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ABSTRACT. Though connections between a well established theory of analytic univalent func-
tions and hypergeometric functions have been investigated by several researchers, yet analogous
connections between planer harmonic mappings and hypergeometric functions have not been
explored. The purpose of this paper is to uncover some of the inequalities associating hypergeo-
metric functions with planer harmonic mappings.
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1. I NTRODUCTION

Let H be the class consisting of continuous complex-valued functions which are harmonic
in the unit disk∆ = {z : |z| < 1} and letA be the subclass ofH consisting of functions which
are analytic in∆. Clunie and Sheil-Small in [1] developed the basic theory of planer harmonic
mappingsf ∈ H which are univalent in∆ and have the normalizationf(0) = 0 = fz(0) − 1.
Such functions, also known as planer mappings, may be written asf = h+ g, whereh, g ∈ A.
A function f ∈ H is said to be locally univalent and sense-preserving if the JacobianJ(f) =
|h′|2−|g′|2 is positive in∆; or equivalently|g′(z)| < |h′(z)| (z ∈ ∆). Thus forf = h+g ∈ H
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2 OM P. AHUJA AND H. SILVERMAN

we may write

(1.1) h(z) = z +
∞∑

n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, |B1| < 1.

LetSHdenote the family of functionsh+g which are harmonic, univalent, and sense-preserving
in ∆ whereh, g ∈ A and are of the form (1.1). Imposing the additional normalization condition
fz(0) = 0, Clunie and Sheil-Small [1] distinguished the classS0

H from SH . Both the families
SH andS0

H are normal families. But,S0
H is the only compact family with respect to the topology

of locally uniform convergence [1].
LetS∗H andKH be the subclasses ofSH consisting of functionsf which map∆, respectively,

onto starlike and convex domains. Iffj = hj + gj, j = 1, 2 are in the classSH (orS0
H), then we

define the convolutionf1 ∗ f2 of f1 andf2in the natural wayh1 ∗ h2 + g1 ∗ g2. If φ1 andφ2 are
analytic andf = h+ g is in SH , we define

(1.2) f ∗̃(φ1 + φ2) = h ∗ φ1 + g ∗ φ2.

Let a, b, c be complex numbers withc 6= 0,−1,−2,−3, . . . . Then the Gauss hypergeometric
function written as2F1(a, b; c; z) or simply asF (a, b; c; z) is defined by

(1.3) F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n

zn,

where(λ)n is the Pochhammer symbol defined by

(1.4) (λ)n =
Γ (λ+ n)

Γ(λ)
= λ(λ+ 1) · · · (λ+ n− 1) for n = 1, 2, 3, . . . and(λ)0 = 1.

Since the hypergeometric series in (1.3) converges absolutely in∆, it follows thatF (a, b; c; z)
defines a function which is analytic in∆, provided thatc is neither zero nor a negative inte-
ger. As a matter of fact, in terms of Gamma functions, we are led to the well-known Gauss’s
summation theorem: IfRe(c− a− b) > 0, then

(1.5) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, c 6= 0,−1,−2, . . . .

In particular, the incomplete beta function, related to the Gauss hypergeometric function,ϕ(a, c; z),
is defined by

(1.6) ϕ(a, c; z) := zF (a, 1; c; z) =
∞∑

n=0

(a)n

(c)n

zn+1, z ∈ ∆, c 6= 0, − 1, − 2, . . . .

It has an analytic continuation to thez-plane cut along the positive real axis from 1 to∞. Note
thatϕ(a, 1; z) = z

(1−z)a . Moreover,ϕ(2, 1; z) = z
(1−z)2

is the Koebe function.

The hypergeometric series in (1.3) and (1.6) converge absolutely in∆ and thusF (a, b; c; z)
andϕ(a, c; z) are analytic functions in∆, provided thatc is neither zero nor a negative integer.
For further information about hypergeometric functions, one may refer to [2], [6], and [11].

