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ABSTRACT. We generalize some results due to Pappalardo and Passacahtendo [10]. We prove
necessary and sufficient conditions for the monotonicity of a trajectory of an autonomous dy-
namical system with locally Lipschitz data, by means of Clarke’s generalized Jacobian. Some of
the results are developed in the framework of variational inequalities.
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1. INTRODUCTION

Existence of solutions to a dynamical system has been variously investigated (séé e.g. [8]).
Recently, in[[10] the authors prove, in the framework of variational inequalities, necessary and
sufficient conditions for the existence of monotone trajectories of the autonomous dynamical

system
2(t) = —F (¢ (1))

whereF : R" — R" is assumed to b€'. However, existence and uniqueness of solutions of

the latter problem are known to hold under weaker assumptioris. ddamely, in [8] one can
find local Lipschitzianity ofF is sufficient.

Here we propose a generalization of Theorems 2.2. and 2.5]in [10] to the caseivisere
locally Lipschitz. We develop necessary and sufficient conditions to have monotone trajectories
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2 GIOVANNI P. CRESPI ANDMATTEO ROCCA

of the autonomous (projected) dynamical system, expressed in terms of Clarke’s generalized
Jacobian[3]. The main results are proved in Se¢tjon 3, while Sgdtion 2 is devoted to preliminary
results and definitions.

2. PRELIMINARIES

Throughout the paper we make use of some relations between differential inclusions and
variational inequalities. For the sake of completeness, we recall some of them together with the
standard notation. We shall consider a convex and closed feasible r€gioR™ and an upper
semi-continuous (u.s.c.) mapfrom R" to 28", with nonempty convex and compact values.

2.1. Differential Inclusions. We start by recalling from |1] the following result about projec-
tion:

Theorem 2.1. We can associate to everyc R™ a unique elementy (z) € K, satisfying:
lv — 7 ()| = nain [l — y]l.
It is characterized by the following inequality:
(m(z) — 2, me () —y) <0, VyeK.
Furthermore the map () is non expansive, i.e.:
Ik (2) = 7 (W) < llz =yl

The mapr, is said to be the projector (of best approximation) oRtoWhen K is a linear
subspace, theny is linear (seel]1]). For our aims, we set also:

mx(A) = | mx(2).

T€EA
The following notation should be common:

C ={veR":(v,a) <0,Ya e C}
is the (negative) polar cone of the getC R", while:
TC,z)={veR": v, »v, a, >0, a, = 0, x+ a,v, € C}

is the Bouligand tangent cone to the 6eatz € cIC and N (C, z) = [T(C, x)]~ stands for the
normal cone ta@' atx € clC.

It is known thatT'(C, z) and N(C, x) are closed sets an¥l(C, ) is convex. Furthermore,
when we consider a closed convex $etC R”, thenT(K,z) = clcone (K — z) (cone A
denotes the cone generated by thedeto that also the tangent cone is convex.

Given a mapG : K C R" — 2R" a differential inclusion is the problem of finding an
absolutely continuous function(-), defined on an interval, 7], such that:

vt € [0, 7], z(t) € K,
for a.a.t € 0, 7], 2'(t) € G(x(t)).

The solutions of the previous problem are also caitapbctoriesof the differential inclusion.
We are concerned with the following problem, which is a special case of differential inclu-
sion.

Problem 2.1. Find an absolutely continuous functief-) from [0, 7] into R", satisfying:
{ vt € 10,77, z(t) € K,

(PDI(F, K)) for aa. t €[0,7T], 2'(t) € mrk.eq) (—F(2(1)),
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The previous problem is usually named “projected differential inclusion” (for siany).

Theorem 2.2. The solutions of Problein 2.1 are the solutions of the “differential variational
inequality” (DV I):
vt € (0,77, z(t) € K,
(DVI(F,K))
for a.a.t € [0,T], a/(t) € —F(x(t)) — N(K,z(t))
and conversely.

Remark 2.3. We recall that wherF is a single-valued operator, then the corresponding “pro-
jected differential equation” and its applications have been studied for instanc¢e in [5, 9, 10].

