ON THE STABILITY OF A CLASS OF FUNCTIONAL EQUATIONS

BELAID BOUIKHALENE

Département de Mathématiques et Informatique
Faculté des Sciences BP 133, 14000 KÉnitra, Morocco. bbouikhalene@yahoo.fr

Received 20 July, 2003; accepted 24 October, 2003 Communicated by K. Nikodem

ABSTRACT. In this paper, we study the Baker's superstability for the following functional equa-
tion
$(E(K)) \quad \sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(y) k^{-1}\right) d \omega_{K}(k)=|\Phi| f(x) f(y), \quad x, y \in G$
where G is a locally compact group, K is a compact subgroup of G, ω_{K} is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f is a continuous complex-valued function on G satisfying the Kannappan type condition, for all $x, y, z \in G$
$\left.{ }^{*}\right) \int_{K} \int_{K} f\left(z k x k^{-1} h y h^{-1}\right) d \omega_{K}(k) d \omega_{K}(h)=\int_{K} \int_{K} f\left(z k y k^{-1} h x h^{-1}\right) d \omega_{K}(k) d \omega_{K}(h)$.
We treat examples and give some applications.

Key words and phrases: Functional equation, Stability, Superstability, Central function, Gelfand pairs.
2000 Mathematics Subject Classification. 39B72.

1. Introduction, Notations and Preliminaries

Let G be a locally compact group. Let K be a compact subgroup of G. Let ω_{K} be the normalized Haar measure of K. A mapping $\varphi: G \longmapsto G$ is a morphism of G if φ is a homeomorphism of G onto itself which is either a group-homorphism, i.e $(\varphi(x y)=\varphi(x) \varphi(y), x, y \in G)$, or a group-antihomorphism, i.e $(\varphi(x y)=\varphi(y) \varphi(x), x, y \in G)$. We denote by $\operatorname{Mor}(G)$ the group of morphisms of G and Φ a finite subgroup of $\operatorname{Mor}(G)$ of a K-invariant morphisms of G (i.e $\varphi(K) \subset K)$. The number of elements of a finite group Φ will be designated by $|\Phi|$. The Banach algebra of bounded measures on G with complex values is denoted by $M(G)$ and the Banach space of all complex measurable and essentially bounded functions on G by $L_{\infty}(G) . \mathcal{C}(G)$ designates the Banach space of all continuous complex valued functions on G. We say that a

[^0]function f is a K-central function on G if
\[

$$
\begin{equation*}
f(k x)=f(x k), \quad x \in G, k \in K \tag{1.1}
\end{equation*}
$$

\]

In the case where $G=K$, a function f is central if

$$
\begin{equation*}
f(x y)=f(y x) \quad x, y \in G \tag{1.2}
\end{equation*}
$$

See [2] for more information.
In this note, we are going to generalize the results obtained by J.A. Baker in [8] and [9]. As applications, we discuss the following cases:
a) $K \subset Z(G),(Z(G)$ is the center of $G)$.
b) $f(h x k)=f(x), h, k \in K, x \in G$ (i.e. f is bi- K-invariant (see [3] and [6])).
c) $f(h x k)=\chi(k) f(x) \chi(h), x \in G, k, h \in K(\chi$ is a unitary character of $K)$ (see [11]).
d) (G, K) is a Gelfand pair (see [3], [6] and [11]).
e) $G=K$ (see [2]).

In the next section, we note some results for later use.

