
volume 6, issue 5, article 142,
2005.

Received 01 April, 2005;
accepted 16 January, 2006.

Communicated by: A.M. Rubinov

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

MONOTONE TRAJECTORIES OF DYNAMICAL SYSTEMS AND
CLARKE’S GENERALIZED JACOBIAN

GIOVANNI P. CRESPI AND MATTEO ROCCA
Université de la Vallée d’Aoste
Faculty of Economics
Via Duca degli Abruzzi 4
11100 Aosta, Italia.
EMail : g.crespi@univda.it

Universitá dell’Insubria
Department of Economics
via Monte Generoso 71
21100 Varese, Italia.
EMail : mrocca@eco.uninsubria.it

c©2000Victoria University
ISSN (electronic): 1443-5756
099-05

Please quote this number (099-05) in correspondence regarding this paper with the Editorial Office.

mailto:a.rubinov@ballarat.edu.au
http://jipam.vu.edu.au/
mailto:g.crespi@univda.it
mailto:mrocca@eco.uninsubria.it
http://www.vu.edu.au/


Monotone Trajectories of
Dynamical Systems and

Clarke’s Generalized Jacobian

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 18

J. Ineq. Pure and Appl. Math. 6(5) Art. 142, 2005

http://jipam.vu.edu.au

Abstract

We generalize some results due to Pappalardo and Passacantando [10]. We
prove necessary and sufficient conditions for the monotonicity of a trajectory
of an autonomous dynamical system with locally Lipschitz data, by means of
Clarke’s generalized Jacobian. Some of the results are developed in the frame-
work of variational inequalities.

2000 Mathematics Subject Classification: 26D10, 49J40, 49K40.
Key words: Dynamical Systems, Monotone Trajectories, Generalized Jacobian, Vari-

ational Inequalities.

This paper is based on the talk given by the first author within the “International
Conference of Mathematical Inequalities and their Applications, I”, December 06-
08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/
conference ]
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1. Introduction
Existence of solutions to a dynamical system has been variously investigated
(see e.g. [8]). Recently, in [10] the authors prove, in the framework of vari-
ational inequalities, necessary and sufficient conditions for the existence of
monotone trajectories of the autonomous dynamical system

x′(t) = −F (x (t))

whereF : Rn → Rn is assumed to beC1. However, existence and uniqueness
of solutions of the latter problem are known to hold under weaker assumptions
onF . Namely, in [8] one can find local Lipschitzianity ofF is sufficient.

Here we propose a generalization of Theorems 2.2. and 2.5 in [10] to the
case whereF is locally Lipschitz. We develop necessary and sufficient condi-
tions to have monotone trajectories of the autonomous (projected) dynamical
system, expressed in terms of Clarke’s generalized Jacobian [3]. The main re-
sults are proved in Section3, while Section2 is devoted to preliminary results
and definitions.
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2. Preliminaries
Throughout the paper we make use of some relations between differential in-
clusions and variational inequalities. For the sake of completeness, we recall
some of them together with the standard notation. We shall consider a convex
and closed feasible regionK ⊂ Rn and an upper semi-continuous (u.s.c.) map
F from Rn to 2Rn

, with nonempty convex and compact values.

2.1. Differential Inclusions

We start by recalling from [1] the following result about projection:

Theorem 2.1.We can associate to everyx ∈ Rn a unique elementπK(x) ∈ K,
satisfying:

‖x− πK(x)‖ = min
y∈K

‖x− y‖.

It is characterized by the following inequality:

〈πK(x)− x, πK(x)− y〉 ≤ 0, ∀y ∈ K.

Furthermore the mapπK(·) is non expansive, i.e.:

‖πK(x)− πK(y)‖ ≤ ‖x− y‖.