Definition 2.1. A point z* € K is an equilibrium point folP D1 (F', K), when:
0€ —F(z*) — N(K,x").
In our main results we make use of the monotonicity of a trajectoyof ( F', K )|, as stated
in [1].

Definition 2.2. LetV be a function fromk toR*. Atrajectoryz(t) of|PDI(F, K )|is monotone
(with respect td/) when:
Vit >s, V(x(t)) —V(z(s)) <0.

If the previous inequality holds strictlyt > s, then we say that(¢) is strictly monotone w.r.t.
V.

We apply the previous definition to the function:

_ e =P

Ve () = o
wherez* is an equilibrium point oP DI (F, K)|

2.2. Variational Inequalities.

Definition 2.3. A pointz* € K is a solution of a Strong Minty Variational Inequality (for short,
SMVI), when:

(SMVI(F,K)) (y—a") >0, VyeK, Ve F(y).

Definition 2.4. A point z* € K is a solution of a Weak Minty Variational Inequality (for short,
WMVI), whenVy € K, 3¢ € F(y) such that:

(WMVI(F, K)) &y —a7) =0

Definition 2.5. If in Definition[2.3 (resp[ 2}4), strict inequality holdg € K, y # =*, then we

say thatr* is a “strict” solution ofSMV I(F, K)|(resp. ofW MV I(F, K)).

Remark 2.4. WhenF is single valued, Definitior{s 2.3 ahd P.4 reduce to the classical notion of
(MVI).

The following results relate the monotonicity of trajectoriedRDI(F, K)| w.r.t. V,. to
solutions of Minty Variational Inequalities.

Definition 2.6. A set valued mag” : R® = 2%" is said to be upper semicontinuous (u.s.c.) at
xo € R™, when for every open séY containingF (x,), there exists a neighborhodd of x,
such that?'(M) C N.

Fis said to be u.s.c. when itis so at evegyc R".
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Theorem 2.5([4]). If 2* € K is a solution ofSMV I(F, K)|, whereF is u.s.c. with nonempty
convex compact values, then every trajectefy) of PDI(F, K)|is monotone w.r.t. function
Vs

Theorem 2.6([4]). Letz* be an equilibrium point gPDI(F, K| If for any pointz € K there

exists a trajectory P DI (F, K) starting atz and monotone W. rt function,., thenz* solves
WMVI(F, K)

Proposition 2.7([4]). Letz* be a strict solution agbM VI (F, K )|, then:

i) z* is the unique equilibrium point @?DI(F, K)}
ii) every trajectory ofP DI(F, K), starting at a pointzy € K and defined off0, +o0) is
strictly monotone w.r.tV,. and converges to*.

Example 2.1.Let K = R? and consider the system of autonomous differential equations:
a'(t) = —F(x(1)),
whereF : R? — R? is a single-valued map defined as:

—y+ x|l — 2 — |
F(z,y) =

z+y|l —a? — ¢

Clearly(z*, y*) = (0,0) is an equilibrium point and one hag&'(z, y), (x,y)) > 0V(z,y) € R?,
so that(0, 0) is a solution of A/ VI (F, K) and hence, according to Theorem| 2.5, every solution
x(t) of the considered system of differential equations is monotone W,r.t. Anyway, not all
the solutions of the system converge(@0). In fact, passing to polar coordinates, the system

can be written as:
{ p(t) = —p(t)]1 — p*(t)]

0'(t)=-1

and solving the system, one can easily see that the solutions that start at §op®jinwvith

p > 1 do not converge t@0,0), while the solutions that start at a poifi, ) with p < 1
converge ta0,0). This last fact can be checked on observing that for evety1, (0,0) is a

strict solution ofSMV I(F, K.) where:

K. :={(z,y) e R? : 2* +y* < c}.
Propositiorj 2.J7 is useful in the proof of necessary and sufficient conditions for the existence

of monotone trajectories dDS(F'), expressed by means of Clarke’s generalized Jacdbian [3].