Throughout this paper, letG(z) := φ1(z)+φ2(z) be a function whereφ1(z) ≡ φ1 (a1, b1; c1; z)
andφ2(z) ≡ φ2 (a2, b2; c2; z) are the hypergeometric functions defined by

(1.7) φ1(z) := zF (a1, b1; c1; z) = z +
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

zn,

(1.8) φ2(z) := zF (a2, b2; c2; z)− 1 =
∞∑

n=1

(a2)n(b2)n

(c2)n(1)n

zn, a2b2 < c2.
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It was surprising to discover the use of hypergeometric functions in the proof of the Bieberbach
conjecture by L. de Branges [3] in 1985. This discovery has prompted renewed interests in
these classes of functions. For example, see [7], [8], and [9].

However, connections between the theory of harmonic univalent functions and hypergeomet-
ric functions have not yet been explored. The purpose of this paper is to uncover some of the
connections. In particular, we will investigate the convolution multipliersf ∗̃(φ1 + φ2), where
φ1, φ2 are as defined by (1.7) and (1.8) andf is a harmonic starlike univalent (or harmonic
convex univalent) function in∆.

2. M AIN RESULTS

We need the following sufficient condition.

Lemma 2.1([4, 10]). For f = h+ g with h andg of the form (1.1), if

(2.1)
∞∑

n=2

n |An|+
∞∑

n=1

n |Bn| ≤ 1,

thenf ∈ S∗H .

Theorem 2.2. If aj, bj > 0, cj > aj + bj + 1 for j = 1, 2,, then a sufficient condition for
G = φ1 + φ2 to be harmonic univalent in∆ andG ∈ S∗H , is that

(2.2)

(
1 +

a1b1
c1 − a1 − b1 − 1

)
F (a1, b1; c1; 1) +

a2b2
c2 − a2 − b2 − 1

F (a2, b2; c2; 1) ≤ 2.

Proof. In order to prove thatG is locally univalent and sense-preserving in∆, we only need to
show that|φ′1(z)| > |φ′2(z)| , z ∈ ∆. In view of (1.7), (1.3), (1.4) and (1.5) we have

|φ′1(z)| =

∣∣∣∣∣1 +
∞∑

n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1

zn−1

∣∣∣∣∣
> 1−

∞∑
n=2

(n− 1)
(a1)n−1(b1)n−1

(c1)n−1(1)n−1

−
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

= 1− a1b1
c1

∞∑
n=1

(a1 + 1)n−1(b1 + 1)n−1

(c1 + 1)n−1(1)n−1

−
∞∑

n=1

(a1)n(b1)n

(c1)n(1)n

= 2− a1b1
c1

· Γ(c1 + 1)Γ(c1 − a1 − b1 − 1)

Γ(c1 − a1)Γ(c1 − b1)
− Γ(c1)Γ(c1 − a1 − b1)

Γ(c1 − a1)Γ(c1 − b1)

= 2−
(

a1b1
c1 − a1 − b1 − 1

+ 1

)
F (a1, b1; c1; 1).
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Again, using (2.2), (1.5), (1.3), and (1.8) in turn, to the above mentioned inequality, we have

|φ′1(z)| ≥
a2b2

c2 − a2 − b2 − 1
F (a2, b2; c2; 1)

=
a2b2
c2

Γ(c2 + 1)Γ(c2 − a2 − b2 − 1)

Γ(c2 − a2)Γ(c2 − b2)

=
∞∑

n=0

(a2)n+1(b2)n+1

(c2)n+1(1)n

>
∞∑

n=1

n
(a2)n(b2)n

(c2)n(1)n

|z|n−1

≥

∣∣∣∣∣
∞∑

n=1

n
(a2)n(b2)n

(c2)n(1)n

zn−1

∣∣∣∣∣ = |φ′2(z)| .