The mapπK is said to be the projector (of best approximation) ontoK.
WhenK is a linear subspace, thenπK is linear (see [1]). For our aims, we set
also:

πK(A) =
⋃
x∈A

πK(x).
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The following notation should be common:

C− = {v ∈ Rn : 〈v, a〉 ≤ 0,∀a ∈ C}
is the (negative) polar cone of the setC ⊆ Rn, while:

T (C, x) = {v ∈ Rn : ∃vn → v, αn > 0, αn → 0, x + αnvn ∈ C}
is the Bouligand tangent cone to the setC atx ∈ clC andN(C, x) = [T (C, x)]−

stands for the normal cone toC atx ∈ clC.
It is known thatT (C, x) andN(C, x) are closed sets andN(C, x) is convex.

Furthermore, when we consider a closed convex setK ⊆ Rn, thenT (K, x) =
cl cone (K − x) (cone A denotes the cone generated by the setA), so that also
the tangent cone is convex.

Given a mapG : K ⊆ Rn → 2Rn
, a differential inclusion is the problem

of finding an absolutely continuous functionx(·), defined on an interval[0, T ],
such that: {

∀t ∈ [0, T ], x(t) ∈ K,

for a.a.t ∈ [0, T ], x′(t) ∈ G(x(t)).

The solutions of the previous problem are also calledtrajectoriesof the differ-
ential inclusion.

We are concerned with the following problem, which is a special case of
differential inclusion.

Problem 1. Find an absolutely continuous functionx(·) from [0, T ] into Rn,
satisfying:

(PDI(F, K))

{
∀t ∈ [0, T ], x(t) ∈ K,

for a.a. t ∈ [0, T ], x′(t) ∈ πT (K,x(t)) (−F (x(t)) ,
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The previous problem is usually named “projected differential inclusion”
(for short,PDI).

Theorem 2.2. The solutions of Problem1 are the solutions of the “differential
variational inequality” (DV I):

(DV I(F, K))

{
∀t ∈ [0, T ], x(t) ∈ K,

for a.a. t ∈ [0, T ], x′(t) ∈ −F (x(t))−N(K, x(t))

and conversely.

Remark 1. We recall that whenF is a single-valued operator, then the corre-
sponding “projected differential equation” and its applications have been stud-
ied for instance in [5, 9, 10].

Definition 2.1. A pointx∗ ∈ K is an equilibrium point forPDI(F, K), when:

0 ∈ −F (x∗)−N(K, x∗).

In our main results we make use of the monotonicity of a trajectory of
PDI(F, K), as stated in [1].

Definition 2.2. LetV be a function fromK toR+. A trajectoryx(t) ofPDI(F, K)
is monotone (with respect toV ) when:

∀t ≥ s, V (x(t))− V (x(s)) ≤ 0.

If the previous inequality holds strictly∀t > s, then we say thatx(t) is strictly
monotone w.r.t.V .
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We apply the previous definition to the function:

Ṽx∗(x) =
‖x− x∗‖2

2
,

wherex∗ is an equilibrium point ofPDI(F, K).

2.2. Variational Inequalities

Definition 2.3. A point x∗ ∈ K is a solution of a Strong Minty Variational
Inequality (for short,SMV I), when:

(SMV I(F, K)) 〈ξ, y − x∗〉 ≥ 0, ∀y ∈ K, ∀ξ ∈ F (y).

Definition 2.4. A pointx∗ ∈ K is a solution of a Weak Minty Variational In-
equality (for short,WMV I), when∀y ∈ K, ∃ξ ∈ F (y) such that:

(WMV I(F, K)) 〈ξ, y − x∗〉 ≥ 0.

Definition 2.5. If in Definition 2.3 (resp. 2.4), strict inequality holds∀y ∈ K,
y 6= x∗, then we say thatx∗ is a “strict” solution of SMV I(F, K) (resp. of
WMV I(F, K)).

Remark 2. WhenF is single valued, Definitions2.3 and 2.4 reduce to the
classical notion of(MV I).

The following results relate the monotonicity of trajectories ofPDI(F, K)
w.r.t. Ṽx∗ to solutions of Minty Variational Inequalities.
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Definition 2.6. A set valued mapF : Rn ⇒ 2Rn
is said to be upper semicon-

tinuous (u.s.c.) atx0 ∈ Rn, when for every open setN containingF (x0), there
exists a neighborhoodM of x0 such thatF (M) ⊆ N .
F is said to be u.s.c. when it is so at everyx0 ∈ Rn.