2. General Properties

In what follows, we study general properties. Let G, K and Φ be given as above.
Proposition 2.1. For an arbitrary fixed $\tau \in \Phi$, the mapping

$$
\begin{aligned}
& \Phi \longrightarrow \Phi \\
& \varphi \longrightarrow \varphi \circ \tau
\end{aligned}
$$

is a bijection.
Proof. Follows from the fact that Φ is a finite group.
Proposition 2.2. Let $\varphi \in \Phi$ and $f \in \mathcal{C}(G)$, then we have:
i) $\int_{K} f\left(x k \varphi(h y) k^{-1}\right) d \omega_{K}(k)=\int_{K} f\left(x k \varphi(y h) k^{-1}\right) d \omega_{K}(k), \quad x, y \in G, h \in K$.
ii) If f satisfy (*), the for all $z, y, x \in G$, we have

$$
\int_{K} \int_{K} f\left(z h \varphi\left(y k x k^{-1}\right) h^{-1}\right) d \omega_{K}(h) d \omega_{K}(k)=\int_{K} \int_{K} f\left(z h \varphi\left(x k y k^{-1}\right) h^{-1}\right) d \omega_{K}(h) d \omega_{K}(k) .
$$

Proof. i) Let $\varphi \in \Phi$ and let $x, y \in G, h \in K$, then we have
Case 1: If φ is a group-homomorphism, we obtain, by replacing k by $k \varphi(h)^{-1}$

$$
\begin{aligned}
\int_{K} f\left(x k \varphi(h y) k^{-1}\right) d \omega_{K}(k) & =\int_{K} f\left(x k \varphi(h) \varphi(y) k^{-1}\right) d \omega_{K}(k) \\
& =\int_{K} f\left(x k \varphi(y) \varphi(h) k^{-1}\right) d \omega_{K}(k) \\
& =\int_{K} f\left(x k \varphi(y h) k^{-1}\right) d \omega_{K}(k) .
\end{aligned}
$$

Case 2: if φ is a group-antihomomorphism, we have, by replacing k by $k \varphi(h)$

$$
\begin{aligned}
\int_{K} f\left(x k \varphi(h y) k^{-1}\right) d \omega_{K}(k) & =\int_{K} f\left(x k \varphi(y) \varphi(h) k^{-1}\right) d \omega_{K}(k) \\
& =\int_{K} f\left(x k \varphi(h) \varphi(y) k^{-1}\right) d \omega_{K}(k) \\
& =\int_{K} f\left(x k \varphi(y h) k^{-1}\right) d \omega_{K}(k) .
\end{aligned}
$$

ii) Follows by simple computation.

Proposition 2.3. For each $\tau \in \Phi$ and $x, y \in G$, we have

$$
\begin{equation*}
\sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(\tau(y)) k^{-1}\right) d \omega_{K}(k)=\sum_{\psi \in \Phi} \int_{K} f\left(x k \psi(y) k^{-1}\right) d \omega_{K}(k) . \tag{2.1}
\end{equation*}
$$

Proof. By applying Proposition 2.1, we get that when φ is iterated over Φ, the morphism of the form $\varphi \circ \tau$ annihilates all the elements of Φ.

3. The Main Results

Theorem 3.1. Let G be a locally compact group; let K be a compact subgroup of G with the normalized Haar measure ω_{K} and let Φ given as above.
Let $\delta>0$ and let $f \in \mathcal{C}(G)$ such that f satisfies the condition (*) and the functional inequality

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(y) k^{-1}\right) d \omega_{K}(k)-|\Phi| f(x) f(y)\right| \leq \delta, \quad x, y \in G . \tag{3.1}
\end{equation*}
$$

Then one of the assertions is satisfied:
(a) If f is bounded, then

$$
\begin{equation*}
|f(x)| \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|} . \tag{3.2}
\end{equation*}
$$

(b) If f is unbounded, then
i) f is K-central,
ii) $f \circ \tau=f$, for all $\tau \in \Phi$,
iii) $\int_{K} f\left(x k y k^{-1}\right) d \omega_{K}(k)=\int_{K} f\left(y k x k^{-1}\right) d \omega_{K}(k), \quad x, y \in G$.