To show thatG is univalent in∆, we assume thatz1, z2 ∈ ∆ so thatz1 6= z2. Since∆ is simply
connected and convex, we havez(t) = (1 − t)z1 + tz2 ∈ ∆, where0 ≤ t ≤ 1. Then we can
write

F (z2)− F (z1) =

∫ 1

0

[
(z2 − z1)φ

′
1 (z(t)) + (z2 − z1)φ′2 (z(t))

]
dt

so that

Re
F (z2)− F (z1)

z2 − z1

=

∫ 1

0

Re

[(
φ′1 (z (t)) +

z2 − z1

z2 − z1

)
φ′2 (z (t))

]
dt(2.3)

>

∫ 1

0

[Reφ′1 (z (t))− |φ′2 (z (t))|]dt

On the other hand,

Reφ′1(z)− |φ′2(z)|

≥ 1−
∞∑

n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1

|z|n−1 −
∞∑

n=1

n
(a2)n(b2)n

(c2)n(1)n

|z|n−1

> 1−
∞∑

n=2

(n− 1 + 1)
(a1)n−1(b1)n−1

(c1)n−1(1)n−1

−
∞∑

n=1

n
(a2)n(b2)n

(c2)n(1)n

= 2−
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−2

−
∞∑

n=0

(a1)n(b1)n

(c1)n(1)n

− a2b2
c2

∞∑
n=1

(a2 + 1)n−1(b2 + 1)n−1

(c2 + 1)n−1(1)n−1

= 2−
(

1 +
a1b1

c1 − a1 − b1 − 1

)
F (a1, b1; c1; 1)− a2b2

c2 − a2 − b2 − 1
F (a2, b2; c2; 1)

≥ 0, by (2.2).

Thus (2.3) and the above inequality lead toF (z1) 6= F (z2) and henceF is univalent in∆. In
order to prove thatG ∈ S∗H ,using Lemma 2.1, we only need to prove that

(2.4)
∞∑

n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1

+
∞∑

n=1

n
(a2)n(b2)n

(c2)n(1)n

≤ 1.
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Writing n = n− 1 + 1, the left hand side of (2.4) reduces to

a1b1
c1

∞∑
n=0

(a1 + 1)n(b1 + 1)n

(c1 + 1)n(1)n

+

[
∞∑

n=0

(a1)n(b1)n

(c1)n(1)n

− 1

]
+
a2b2
c2

∞∑
n=0

(a2 + 1)n(b2 + 1)n

(c2 + 1)n(1)n

= F (a1, b1; c1; 1)

(
a1b1

c1 − a1 − b1 − 1
+ 1

)
+

a2b2
c2 − a2 − b2 − 1

F (a2, b2; c2; 1)− 1.

The last expression is bounded above by 1 provided that (2.2) is satisfied. This completes the
proof. �

Lemma 2.3([5, 10]). For f = h+ g with h andg of the form (1.1), if

∞∑
n=2

n2 |An|+
∞∑

n=1

n2 |Bn| ≤ 1,

thenf ∈ KH .

Theorem 2.4. If aj, bj > 0, cj > aj + bj + 2, for j = 1, 2 then a sufficient condition for
G = φ1 + φ2 to be harmonic univalent in∆ andG ∈ KH , is that

(2.5)

(
1 +

3a1b1
c1 − a1 − b1 − 1

+
(a1)2(b1)2

(c1 − a1 − b1 − 2)2

)
F (a1, b1; c1; 1)

+

(
a2b2

c2 − a2 − b2 − 1
+

(a2)2(b2)2

(c2 − a2 − b2 − 2)2

)
F (a2, b2; c2; 1) ≤ 2.

Proof. The proof of the first part is similar to that of Theorem 2.2 and so it is omitted. In view
of Lemma 2.3, we only need to show that

∞∑
n=2

n2 (a1)n−1(b1)n−1

(c1)n−1(1)n−1

+
∞∑

n=1

n2 (a2)n(b2)n

(c2)n(1)n

≤ 1.