Definition 2.7. Let G be a locally Lipschitz function fromk to R™. Clarke’s generalized
Jacobian of7 atz is the subset of the spa&*™ of n x m matrices, defined as:

JoG(x) = conv{lim JG(xy) : z,, — z, G is differentiable atry }
(hereJG denotes the Jacobian @fandconv A stands for the convex hull of the sétC R™).
The following proposition summarizes the main properties of the generalized Jacobian.

Proposition 2.8.

i) JoF(z)is a nonempty, convex and compact subs&'of";
i) the mapr — JoF(x)isu.s.c.;
iii) (Mean value Theorem) For all, y € K we havel'(y) — F(x) € conv{JoF(x + 0(y —
2))(y — ), 6 € [0,1]},

J. Inequal. Pure and Appl. Math6(5) Art. 142, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MONOTONE TRAJECTORIES OF DYNAMICAL SYSTEMS 5

Definition 2.8. Let G(-) be a map fronR” into the subsets of the spaR&é*™ of n x n matrices.
We say that7(-) is positively defined at (respectively weakly positively defined) dti when:

inf u'Gu>0, VueT(K,z)
GeG(z)

sup u' Gu >0, YueT (K, )
GeG(x)

If the inequality is strict (for: # 0), we say thatz(x) is strictly positively defined (resp. strictly
weakly positively defined).

3. MAIN RESULTS

Theorem 3.1.Let FF : K — R” be locally Lipschitz and let* be an equilibrium point of
[PDI(F, K)] If there exists a positive numbéisuch that for any:, € K with ||z — 2*|| < 4,
there exists a trajectory(t) of|PDI(F, K )|starting atz, and monotone w.r.t,., then Clarke’s
generalized Jacobian df at z* is weakly positively defined ai.

Proof. Let B(z*,0) be the open ball with center iti* and radius). Fix z € B(z*,0) N K and
lety(a) = 2* + a(z —2*), fora € [0, 1] (clearlyy(a) € B(z*,0) N K). Letz(t) be a trajectory
of [PDI(F, K)|starting aty(c); for v(t) = V,-(z(t)), we have:

0> v'(0) = ((0),y(a) — 27),

and:

#(0) = —F(y(a) =, n€N(K,y(a)
so that:

(F(y(a),yla) —2") = =(n,y(a) —2") =2 0.
Now, applying the mean value theorem, sinces an equilibrium of PDI(F, K|, we get, for
somen*(a) € N (K, z*):
Fly(a)) +n°(a) = Fly(a)) - F(a")
€ conv{aJoF (2" + p(z — 2*))(z — z¥), d € [0,0]} = A(a).
SinceJo F(+) is u.s.c..Ve > 0 and forp “small enough”, say € [0, 3(¢)] we have:
JoF(x* + p(z — %)) C JoF(x*) + eB = J.F(z")
(hereB denotes the open unit ball ®**™). So, it follows, fora: = 5(¢):
A(B(e)) € B(e)JF (") (2 — 27),

and hence, for any > 0, F'(y(5(¢))) € B(e)J.F(z*)(z — z¥).
Now, lete,, = 1/n anda,, = 5(e,). We have(F(y(a,,)) + n*(an), y(a,) — %) > 0, that is:

02 (z — %) (d(ow) + 7(an))(z — 2°) > 0,
with y(a,) € 1B andd(a,) € JoF(z*). So we obtain:
(= = ") (o) (2 = %) > ~(z = 2) (o) (= = %) = — (= = )bl — 2°),

with b,, € B. Sendingn to +o0o we can can assum&ao,,) — d € Jo F(x*) while the right side
converges td and we get:

(z—2")"d(z—12%) >0.
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Sincez is arbitrary inB(z*,§) N K.
Hence

sup (z—a")"A(z —2*) >0 Vze B(*0)NK.
A€JoF(a)

Now lety = lim A\, (2, — %), z, € B(z*,§) N K be some element iff( K, z*). We have
sup  y Ay >0

A€JoF(z*)
and
sup y Ay >0 VyeT(K,z%).
A€JoF(a*)
that is,Jo F'(2*) is weakly positive defined oA'. O