Theorem 2.3 ([4]). If x∗ ∈ K is a solution ofSMV I(F, K), whereF is u.s.c.
with nonempty convex compact values, then every trajectoryx(t) ofPDI(F, K)
is monotone w.r.t. functioñVx∗.

Theorem 2.4 ([4]). Let x∗ be an equilibrium point ofPDI(F, K). If for any
pointx ∈ K there exists a trajectory ofPDI(F, K) starting atx and monotone
w.r.t. functionṼx∗, thenx∗ solvesWMV I(F, K).

Proposition 2.5 ([4]). Letx∗ be a strict solution ofSMV I(F, K), then:

i) x∗ is the unique equilibrium point ofPDI(F, K);

ii) every trajectory ofPDI(F, K), starting at a pointx0 ∈ K and defined on
[0, +∞) is strictly monotone w.r.t.̃Vx∗ and converges tox∗.

Example 2.1. LetK = R2 and consider the system of autonomous differential
equations:

x′(t) = −F (x(t)),

whereF : R2 → R2 is a single-valued map defined as:

F (x, y) =

[
−y + x|1− x2 − y2|

x + y|1− x2 − y2|

]
.

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/


Monotone Trajectories of
Dynamical Systems and

Clarke’s Generalized Jacobian

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 18

J. Ineq. Pure and Appl. Math. 6(5) Art. 142, 2005

http://jipam.vu.edu.au

Clearly(x∗, y∗) = (0, 0) is an equilibrium point and one has〈F (x, y), (x, y)〉 ≥
0 ∀(x, y) ∈ R2, so that(0, 0) is a solution ofGMV I(F, K) and hence, accord-
ing to Theorem2.3, every solutionx(t) of the considered system of differential
equations is monotone w.r.t.̃Vx∗. Anyway, not all the solutions of the system
converge to(0, 0). In fact, passing to polar coordinates, the system can be
written as: {

ρ′(t) = −ρ(t)|1− ρ2(t)|

θ′(t) = −1

and solving the system, one can easily see that the solutions that start at a point
(ρ, θ), with ρ ≥ 1 do not converge to(0, 0), while the solutions that start at
a point (ρ, θ) with ρ < 1 converge to(0, 0). This last fact can be checked
on observing that for everyc < 1, (0, 0) is a strict solution ofSMV I(F, Kc)
where:

Kc := {(x, y) ∈ R2 : x2 + y2 < c}.

Proposition2.5 is useful in the proof of necessary and sufficient conditions
for the existence of monotone trajectories ofDS(F ), expressed by means of
Clarke’s generalized Jacobian [3].

Definition 2.7. Let G be a locally Lipschitz function fromK to Rm. Clarke’s
generalized Jacobian ofG at x is the subset of the spaceRn×m of n×m matri-
ces, defined as:

JCG(x) = conv{lim JG(xk) : xk → x, G is differentiable atxk}

(hereJG denotes the Jacobian ofG and conv A stands for the convex hull of
the setA ⊆ Rn).
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The following proposition summarizes the main properties of the generalized
Jacobian.

Proposition 2.6.

i) JCF (x) is a nonempty, convex and compact subset ofRn×m;

ii) the mapx → JCF (x) is u.s.c.;

iii) (Mean value Theorem) For allx, y ∈ K we have

F (y)− F (x) ∈ conv{JCF (x + δ(y − x))(y − x), δ ∈ [0, 1]}.

Definition 2.8. LetG(·) be a map fromRn into the subsets of the spaceRn×n of
n× n matrices. We say thatG(·) is positively defined atx (respectively weakly
positively defined) onK when:

inf
G∈G(x)

u>Gu ≥ 0, ∀u ∈ T (K, x)(
sup

G∈G(x)

u>Gu ≥ 0, ∀u ∈ T (K, x)

)

If the inequality is strict (foru 6= 0), we say thatG(x) is strictly positively
defined (resp. strictly weakly positively defined).
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3. Main Results
Theorem 3.1. Let F : K → Rn be locally Lipschitz and letx∗ be an equi-
librium point ofPDI(F, K). If there exists a positive numberδ such that for
anyx0 ∈ K with ‖x0 − x∗‖ < δ, there exists a trajectoryx(t) of PDI(F, K)
starting atx0 and monotone w.r.t.̃Vx∗, then Clarke’s generalized Jacobian ofF
at x∗ is weakly positively defined onK.