Proof.
a) Let $X=\sup |f|$, then we get for all $x \in G$

$$
|\Phi||f(x) f(x)| \leq|\Phi| X+\delta
$$

from which we obtain that

$$
|\Phi| X^{2}-|\Phi| X-\delta \leq 0,
$$

such that

$$
X \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|} .
$$

b) i) Let $x, y \in G, h \in K$, then by using Proposition 2.2, we find

$$
\begin{aligned}
&|\Phi||f(x)||f(h y)-f(y h)|=||\Phi| f(x) f(h y)-|\Phi| f(x) f(y h)| \\
& \leq\left|\sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(h y) k^{-1}\right) d \omega_{K}(k)-|\Phi| f(x) f(h y)\right| \\
&+\left|\sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(y h) k^{-1}\right) d \omega_{K}(k)-|\Phi| f(x) f(y h)\right|
\end{aligned}
$$

$$
\leq 2 \delta
$$

Since f is unbounded it follows that $f(y h)=f(h y)$, for all $h \in K, y \in G$.
ii) Let $\tau \in \Phi$, by using Proposition 2.3, we get for all $x, y \in G$

$$
\begin{aligned}
|\Phi||f(x)||f \circ \tau(y)-f(y)|= & ||\Phi| f(x) f(\tau(y))-|\Phi| f(x) f(y)| \\
\leq & \left|\sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(\tau(y)) k^{-1}\right) d \omega_{K}(k)-|\Phi| f(x) f(\tau(y))\right| \\
& \quad+\left|\sum_{\psi \in \Phi} \int_{K} f\left(x k \psi(y) k^{-1}\right) d \omega_{K}(k)-|\Phi| f(x) f(y)\right| \\
\leq & 2 \delta .
\end{aligned}
$$

Since f is unbounded it follows that $f \circ \tau=f$, for all $\tau \in \Phi$.
iii) Let f be an unbounded solution of the functional inequality (3.1), such that f satisfies the condition (*), then, for all $x, y \in G$, we obtain, by using Part i) of Proposition 2.2

$$
\leq 2 \delta
$$

Since f is unbounded we get

$$
\int_{K} f\left(x k y k^{-1}\right) d \omega_{K}(k)=\int_{K} f\left(y k x k^{-1}\right) d \omega_{K}(k), \quad x, y \in G .
$$

The main result is the following theorem.
Theorem 3.2. Let $\delta>0$ and let $f \in \mathcal{C}(G)$ such that f satisfies the condition (*) and the functional inequality

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(y) k^{-1}\right) d \omega_{K}(k)-|\Phi| f(x) f(y)\right| \leq \delta, \quad x, y \in G \tag{3.3}
\end{equation*}
$$

Then either

$$
\begin{equation*}
|f(x)| \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|}, \quad x \in G \tag{3.4}
\end{equation*}
$$

or
$(E(K)) \quad \sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(y) k^{-1}\right) d \omega_{K}(k)=|\Phi| f(x) f(y), x, y \in G$.
Proof. The idea is inspired by the paper [1].
If f is bounded, by using Theorem 3.1, we obtain the first case of the theorem.
Now let f be an unbounded solution of the functional inequality (3.3), then there exists a sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in G such that $f\left(z_{n}\right) \neq 0$ and $\lim _{n}\left|f\left(z_{n}\right)\right|=+\infty$.

For the second case we will use the following lemma.
Lemma 3.3. Let f be an unbounded solution of the functional inequality (3.3) satisfying the condition $\|^{*}$ and let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence in G such that $f\left(z_{n}\right) \neq 0$ and $\lim _{n}\left|f\left(z_{n}\right)\right|=+\infty$. It follows that the convergence of the sequences of functions:
i)

$$
\begin{equation*}
x \longmapsto \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} k \varphi(x) k^{-1}\right) d \omega_{K}(k)}{f\left(z_{n}\right)}, \quad n \in \mathbb{N}, \tag{3.5}
\end{equation*}
$$

to the function

$$
x \longmapsto|\Phi| f(x) .
$$

ii)

