

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 104, 2003

ON THE STABILITY OF A CLASS OF FUNCTIONAL EQUATIONS

BELAID BOUIKHALENE

DÉPARTEMENT DE MATHÉMATIQUES ET INFORMATIQUE FACULTÉ DES SCIENCES BP 133, 14000 KÉNITRA, MOROCCO. bbouikhalene@yahoo.fr

Received 20 July, 2003; accepted 24 October, 2003 Communicated by K. Nikodem

ABSTRACT. In this paper, we study the Baker's superstability for the following functional equation

$$(E(K)) \qquad \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1})d\omega_{K}(k) = |\Phi|f(x)f(y), \ x, y \in G$$

where G is a locally compact group, K is a compact subgroup of G, ω_K is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f is a continuous complex-valued function on G satisfying the Kannappan type condition, for all $x, y, z \in G$

$$(*) \quad \int_K \int_K f(zkxk^{-1}hyh^{-1})d\omega_K(k)d\omega_K(h) = \int_K \int_K f(zkyk^{-1}hxh^{-1})d\omega_K(k)d\omega_K(h).$$

We treat examples and give some applications.

Key words and phrases: Functional equation, Stability, Superstability, Central function, Gelfand pairs.

2000 Mathematics Subject Classification. 39B72.

1. Introduction, Notations and Preliminaries

Let G be a locally compact group. Let K be a compact subgroup of G. Let ω_K be the normalized Haar measure of K. A mapping $\varphi: G \longmapsto G$ is a morphism of G if φ is a homeomorphism of G onto itself which is either a group-homorphism, i.e $(\varphi(xy) = \varphi(x)\varphi(y), x, y \in G)$, or a group-antihomorphism, i.e $(\varphi(xy) = \varphi(y)\varphi(x), x, y \in G)$. We denote by Mor(G) the group of morphisms of G and Φ a finite subgroup of Mor(G) of a K-invariant morphisms of G (i.e $\varphi(K) \subset K$). The number of elements of a finite group Φ will be designated by $|\Phi|$. The Banach algebra of bounded measures on G with complex values is denoted by M(G) and the Banach space of all complex measurable and essentially bounded functions on G by $L_{\infty}(G)$. C(G) designates the Banach space of all continuous complex valued functions on G. We say that a

ISSN (electronic): 1443-5756

The author would like to greatly thank the referee for his helpful comments and remarks.

^{© 2003} Victoria University. All rights reserved.

function f is a K-central function on G if

$$(1.1) f(kx) = f(xk), \quad x \in G, \ k \in K.$$

In the case where G = K, a function f is central if

$$(1.2) f(xy) = f(yx) x, y \in G.$$

See [2] for more information.

In this note, we are going to generalize the results obtained by J.A. Baker in [8] and [9]. As applications, we discuss the following cases:

- a) $K \subset Z(G)$, (Z(G)) is the center of G).
- **b)** $f(hxk) = f(x), h, k \in K, x \in G$ (i.e. f is bi-K-invariant (see [3] and [6])).
- c) $f(hxk) = \chi(k)f(x)\chi(h)$, $x \in G$, $k, h \in K$ (χ is a unitary character of K) (see [11]).
- **d)** (G, K) is a Gelfand pair (see [3], [6] and [11]).
- **e)** G = K (see [2]).

In the next section, we note some results for later use.

2. GENERAL PROPERTIES

In what follows, we study general properties. Let G, K and Φ be given as above.

Proposition 2.1. For an arbitrary fixed $\tau \in \Phi$, the mapping

$$\begin{split} \Phi &\longrightarrow \Phi, \\ \varphi &\longrightarrow \varphi \circ \tau \end{split}$$

is a bijection.

Proof. Follows from the fact that Φ is a finite group.