Proof. Let B(x∗, δ) be the open ball with center inx∗ and radiusδ. Fix z ∈
B(x∗, δ) ∩ K and lety(α) = x∗ + α(z − x∗), for α ∈ [0, 1] (clearly y(α) ∈
B(x∗, δ) ∩ K). Let x(t) be a trajectory ofPDI(F, K) starting aty(α); for
v(t) = Ṽx∗(x(t)), we have:

0 ≥ v′(0) = 〈x′(0), y(α)− x∗〉,

and:
x′(0) = −F (y(α))− n, n ∈ N (K, y (α))

so that:
〈F (y (α)) , y(α)− x∗〉 ≥ −〈n, y(α)− x∗〉 ≥ 0.

Now, applying the mean value theorem, sincex∗ is an equilibrium ofPDI(F, K),
we get, for somen∗(α) ∈ N (K, x∗):

F (y(α)) + n∗(α) = F (y(α))− F (x∗)

∈ conv
{
αJCF (x∗ + ρ(z − x∗))(z − x∗), δ ∈ [0, α]

}
= A(α).

SinceJCF (·) is u.s.c.,∀ε > 0 and forρ “small enough”, sayρ ∈ [0, β(ε)]
we have:

JCF (x∗ + ρ(z − x∗)) ⊆ JCF (x∗) + εB := JεF (x∗)
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(hereB denotes the open unit ball inRn×n). So, it follows, forα = β(ε):

A(β(ε)) ⊆ β(ε)JεF (x∗)(z − x∗),

and hence, for anyε > 0, F (y(β(ε))) ∈ β(ε)JεF (x∗)(z − x∗).
Now, letεn = 1/n andαn = β(εn). We have〈F (y(αn)) + n∗(αn), y(αn)−

x∗〉 ≥ 0, that is:

α2
n(z − x∗)>(d(αn) + γ(αn))(z − x∗) ≥ 0,

with γ(αn) ∈ 1
n
B andd(αn) ∈ JCF (x∗). So we obtain:

(z−x∗)>d(αn)(z−x∗) ≥ −(z−x∗)>γ(αn)(z−x∗) = − 1

n
(z−x∗)bn(z−x∗),

with bn ∈ B. Sendingn to +∞ we can can assumed(αn) → d ∈ JCF (x∗)
while the right side converges to0 and we get:

(z − x∗)>d (z − x∗) ≥ 0.

Sincez is arbitrary inB(x∗, δ) ∩K.
Hence

sup
A∈JCF (x∗)

(z − x∗)>A(z − x∗) ≥ 0 ∀z ∈ B(x∗, δ) ∩K.

Now lety = lim λn(zn−x∗), zn ∈ B(x∗, δ)∩K be some element inT (K,x∗).
We have

sup
A∈JCF (x∗)

y>Ay ≥ 0
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and
sup

A∈JCF (x∗)

y>Ay ≥ 0 ∀y ∈ T (K, x∗).

that is,JCF (x∗) is weakly positive defined onK.

Example 3.1. The condition of the previous theorem is necessary but not suffi-
cient for the existence of monotone trajectories (w.r.t.Ṽ ). Consider the locally
Lipschitz functionF : R → R defined as:

F (x) =

{
x2 sin 1

x
, x 6= 0

0, x = 0

and the autonomous differential equationx′(t) = −F (x(t)). Clearly x∗ = 0
is an equilibrium point and it is known thatJCF (0) = [−1, 1]. Hence the
necessary condition of Theorem3.1 is satisfied, but it is easily seen that any
trajectory x(t) of the considered differential equation (apart from the trivial
solutionx(t) ≡ 0) is not monotone w.r.t.̃Vx∗.