$$
\begin{equation*}
x \longmapsto \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} h \varphi\left(x k \varphi(\tau(y)) k^{-1}\right) h^{-1}\right) d \omega_{K}(h)}{f\left(z_{n}\right)}, \quad n \in \mathbb{N}, \tau \in \Phi, k \in K, y \in G \tag{3.6}
\end{equation*}
$$

to the function

$$
x \longmapsto|\Phi| f\left(x k \tau(y) k^{-1}\right) \quad \tau \in \Phi, k \in K, y \in G,
$$

is uniform.
By inequality (3.1), we have

$$
\left|\frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} k \varphi(y) k^{-1}\right) d \omega_{K}(k)}{f\left(z_{n}\right)}-|\Phi| f(y)\right| \leq \frac{\delta}{\left|f\left(z_{n}\right)\right|},
$$

then we have, by letting $n \longmapsto+\infty$, that

$$
\lim _{n} \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} k \varphi(y) k^{-1}\right) d \omega_{K}(k)}{f\left(z_{n}\right)}=|\Phi| f(y)
$$

and

$$
\lim _{n} \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} h \varphi\left(x k \varphi(\tau(y)) k^{-1}\right) h^{-1}\right) d \omega_{K}(h)}{f\left(z_{n}\right)}=|\Phi| f\left(x k \tau(y) k^{-1}\right)
$$

Since by Proposition 2.3, we have

$$
\begin{aligned}
& \sum_{\tau \in \Phi} \int_{K} \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} h \varphi(x) k \varphi(\tau(y)) k^{-1} h^{-1}\right) d \omega_{K}(h)}{f\left(z_{n}\right)} d \omega_{K}(k) \\
&= \sum_{\psi \in \Phi} \int_{K} \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} h \varphi(x) k \psi(y) k^{-1} h^{-1}\right) d \omega_{K}(h)}{f\left(z_{n}\right)} d \omega_{K}(k),
\end{aligned}
$$

combining this and the fact that f satisfies the condition (*), we obtain

$$
\begin{aligned}
& \left\lvert\, \sum_{\tau \in \Phi} \int_{K} \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} h \varphi(x) k \varphi(\tau(y)) k^{-1} h^{-1}\right) d \omega_{K}(h)}{f\left(z_{n}\right)} d \omega_{K}(k)\right. \\
& \left.-|\Phi| f(x) \frac{\sum_{\psi \in \Phi} \int_{K} f\left(z_{n} k \psi(y) k^{-1}\right) d \omega_{K}(k)}{f\left(z_{n}\right)} \right\rvert\, \leq \frac{\delta}{\left|f\left(z_{n}\right)\right|}
\end{aligned}
$$

Since the convergence is uniform, we have

$$
\left||\Phi| \sum_{\varphi \in \Phi} \int_{K} f\left(x k \varphi(y) k^{-1}\right) d \omega_{K}(k)-|\Phi|^{2} f(x) f(y)\right| \leq 0
$$

thus $E(K)$ holds and the proof is complete.

4. Applications

If $K \subset Z(G)$, we obtain the following corollary.
Corollary 4.1. Let $\delta>0$ and let f be a complex-valued function on G satisfying the Kannappan condition (see [10])

$$
\begin{equation*}
f(z x y)=f(z y x), \quad x, y \in G \tag{*}
\end{equation*}
$$

and the functional inequality

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi} f(x \varphi(y))-|\Phi| f(x) f(y)\right| \leq \delta, \quad x, y \in G \tag{4.1}
\end{equation*}
$$

Then either

$$
\begin{equation*}
|f(x)| \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|}, \quad x \in G \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\varphi \in \Phi} f(x \varphi(y))=|\Phi| f(x) f(y), \quad x, y \in G \tag{4.3}
\end{equation*}
$$

If G is abelian, then the condition ${ }^{*}$ holds and we have the following:
If $\Phi=\{i\}$ (resp. $\Phi=\{i, \sigma\}$), where $i(x)=x$ and $\sigma(x)=-x$, we find the Baker's stability see [8] (resp. [9]).