That is,

(2.6)
∞∑

n=0

(n+ 2)2 (a1)n+1(b1)n+1

(c1)n+1(1)n+1

+
∞∑

n=0

(n+ 1)2 (a2)n+1(b2)n+1

(c2)n+1(1)n+1

≤ 1.

But,

∞∑
n=0

(n+ 2)2 (a1)n+1(b1)n+1

(c1)n+1(1)n+1

=
∞∑

n=0

(n+ 1)
(a1)n+1(b1)n+1

(c1)n+1(1)n

+ 2
∞∑

n=0

(a1)n+1(b1)n+1

(c1)n+1(1)n

+
∞∑

n=0

(a1)n+1(b1)n+1

(c1)n+1(1)n+1

=

[
(a1)2(b1)2

(c1 − a1 − b1 − 2)2

+
3a1b1

c1 − a1 − b1 − 1
+ 1

]
F (a1, b1; c1; 1)− 1,
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and
∞∑

n=0

(n+ 1)2 (a2)n+1(b2)n+1

(c2)n+1(1)n+1

=
∞∑

n=1

(a2)n+1(b2)n+1

(c2)n+1(1)n−1

+
∞∑

n=0

(a2)n+1(b2)n+1

(c2)n+1(1)n

=

[
(a2)2(b2)2

(c2 − a2 − b1 − 2)2

+
a2b2

c1 − a1 − b1 − 1

]
F (a2, b2; c2; 1)− 1.

Thus, (2.6) is equivalent to

F (a1, b1; c1; 1)

(
(a1)2(b1)2

(c1 − a1 − b1 − 2)2

+
3a1b1

c1 − a1 − b1 − 1
+ 1

)
− 1

+ F (a2, b2; c2; 1)

(
(a2)2(b2)2

(c2 − a2 − b2 − 2)2

+
a2b2

c2 − a2 − b2 − 1

)
≤ 1

which is true because of the hypothesis. �

Denote byS∗RH andKRH , respectively, the subclasses ofS∗H andKH consisting of functions
f = h+ g so thath andg are of the form

(2.7) h(z) = z −
∞∑

n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, An ≥ 0, Bn ≥ 0, B1 < 1.

Lemma 2.5([4, 10]). Letf = h+ g be given by (2.7). Then

(i) f ∈ S∗RH ⇔
∞∑

n=2

nAn+
∞∑

n=1

nBn ≤ 1,

(ii) f ∈ KRH ⇔
∞∑

n=2

n2An+
∞∑

n=1

n2Bn ≤ 1.

Theorem 2.6.Letaj, bj > 0, cj > aj + bj + 1, for j = 1, 2 anda2b2 < c2. If

(2.8) G1(z) = z

(
2− φ1(z)

z

)
+ φ2(z)

then

(i) G1 ∈ S∗RH ⇔(2.2) holds
(ii) G1 ∈ KRH ⇔(2.5) holds.

Proof. (i) We observe that

G1(z) = z −
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

zn +
∞∑

n=1

(a2)n(b2)n

(c2)n(1)n

zn,

andS∗RH ⊂ S∗H . In view of Theorem 2.2, we only need to show the necessary condition forG1

to be inS∗RH . If G1 ∈ S∗RH , thenG1 satisfies the inequality in Lemma 2.5(i) and the result in
(i) follows from Lemma 2.5(i). The proof of (ii) is similar becauseKRH ⊂ KH , and by using
Lemma 2.5(ii) and Theorem 2.4. �

Theorem 2.7. Let aj, bj > 0, cj > aj + bj + 1, for j = 1, 2 anda2b2 < c2. A necessary and
sufficient condition such thatf ∗̃(φ1 + φ2) ∈ S∗RH for f ∈ S∗RH is that

(2.9) F (a1, b1; c1; 1) + F (a2, b2; c2; 1) ≤ 3,

whereφ1, φ2 are as defined, respectively, by (1.7) and (1.8).
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Proof. Let f = h+ g ∈ S∗RH , whereh andg are given by (2.7). Then(
f ∗̃(φ1 + φ2)

)
(z) = h(z) ∗ φ1(z) + g(z) ∗ φ2(z)

= z −
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

Anz
n +

∞∑
n=1

(a2)n(b2)n

(c2)n(1)n

Bnzn.

