0}:

inf w' Au>  inf  w'Au+ inf u' A"w.
A€J-F(a*) AeToF(z*) AllceB

Monotone Trajectories of
Dynamical Systems and
Clarke’s Generalized Jacobian

Giovanni P. Crespi and
Matteo Rocca

Title Page
Contents
44 44
| | 2
Go Back
Close
Quit
Page 14 of 18

J. Ineq. Pure and Appl. Math. 6(5) Art. 142, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/

SinceA” € eB, we haveu' A"u| < || A”|||Ju|]* < e||lu|* and we get:

inf  u'Au+4 inf w'A'w> inf  u Au—elul®
AleJoF(z) AlesB AleJoF(z*)

Therefore:
: u' Au ) u' Alu
inf > inf ———
Ael.F(z*) ||u||? — AeicF@) ||ul|?

and fore < m, the right-hand side is positive.
If we fix  in (0, m), for a suitableé > 0 we have, for alk: € B(z*,§) N K:

JoF (2" + a(z —2%)) C J.F(z"), VYae(0,1)

and from the mean value theorem and the convexity of the generalized Jacobian
we obtain, for some* € N (K, z*):

F(z)+n" = F(x) — F(z")
€ conv{JoF(z* + 6(z — z%))(z — z*), § € [0,1]}
C JF(x")(x—z").

Hence we conclude:
(F(z),z —2*) >0, Vze (KnB(*))\\{z"}

and soz* is a strict solution ofSMVI(F,R" N B(z*,6)). The proof now
follows from Propositior?.5. O]
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Example 3.2. The condition of the previous theorem is sufficient but not neces-
sary for the monotonicity of trajectories. Consider the locally Lipschitz function

F : R — R defined as:

a?sin * +azx, x #0,
F(z) =
0, x =0,

where0 < a < 1, and the autonomous differential equatioiit) = —F(z(t)),
for whichz* = 0 is an equilibrium point. In a suitable neighborhoédof 0 we
haveF (z) > 0if z > 0, while F(z) < 0, if + < 0 and hence it is easily seen
that every solution of the considered differential equation, starting “néai’s
strictly monotone w.r.tV,. and converges t0. If we calculate the generalized
Jacobian off” at 0 we get/o F'(0) = [-1+a, 1 +a] and the sufficient condition
of the previous theorem is not satisfied.
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