Theorem 3.2. Assume thatJCF (x∗) is strictly positively defined. Then, ev-
ery trajectoryx(t) of PDI(F ) starting “sufficiently near”x∗ and defined on
[0, +∞) is strictly monotone w.r.t.̃Vx∗ and converges tox∗.

Proof. By assumption:

inf
A∈JCF (x∗)

u>Au > 0, ∀u ∈ T (K, x∗)
∖{

0
}

,

and this condition is equivalent to the existence of a positive numberm such that
infA∈JCF (x∗) v>Av > m, ∀v ∈ S1 ∩

(
T (K, x∗)

∖{
0
})

(whereS1 is the unit
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sphere inRn). Indeed, if this is not the case, there would exist some sequence
{vn} ∈ S1, converging to somev ∈ S1, such that:

inf
A∈JCF (x∗)

v>n Avn ≤
1

n

by compactness ofJCF (x∗), we would have, for everyn someAn ∈ JCF (x∗)
such that:

inf
A∈JCF (x∗)

v>n Avn = v>n Anvn

and An → Ā ∈ JCF (x∗). Therefore we havev>n Anvn → v>Āv ≤ 0 for
n → +∞ and the contradiction

inf
A∈JCF (x∗)

u>Au ≤ 0.

Let ε > 0 and consider the set:

JεF (x∗) := JCF (x∗) + εB.

We claim:
inf

A∈JεF (x∗)
u>Au > 0, ∀u ∈ T (K, x∗)

∖{
0
}

,

for ε “small enough”. Indeed,A ∈ JεF (x∗) if and only if A = A′ + A′′, with
A′ ∈ JCF (x∗) andA′′ ∈ εB and hence, foru ∈ Rn\{0}:

inf
A∈JεF (x∗)

u>Au ≥ inf
A′∈JCF (x∗)

u>A′u + inf
A′′∈εB

u>A′′u.
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SinceA′′ ∈ εB, we have|u>A′′u| ≤ ‖A′′‖‖u‖2 ≤ ε‖u‖2 and we get:

inf
A′∈JCF (x∗)

u>A′u + inf
A′′∈εB

u>A′′u ≥ inf
A′∈JCF (x∗)

u>A′u− ε‖u‖2.

Therefore:

inf
A∈JεF (x∗)

u>Au

‖u‖2
≥ inf

A′∈JCF (x∗)

u>A′u

‖u‖2
− ε

and forε < m, the right-hand side is positive.
If we fix ε in (0, m), for a suitableδ > 0 we have, for allx ∈ B(x∗, δ) ∩K:

JCF (x∗ + α(x− x∗)) ⊆ JεF (x∗), ∀α ∈ (0, 1)

and from the mean value theorem and the convexity of the generalized Jacobian,
we obtain, for somen∗ ∈ N(K, x∗):

F (x) + n∗ = F (x)− F (x∗)

∈ conv
{
JCF (x∗ + δ(x− x∗))(x− x∗), δ ∈ [0, 1]

}
⊆ JεF (x∗)(x− x∗).

Hence we conclude:

〈F (x), x− x∗〉 > 0, ∀x ∈ (K ∩B(x∗, δ))\
∖{

x∗
}

and sox∗ is a strict solution ofSMV I(F, Rn ∩ B̄(x∗, δ)). The proof now
follows from Proposition2.5.
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Example 3.2.The condition of the previous theorem is sufficient but not neces-
sary for the monotonicity of trajectories. Consider the locally Lipschitz function
F : R → R defined as:

F (x) =

{
x2 sin 1

x
+ ax, x 6= 0,

0, x = 0,

where0 < a < 1, and the autonomous differential equationx′(t) = −F (x(t)),
for whichx∗ = 0 is an equilibrium point. In a suitable neighborhoodU of 0 we
haveF (x) > 0 if x > 0, whileF (x) < 0, if x < 0 and hence it is easily seen
that every solution of the considered differential equation, starting “near”0, is
strictly monotone w.r.t.̃Vx∗ and converges to0. If we calculate the generalized
Jacobian ofF at 0 we getJCF (0) = [−1+a, 1+a] and the sufficient condition
of the previous theorem is not satisfied.
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