If $f(k x h)=\chi(k) f(x) \chi(h), k, h \in K$ and $x \in G$, where χ is a character of K (see [11]), then we have the following corollary.
Corollary 4.2. Let $\delta>0$ and let $f \in \mathcal{C}(G)$ such that $f(k x h)=\chi(k) f(x) \chi(h), k, h \in K$, $x \in G$,
${ }^{(*)} \int_{K} \int_{K} f(z k x h y) \bar{\chi}(k) \bar{\chi}(h) d \omega_{K}(k) d \omega_{K}(h)=\int_{K} \int_{K} f(z k y h x) \bar{\chi}(k) \bar{\chi}(h) d \omega_{K}(k) d \omega_{K}(h)$ and

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi} \int_{K} f(x k \varphi(y)) \bar{\chi}(k) d \omega_{K}(k)-|\Phi| f(x) f(y)\right| \leq \delta, \quad x, y \in G \tag{4.4}
\end{equation*}
$$

Then either

$$
\begin{equation*}
|f(x)| \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|}, \quad x \in G, \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\varphi \in \Phi} \int_{K} f(x k \varphi(y)) \bar{\chi}(k) d \omega_{K}(k)=|\Phi| f(x) f(y), \quad x, y \in G . \tag{4.6}
\end{equation*}
$$

Proposition 4.3. If the algebra $\bar{\chi} \omega_{K} \star M(G) \star \bar{\chi} \omega_{K}$ is commutative then the condition (*) holds.
Proof. Since $f(k x h)=\chi(k) f(x) \chi(h), k, h \in K, x \in G$, then we have $\chi \omega_{K} \star f \star \chi \omega_{K}=f$. Suppose that the algebra $\bar{\chi} \omega_{K} \star M(G) \star \bar{\chi} \omega_{K}$ is commutative, then we get:

$$
\begin{aligned}
\int_{K} \int_{K} f\left(x k y k^{-1} h z h^{-1}\right) d \omega_{K}(k) d \omega_{K}(h) & =\int_{K} \int_{K} f\left(x k y h z h^{-1} k^{-1}\right) d \omega_{K}(k) d \omega_{K}(h) \\
& =\left\langle\delta_{z} \star \bar{\chi} \omega_{K} \star \delta_{y} \star \bar{\chi} \omega_{K} \star \delta_{x}, f\right\rangle \\
& =\left\langle\delta_{z} \star \bar{\chi} \omega_{K} \star \delta_{y} \star \bar{\chi} \omega_{K} \star \delta_{x}, \chi \omega_{K} \star f \star \chi \omega_{K}\right\rangle \\
& =\left\langle\bar{\chi} \omega_{K} \star \delta_{z} \star \bar{\chi} \omega_{K} \star \delta_{y} \star \bar{\chi} \omega_{K} \star \delta_{x} \star \bar{\chi} \omega_{K}, f\right\rangle \\
& =\left\langle\bar{\chi} \omega_{K} \star \delta_{z} \star \bar{\chi} \omega_{K} \star \delta_{x} \star \bar{\chi} \omega_{K} \star \delta_{y} \star \bar{\chi} \omega_{K}, f\right\rangle \\
& =\int_{K} \int_{K} f\left(y k x k^{-1} h z h^{-1}\right) d \omega_{K}(k) d \omega_{K}(h) .
\end{aligned}
$$

Let f be bi- K-invariant (i.e $f(h x k)=f(x), h, k \in K, x \in G$), then we have:
Corollary 4.4. Let $\delta>0$ and let $f \in \mathcal{C}(G)$ be bi-K-invariant such that for all $x, y, z \in G$,

$$
\begin{equation*}
\int_{K} \int_{K} f(z k x h y) d \omega_{K}(k) d \omega_{K}(h)=\int_{K} \int_{K} f(z k y h x) d \omega_{K}(k) d \omega_{K}(h), \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi} \int_{K} f(x k \varphi(y)) d \omega_{K}(k)-|\Phi| f(x) f(y)\right| \leq \delta, \quad x, y \in G . \tag{4.7}
\end{equation*}
$$