Proposition 2.2. Let $\varphi \in \Phi$ and $f \in \mathcal{C}(G)$, then we have:

- i) $\int_K f(xk\varphi(hy)k^{-1})d\omega_K(k) = \int_K f(xk\varphi(yh)k^{-1})d\omega_K(k), \quad x,y\in G,\ h\in K.$ ii) If f satisfy (*), the for all $z,y,x\in G$, we have

$$\int_K \int_K f(zh\varphi(ykxk^{-1})h^{-1})d\omega_K(h)d\omega_K(k) = \int_K \int_K f(zh\varphi(xkyk^{-1})h^{-1})d\omega_K(h)d\omega_K(k).$$

i) Let $\varphi \in \Phi$ and let $x, y \in G$, $h \in K$, then we have

Case 1: If φ is a group-homomorphism, we obtain, by replacing k by $k\varphi(h)^{-1}$

$$\int_{K} f(xk\varphi(hy)k^{-1})d\omega_{K}(k) = \int_{K} f(xk\varphi(h)\varphi(y)k^{-1})d\omega_{K}(k)$$

$$= \int_{K} f(xk\varphi(y)\varphi(h)k^{-1})d\omega_{K}(k)$$

$$= \int_{K} f(xk\varphi(yh)k^{-1})d\omega_{K}(k).$$

Case 2: if φ is a group-antihomomorphism, we have, by replacing k by $k\varphi(h)$

$$\int_{K} f(xk\varphi(hy)k^{-1})d\omega_{K}(k) = \int_{K} f(xk\varphi(y)\varphi(h)k^{-1})d\omega_{K}(k)$$

$$= \int_{K} f(xk\varphi(h)\varphi(y)k^{-1})d\omega_{K}(k)$$

$$= \int_{K} f(xk\varphi(yh)k^{-1})d\omega_{K}(k).$$

ii) Follows by simple computation.

Proposition 2.3. For each $\tau \in \Phi$ and $x, y \in G$, we have

(2.1)
$$\sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(\tau(y))k^{-1})d\omega_{K}(k) = \sum_{\psi \in \Phi} \int_{K} f(xk\psi(y)k^{-1})d\omega_{K}(k).$$

Proof. By applying Proposition 2.1, we get that when φ is iterated over Φ , the morphism of the form $\varphi \circ \tau$ annihilates all the elements of Φ .

3. THE MAIN RESULTS

Theorem 3.1. Let G be a locally compact group; let K be a compact subgroup of G with the normalized Haar measure ω_K and let Φ given as above.

Let $\delta > 0$ and let $f \in \mathcal{C}(G)$ such that f satisfies the condition (*) and the functional inequality

(3.1)
$$\left| \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1}) d\omega_{K}(k) - |\Phi| f(x)f(y) \right| \leq \delta, \ x, y \in G.$$

Then one of the assertions is satisfied:

(a) If f is bounded, then

(3.2)
$$|f(x)| \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}.$$

- (b) If f is unbounded, then
 - i) f is K-central,
 - ii) $f \circ \tau = f$, for all $\tau \in \Phi$,
 - iii) $\int_K f(xkyk^{-1})d\omega_K(k) = \int_K f(ykxk^{-1})d\omega_K(k), \quad x, y \in G.$

Proof.

a) Let $X = \sup |f|$, then we get for all $x \in G$

$$|\Phi||f(x)f(x)| \le |\Phi|X + \delta,$$

from which we obtain that

$$|\Phi|X^2 - |\Phi|X - \delta \le 0,$$

such that

$$X \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}.$$

b) i) Let $x, y \in G$, $h \in K$, then by using Proposition 2.2, we find

$$\begin{split} |\Phi||f(x)||f(hy) - f(yh)| &= ||\Phi|f(x)f(hy) - |\Phi|f(x)f(yh)| \\ &\leq \left|\sum_{\varphi \in \Phi} \int_K f(xk\varphi(hy)k^{-1})d\omega_K(k) - |\Phi|f(x)f(hy)| \right| \\ &+ \left|\sum_{\varphi \in \Phi} \int_K f(xk\varphi(yh)k^{-1})d\omega_K(k) - |\Phi|f(x)f(yh)| \right| \\ &< 2\delta. \end{split}$$

Since f is unbounded it follows that f(yh) = f(hy), for all $h \in K, y \in G$.

ii) Let $\tau \in \Phi$, by using Proposition 2.3, we get for all $x, y \in G$

$$\begin{split} |\Phi||f(x)||f\circ\tau(y)-f(y)| &= ||\Phi|f(x)f(\tau(y))-|\Phi|f(x)f(y)|\\ &\leq \left|\sum_{\varphi\in\Phi}\int_K f(xk\varphi(\tau(y))k^{-1})d\omega_K(k)-|\Phi|f(x)f(\tau(y))\right|\\ &+\left|\sum_{\psi\in\Phi}\int_K f(xk\psi(y)k^{-1})d\omega_K(k)-|\Phi|f(x)f(y)\right|\\ &<2\delta. \end{split}$$