In view of Lemma 2.5(i), we need to prove thatf ∗̃(φ1 + φ2) ∈ S∗RH if and only if

(2.10)
∞∑

n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1

An +
∞∑

n=1

n
(a2)n(b2)n

(c2)n(1)n

Bn ≤ 1.

As an application of Lemma 2.5(i), we have

|An| ≤
1

n
, |Bn| ≤

1

n
.

Therefore, the left side of (2.10) is bounded above by
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

+
∞∑

n=1

(a2)n(b2)n

(c2)n(1)n

= F (a1, b1; c1; 1) + F (a2, b2; c2; 1)− 2.

The last expression is bounded above by 1 if and only if (2.9) is satisfied. This proves (2.10)
and results follow. �

Theorem 2.8. If aj, bj > 0 and cj > aj + bj for j = 1, 2, then a sufficient condition for a
function

G2(z) =

∫ z

0

F (a1, b1; c1; t)dt+

∫ z

0

[F (a2, b2; c2; t)− 1]dt

to be inS∗H is that
F (a1, b1; c1; 1) + F (a2, b2; c2; 1) ≤ 3.

Proof. In view of Lemma 2.1, the function

G2(z) = z +
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n

zn +
∞∑

n=2

(a2)n−1(b2)n−1

(c2)n−1(1)n

zn

is in S∗H if
∞∑

n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n

+
∞∑

n=2

n
(a2)n−1(b2)n−1

(c2)n−1(1)n

≤ 1.

That is, if
∞∑

n=1

(a1)n(b1)n

(c1)n(1)n

+
∞∑

n=1

(a2)n(b2)n

(c2)n(1)n

≤ 1.

Equivalently,G ∈ S∗H if

F (a1, b1; c1; 1) + F (a2, b2; c2; 1) ≤ 3.

�

Theorem 2.9. If a1, b1 > −1, c1 > 0, a1b1 < 0, a2 > 0, b2 > 0, andcj > aj + bj +1, j = 1, 2,
then

G2(z) =

∫ z

0

F (a1, b1; c1; t)dt+

∫ z

0

[F (a2, b2; c2; t)− 1]dt

is in S∗H if and only ifF (a1, b1; c1; 1)− F (a2, b2; c2; 1) + 1 ≥ 0.
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Proof. Applying Lemma 2.5(i) to

G2 (z) = z − |a1b1|
c1

∞∑
n=2

(a1 + 1)n−2 (b1 + 1)n−2

(c1 + 1)n−2 (1)n

zn +
∞∑

n=2

(a2)n−1 (b2)n−1

(c2)n−1 (1)n

zn,

it suffices to show that

|a1b1|
c1

∞∑
n=2

n
(a1 + 1)n−2 (b1 + 1)n−2

(c1 + 1)n−2 (1)n

+
∞∑

n=2

n
(a2)n−1 (b2)n−1

(c2)n−1 (1)n

≤ 1.

Or equivalently

∞∑
n=0

(a1 + 1)n (b1 + 1)n

(c1 + 1)n (1)n+1

+
c1

|a1b1|

∞∑
n=1

(a2)n (b2)n

(c2)n (1)n

≤ c1
|a1b1|

.

But, this is equivalent to

c1
a1b1

∞∑
n=1

(a1)n (b1)n

(c1)n (1)n

+
c1

|a1b1|

∞∑
n=1

(a2)n (b2)n

(c2)n (1)n

≤ c1
|a1b1|

.

