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Abstract

In this paper, an answer to a problem proposed by L. Bougoffa is given. A
consolidation of Qi’s inequality and Bougoffa’s inequality is obtained.
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1. Introduction
In the paper [7] F. Qi proposed the following open problem, which has attracted
much attention from some mathematicians (cf. [1, 5, 6, 8]).

Problem 1. Under what conditions does the inequality

(1.1)
∫ b

a

[f(x)]tdx ≥
(∫ b

a

f(x)dx

)t−1

.

hold for t > 1?

Similar to Problem1, in the paper [2] L. Bougoffa proposed the following:

Problem 2. Under what conditions does the inequality

(1.2)
∫ b

a

[f(x)]tdx ≤
(∫ b

a

f(x)dx

)1−t

.

hold for t < 1?

By using Hölder’s inequality, L. Bougoffa obtained an answer to Problem2
as follows

Proposition 1.1. For a given positive integerp ≥ 2, if 0 < m ≤ f(x) ≤ M on
[a, b] with M ≤ m(p−1)2/(b− a)p, then

(1.3)
∫ b

a

[f(x)]
1
p dx ≤

(∫ b

a

f(x)dx

)1− 1
p

.
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We can see that the condition

(1.4) 0 < m ≤ f(x) ≤ M on [a, b] with M ≤ m(p−1)2/(b− a)p

is not satisfied whenmin
[a,b]

f(x) = 0.

In this paper, we firstly give an answer to Problem2, in which we allow
min
[a,b]

f(x) = 0 and p unnecessarily to be an integer. Secondly, we obtain a

consolidation of Qi’s inequality and Bougoffa’s inequality.
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2. Main Results and Proofs
Theorem 2.1.Letp > 2 be a positive number andf(x) be continuous on[a, b]
and differentiable on(a, b) such thatf(a) = 0. If [fp−2]′(x) ≥ pp(p− 2)/(p−
1)p+1 for x ∈ (a, b), then

(2.1)
∫ b

a

[f(x)]
1
p dx ≤

(∫ b

a

f(x)dx

)1− 1
p

.

If 0 ≤ [fp−2]′(x) ≤ pp(p − 2)/(p − 1)p+1 for x ∈ (a, b), then the inequality
(2.1) reverses.

Proof. If f ≡ 0 on [a, b], then it is trivial that the equation in (2.1) holds. Sup-
pose now thatf is not identically 0 on[a, b] and[fp−2]′(x) ≥ 0 for x ∈ (a, b),
we may assumef(x) > 0, x ∈ (a, b]. This implies that both sides of (2.1) are
not 0.

If [fp−2]′(x) ≥ pp(p − 2)/(p − 1)p+1 for x ∈ (a, b), thenf(x) > 0 for
x ∈ (a, b]. Thus both sides of (2.1) are not 0. By using Cauchy’s Mean Value
Theorem twice, we have∫ b

a
[f(x)]

1
p dx(∫ b

a
f(x)dx

)1− 1
p

(2.2)

=
[f(b1)]

1
p
−1

(1− 1
p
)
(∫ b1

a
f(x)dx

)− 1
p

(a < b1 < b)
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=

( ∫ b1
a

f(x)dx

(1− 1
p
)p[f(b1)]p−1

) 1
p

=

(
1

(1− 1
p
)p(p− 1)[f(b2)]p−3f ′(b2)

) 1
p

(a < b2 < b1)

=

(
1

(p−1)p+1

pp(p−2)
[fp−2]′(b2)

) 1
p

≤ 1.

So the inequality (2.1) holds.
If 0 ≤ [fp−2]′(x) ≤ pp(p − 2)/(p − 1)p+1, then (p−1)p+1

pp(p−2)
[fp−2]′(b2) ≤ 1,

which, together with (2.2), implies that the inequality (2.1) reverses.

In the paper [3], Y. Chen and J. Kimball gave an answer to Problem1 as
follows

Proposition 2.2. Let p > 2 be a positive number andf(x) be continuous on

[a, b] and differentiable on(a, b) such thatf(a) = 0. If [f
1

p−2 ]′(x) ≥ (p −
1)

1
p−2

−1 for x ∈ (a, b), then

(2.3)

(∫ b

a

f(x)dx

)p−1

≤
∫ b

a

[f(x)]pdx.

If 0 ≤ [f
1

p−2 ]′(x) ≤ (p − 1)
1

p−2
−1 for x ∈ (a, b), then the inequality (2.3)

reverses.
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Thus, combining Theorem2.1and Proposition2.2, we can obtain another re-
sult of this paper, which gives a consolidation of Qi’s inequality and Bougoffa’s
inequality. To our best knowledge, this result is not found in the literature.

Theorem 2.3.Letp > 2 be a positive number andf(x) be continuous on[a, b]
and differentiable on(a, b) such thatf(a) = 0.

1. If [fp−2]′(x) ≥ pp(p − 2)/(p − 1)p+1 and [f
1

p−2 ]′(x) ≥ (p − 1)
1

p−2
−1 for

x ∈ (a, b), then

(2.4)

(∫ b

a

[f(x)]
1
p dx

)p

≤
(∫ b

a

f(x)dx

)p−1

≤
∫ b

a

[f(x)]pdx.

2. If 0 ≤ [fp−2]′(x) ≤ pp(p−2)/(p−1)p+1 and0 ≤ [f
1

p−2 ]′(x) ≤ (p−1)
1

p−2
−1

for x ∈ (a, b), then the inequality (2.4) reverses.

Corollary 2.4. Letf(x) be continuous on[a, b] and differentiable on(a, b) such
thatf(a) = 0.

1. If f ′(x) ≥ 27
16

for x ∈ (a, b), then

(2.5)

(∫ b

a

[f(x)]
1
3 dx

)3

≤
(∫ b

a

f(x)dx

)2

<

∫ b

a

[f(x)]3dx.

2. If 0 ≤ f ′(x) ≤ 1 for x ∈ (a, b), then

(2.6)

(∫ b

a

[f(x)]
1
3 dx

)3

>

(∫ b

a

f(x)dx

)2

≥
∫ b

a

[f(x)]3dx.
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Proof. Setp = 3 in Theorem2.3.

In order to illustrate a possible practical use of Corollary2.4, we shall give
two simple examples in which we can apply inequality (2.5) and (2.6).

Example 2.1. Let f(x) = ex − e on [1, 2], we see thatf ′(x) > e > 27
16

for
x ∈ (1, 2), other conditions of Corollary2.4 are fulfilled and straightforward
computation yields(∫ 2

1

(ex − e)
1
3 dx

)3

≈ 1.56 <

(∫ 2

1

(ex − e)dx

)2

≈ 3.81 <

∫ 2

1

(ex − e)3dx

≈ 18.74.

Example 2.2.Letf(x) = ex−e
10

on [1, 2], then e
10
≤ f ′(x) ≤ e2

10
, other conditions

of Corollary2.4are fulfilled and direct calculation produces that[∫ 2

1

(
ex − e

10

) 1
3

dx

]3

≈ 0.156 >

(∫ 2

1

ex − e

10
dx

)2

≈ 0.038 >

∫ 2

1

(
ex − e

10

)3

dx

≈ 0.019.
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