Since f is unbounded it follows that $f \circ \tau = f$, for all $\tau \in \Phi$.

iii) Let f be an unbounded solution of the functional inequality (3.1), such that f satisfies the condition (*), then, for all $x, y \in G$, we obtain, by using Part i) of Proposition 2.2:

$$\begin{split} |\Phi||f(z)| \left| \int_{K} f(xkyk^{-1})d\omega_{K}(k) - \int_{K} f(ykxk^{-1})d\omega_{K}(k) \right| \\ &= \left| |\Phi| \int_{K} f(z)f(xkyk^{-1})d\omega_{K}(k) \right| \\ &- |\Phi| \int_{K} f(z)f(ykxk^{-1})d\omega_{K}(k) \right| \\ &\leq \left| \int_{K} \sum_{\varphi \in \Phi} \int_{K} f(zh\varphi(xkyk^{-1})h^{-1})d\omega_{K}(h)d\omega_{K}(k) \right| \\ &- |\Phi| \int_{K} f(z)f(xkyk^{-1})d\omega_{K}(k) \right| \\ &+ \left| \int_{K} \sum_{\varphi \in \Phi} \int_{K} f(zh\varphi(ykxk^{-1})h^{-1})d\omega_{K}(h)d\omega_{K}(k) \right| \\ &- |\Phi| \int_{K} f(z)f(ykxk^{-1})d\omega_{K}(k) \right| \\ &< 2\delta. \end{split}$$

Since f is unbounded we get

$$\int_K f(xkyk^{-1})d\omega_K(k) = \int_K f(ykxk^{-1})d\omega_K(k), \quad x, y \in G.$$

The main result is the following theorem.

Theorem 3.2. Let $\delta > 0$ and let $f \in C(G)$ such that f satisfies the condition (*) and the functional inequality

(3.3)
$$\left| \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1})d\omega_{K}(k) - |\Phi|f(x)f(y) \right| \leq \delta, \ x, y \in G.$$

Then either

(3.4)
$$|f(x)| \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}, \quad x \in G,$$

or

$$(E(K)) \qquad \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)k^{-1})d\omega_{K}(k) = |\Phi|f(x)f(y), \quad x, y \in G.$$

Proof. The idea is inspired by the paper [1].

If f is bounded, by using Theorem 3.1, we obtain the first case of the theorem.

Now let f be an unbounded solution of the functional inequality (3.3), then there exists a sequence $(z_n)_{n\in\mathbb{N}}$ in G such that $f(z_n)\neq 0$ and $\lim_n |f(z_n)|=+\infty$.

For the second case we will use the following lemma.

Lemma 3.3. Let f be an unbounded solution of the functional inequality (3.3) satisfying the condition (*) and let $(z_n)_{n\in\mathbb{N}}$ be a sequence in G such that $f(z_n) \neq 0$ and $\lim_n |f(z_n)| = +\infty$. It follows that the convergence of the sequences of functions:

i)

(3.5)
$$x \longmapsto \frac{\sum_{\varphi \in \Phi} \int_K f(z_n k \varphi(x) k^{-1}) d\omega_K(k)}{f(z_n)}, \quad n \in \mathbb{N},$$

to the function

$$x \longmapsto |\Phi| f(x).$$

ii)

(3.6)
$$x \longmapsto \frac{\sum_{\varphi \in \Phi} \int_K f(z_n h \varphi(x k \varphi(\tau(y)) k^{-1}) h^{-1}) d\omega_K(h)}{f(z_n)}, \quad n \in \mathbb{N}, \ \tau \in \Phi, \ k \in K, \ y \in G$$

to the function

$$x \longmapsto |\Phi| f(xk\tau(y)k^{-1}) \quad \tau \in \Phi, \ k \in K, \ y \in G,$$

is uniform.