That is,

F (a1, b1; c1; 1)− F (a2, b2; c2; 1) ≥ −1.

This completes the proof of the theorem. �

Remark 2.10. Comparable results to Theorems 2.7, 2.8, 2.9 for harmonic convex functions
may also be obtained. The proofs and results are similar and hence are omitted.

In particular, the results parallel to Theorems 2.2, 2.4, 2.6 to 2.9 may also be obtained for the
incomplete beta functionϕ(a, c; z) as defined by (1.6). If

ψ1(z) := zϕ(a1, c1; z) = z +
∞∑

n=2

(a1)n−1

(c1)n−1

zn,

ψ2(z) := zϕ(a2, c2; z)− 1 =
∞∑

n=1

(a2)n

(c2)n

zn, a2 < c2,

then

ψ1(z) + ψ2(z) ≡ φ1(z) + φ2(z),

wheneverb1 = 1, b2 = 1.
Note that

ψ1(1) = F (a1, 1; c1; 1) =
c1

(c1 − a1)
andψ2(1) = F (a2, 1; c2; 1)− 1 =

a2

(c2 − a2)
.

As an illustration, we close this section with the incomplete beta function analog to some of
the earlier results.
Theorem 2.2′. If aj > 0 andcj > aj + 2 for j = 1, 2 , then a sufficient condition forψ1 + ψ2

to be harmonic univalent in∆ with ψ1 + ψ2 ∈ S∗H is

c1 (c1 − 2)

(c1 − a1) (c1 − a1 − 2)
+

a2
2

(c2 − a2) (c2 − a2 − 2)
≤ 2.
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Theorem 2.4′. If aj > 0 andcj > aj + 3 for j = 1, 2 , then a sufficient condition forψ1 + ψ2

to be harmonic univalent in∆ with ψ1 + ψ2 ∈ KH is

c1
(c1 − a1)

[
1 +

3a1

c1 − a1 − 2
+

2a2

(c1 − a1 − 3)2

]
+

a2

(c2 − a2)

[
a2

c2 − a2 − 2
+

2(a2)2

(c2 − a2 − 3)2

]
≤ 2.

Theorem 2.7′. A necessary and sufficient condition such thatf ∗̃(ψ1 +ψ2) ∈ S∗RH for f ∈ S∗RH

is that
c1

(c1 − a1)
+

a2

(c2 − a2)
≤ 1.

Theorem 2.9′. If a1 > −1, c1 > 0, a1 < 0, a2 > 0, cj > aj + 1 for j = 1, 2, and
cj > aj + bj + 1, j = 1, 2, then∫ z

0

ϕ (a1, c1; t)dt+

∫ z

0

[ϕ (a2, c2; t)− 1]dt

is in S∗H if and only if
c1 − 1

c1 − a1 − 1
≥ a2

c2 − a2 − 1
.

2.1. Positive Order. We say thatf of the form (1.1) is harmonic starlike of orderα, 0 ≤ α ≤
1,for |z| = r if ∂

∂θ

(
arg f(reiθ)

)
≥ α, |z| = r. Denote byS∗H(α)andS∗RH(α) the subclasses

of S∗HandS∗RH , respectively, that are starlike of orderα. Also, denote byKH(α) andKRH(α)
the subclasses ofKHandKRH , respectively, that are convex of orderα. Most of our results can
also be rewritten for functions of positive order by using similar techniques. For instance, using
the results in [4] we have the following:

Theorem 2.11.If aj, bj > 0 andcj > aj + 1, a2b2 < c2 for j = 1, 2, thenφ1 + φ2 is harmonic
univalent in∆ with φ1 + φ2 ∈ S∗H(α), 0 ≤ α ≤ 1 if(

1− α+
a1b1

c1 − a1 − b1 − 1

)
F (a1, b1; c1; 1)

+

(
α+

a2b2
c2 − a2 − b2 − 1

)
F (a2, b2; c2; 1) ≤ 2(1− α).
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