Example 3.1. The condition of the previous theorem is necessary but not sufficient for the
existence of monotone trajectories (w.k}). Consider the locally Lipschitz functiof : R —

R defined as:
r?sind, x#0
F(z) = :
0, z=0
and the autonomous differential equatidf¢) = —F'(x(t)). Clearlyxz* = 0 is an equilibrium
point and it is known that/cF'(0) = [—1,1]. Hence the necessary condition of Theofenj 3.1

is satisfied, but it is easily seen that any trajectofs) of the considered differential equation
(apart from the trivial solution:(¢) = 0) is not monotone w.r.tV/,.-.

Theorem 3.2. Assume that F'(z*) is strictly positively defined. Then, every trajectofy) of

PDI(F) starting “sufficiently near”z* and defined oif0, +o0) is strictly monotone w.r.tV,
and converges to*.

Proof. By assumption:

inf w' Au>0, VueT(K2*)\{0},

sedbhant A= 0 W E T D0}

and this condition is equivalent to the existence of a positive numtserch thatnf s s, ) v Av >
m, Yo € S'N (T(K,z*)\{0}) (whereS" is the unit sphere iiR"). Indeed, if this is not the
case, there would exist some sequefgg € S*, converging to some € S*, such that:

. 1
inf v Av, < =
AeJoF(x*) n

by compactness of. F'(z*), we would have, for every someA,, € JoF(z*) such that:

inf UZ Av, = UZ A, v,
A€ JoF(z*)

andA, — A € JoF(x*). Therefore we have A,v, — v'Av < 0 for n — +oo and the
contradiction

inf  u'Au <0.
AeJoF(x*)

Lete > 0 and consider the set:
JF(x%) == JoF(2") + ¢B.
We claim:
inf  w'Au>0, VYueT(K,z") \{O} )

AGJSF($*)
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for ¢ “small enough”. Indeedd € J.F(z*) ifand only if A = A" + A", with A" € JoF(x*)
andA” € ¢B and hence, for € R™\{0}:

inf w'Au>  inf  w' Au+ inf u' A"
A€J-F(a*) AreToF(z*) AleeB

SinceA” € B, we havelu" A"u| < ||A”||||lu|?* < ||lu||* and we get:

inf  w'Au+t inf u'A"u> inf  w' Au—el|ul?
AleJo F(x*) A’eceB A'eJoF(x*)
Therefore:
u' Au ) ul A'u
mn _— > n _ —
Aed.F(z*) ||u||? T acioF@r) ||ul|?
and fore < m, the right-hand side is positive.
If we fix £ in (0,m), for a suitable > 0 we have, for al: € B(z*,§) N K

JoF(x* 4+ a(z — 2%)) C J.F(z*), VYae(0,1)

and from the mean value theorem and the convexity of the generalized Jacobian, we obtain, for
somen* € N(K,x*):

F(z)+n" = F(z) — F(z")
€ conv{JoF(z* + §(z — %)) (z — 2*), 6 € [0,1]}
C JF(z")(x —z").
Hence we conclude:
(F(z),z —z*) >0, Vae (KnNB("0))\\{z"}

and sar* is a strict solution oS MV I(F,R™ N B(z*,4)). The proof now follows from Propo-
sition[2.7. O

Example 3.2. The condition of the previous theorem is sufficient but not necessary for the
monotonicity of trajectories. Consider the locally Lipschitz functton R — R defined as:

a?sin * +ax, x#0,
F(x) =
0, x =0,
where0 < a < 1, and the autonomous differential equatioiit) = —F(z(t)), for which

x* = 0 is an equilibrium point. In a suitable neighborhoddf 0 we haveF'(z) > 0 if x > 0,
while F'(z) < 0, if z < 0 and hence it is easily seen that every solution of the considered
differential equation, starting “nea#’; is strictly monotone w.r.tV,. and converges 0. If we
calculate the generalized Jacobianfot0 we getJ-F'(0) = [—1 + a, 1 4+ a] and the sufficient
condition of the previous theorem is not satisfied.
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