Then either

$$
\begin{equation*}
|f(x)| \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|}, \quad x \in G, \tag{4.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\varphi \in \Phi} \int_{K} f(x k \varphi(y)) d \omega_{K}(k)=|\Phi| f(x) f(y), \quad x, y \in G . \tag{4.9}
\end{equation*}
$$

Proposition 4.5. If the pair (G, K) is a Gelfand pair (i.e $\omega_{K} \star M(G) \star \omega_{K}$ is commutative), then the condition (*) holds.

Proof. We take $\chi=1$ (unit character of K) in Proposition 4.3(see [3] and [6]).
In the next corollary, we assume that $G=K$ is a compact group.
Lemma 4.6. If f is central, then f satisfies the condition (*). Consequently, we have

$$
\begin{equation*}
\int_{G} f\left(x t y t^{-1}\right) d t=\int_{G} f\left(y t x t^{-1}\right) d t, \quad x, y \in G . \tag{4.10}
\end{equation*}
$$

Corollary 4.7. Let $\delta>0$ and let f be a complex measurable and essentially bounded function on G such that

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi} \int_{G} f\left(x t \varphi(y) t^{-1}\right) d t-|\Phi| f(x) f(y)\right| \leq \delta, \quad x, y \in G \tag{4.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
|f(x)| \leq \frac{|\Phi|+\sqrt{|\Phi|^{2}+4 \delta|\Phi|}}{2|\Phi|}, \quad x \in G \tag{4.12}
\end{equation*}
$$

Proof. Let $f \in L_{\infty}(G)$ be a solution of the inequality (4.11), then f is bounded, if not, then f satisfies the second case of Theorem 3.2 which implies that f is central (i.e the condition (*) holds) and f is a solution of the following functional equation

$$
\begin{equation*}
\sum_{\varphi \in \Phi} \int_{G} f\left(x t \varphi(y) t^{-1}\right) d t=|\Phi| f(x) f(y), \quad x, y \in G \tag{4.13}
\end{equation*}
$$

In view of the proposition in [5], we have that f is continuous. Since G is compact, then the proof is accomplished.

References

[1] R. BADORA, On Hyers-Ulam stability of Wilson's functional equation, Aequations Math., 60 (2000), 211-218.
[2] J.L. CLERC, Les représentations des groupes compacts, Analyse Harmoniques, les Cours du CIMPA, Université de Nancy I, 1980.
[3] J. FARAUT, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, les Cours du CIMPA, Université de Nancy I, 1980.
[4] W. FORG-ROB AND J. SCHWAIGER, The stability of some functional equations for generalized hyperbolic functions and for the generalized hyperbolic functionsand for the generalized cosine equation, Results in Math., 26 (1994), 247-280.
[5] Z. GAJDA, On functional equations associated with characters of unitary representations of groups, Aequationes Math., 44 (1992), 109-121.
[6] S. HELGASON, Groups and Geometric Analysis, Academic Press, New York-London, 1984.
[7] E. HEWITT and K.A. ROSS, Abstract Harmonic Analysis, Vol. I and II., Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963.
[8] J. BAKER, J. LAWRENCE AND F. ZORZITTO, The stability of the equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc., 74 (1979), 242-246.
[9] J. BAKER, The stability of the cosine equation, Proc. Amer. Math. Soc., 80(3) (1980), 411-416.
[10] Pl. KANNAPPAN, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$, for groups, Proc. Amer. Math. Soc., 19 (1968), 69-74.
[11] R. TAKAHASHI, $S L(2, \mathbb{R})$, Analyse Harmoniques, les Cours du CIMPA, Université de Nancy I, 1980.

[^0]: ISSN (electronic): 1443-5756
 (C) 2003 Victoria University. All rights reserved.

 The author would like to greatly thank the referee for his helpful comments and remarks.
 098-03