By inequality (3.1), we have

$$\left| \frac{\sum_{\varphi \in \Phi} \int_K f(z_n k \varphi(y) k^{-1}) d\omega_K(k)}{f(z_n)} - |\Phi| f(y) \right| \le \frac{\delta}{|f(z_n)|},$$

then we have, by letting $n \longmapsto +\infty$, that

$$\lim_{n} \frac{\sum_{\varphi \in \Phi} \int_{K} f(z_{n}k\varphi(y)k^{-1})d\omega_{K}(k)}{f(z_{n})} = |\Phi|f(y),$$

and

$$\lim_{n} \frac{\sum_{\varphi \in \Phi} \int_{K} f\left(z_{n} h \varphi\left(x k \varphi\left(\tau(y)\right) k^{-1}\right) h^{-1}\right) d\omega_{K}(h)}{f(z_{n})} = |\Phi| f(x k \tau(y) k^{-1}).$$

Since by Proposition 2.3, we have

$$\begin{split} \sum_{\tau \in \Phi} \int_{K} \frac{\sum_{\varphi \in \Phi} \int_{K} f(z_{n}h\varphi(x)k\varphi(\tau(y))k^{-1}h^{-1})d\omega_{K}(h)}{f(z_{n})} d\omega_{K}(k) \\ &= \sum_{\varphi \in \Phi} \int_{K} \frac{\sum_{\varphi \in \Phi} \int_{K} f(z_{n}h\varphi(x)k\psi(y)k^{-1}h^{-1})d\omega_{K}(h)}{f(z_{n})} d\omega_{K}(k), \end{split}$$

combining this and the fact that f satisfies the condition (*), we obtain

$$\left| \sum_{\tau \in \Phi} \int_K \frac{\sum_{\varphi \in \Phi} \int_K f(z_n h \varphi(x) k \varphi(\tau(y)) k^{-1} h^{-1}) d\omega_K(h)}{f(z_n)} d\omega_K(k) - |\Phi| f(x) \frac{\sum_{\psi \in \Phi} \int_K f(z_n k \psi(y) k^{-1}) d\omega_K(k)}{f(z_n)} \right| \leq \frac{\delta}{|f(z_n)|}.$$

Since the convergence is uniform, we have

$$\left| |\Phi| \sum_{\varphi \in \Phi} \int_K f(xk\varphi(y)k^{-1}) d\omega_K(k) - |\Phi|^2 f(x)f(y) \right| \le 0,$$

thus (E(K)) holds and the proof is complete.

4. APPLICATIONS

If $K \subset Z(G)$, we obtain the following corollary.

Corollary 4.1. Let $\delta > 0$ and let f be a complex-valued function on G satisfying the Kannappan condition (see [10])

$$f(zxy) = f(zyx), \quad x, y \in G,$$

and the functional inequality

(4.1)
$$\left| \sum_{\varphi \in \Phi} f(x\varphi(y)) - |\Phi| f(x) f(y) \right| \le \delta, \quad x, y \in G.$$

Then either

(4.2)
$$|f(x)| \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}, \quad x \in G,$$

or

(4.3)
$$\sum_{\varphi \in \Phi} f(x\varphi(y)) = |\Phi| f(x) f(y), \quad x, y \in G.$$

If G is abelian, then the condition (*) holds and we have the following:

If $\Phi = \{i\}$ (resp. $\Phi = \{i, \sigma\}$), where i(x) = x and $\sigma(x) = -x$, we find the Baker's stability see [8] (resp. [9]).

If $f(kxh) = \chi(k)f(x)\chi(h)$, $k, h \in K$ and $x \in G$, where χ is a character of K (see [11]), then we have the following corollary.

Corollary 4.2. Let $\delta > 0$ and let $f \in C(G)$ such that $f(kxh) = \chi(k)f(x)\chi(h)$, $k, h \in K$, $x \in G$,

$$(*) \quad \int_K \int_K f(zkxhy)\overline{\chi}(k)\overline{\chi}(h)d\omega_K(k)d\omega_K(h) = \int_K \int_K f(zkyhx)\overline{\chi}(k)\overline{\chi}(h)d\omega_K(k)d\omega_K(h)$$

and

(4.4)
$$\left| \sum_{\omega \in \Phi} \int_{K} f(xk\varphi(y)) \overline{\chi}(k) d\omega_{K}(k) - |\Phi| f(x) f(y) \right| \leq \delta, \quad x, y \in G.$$

Then either

(4.5)
$$|f(x)| \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}, \quad x \in G,$$

or

(4.6)
$$\sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y))\overline{\chi}(k)d\omega_{K}(k) = |\Phi|f(x)f(y), \quad x, y \in G.$$

Proposition 4.3. *If the algebra* $\overline{\chi}\omega_K \star M(G) \star \overline{\chi}\omega_K$ *is commutative then the condition* (*) *holds.*

Proof. Since $f(kxh) = \chi(k)f(x)\chi(h)$, $k, h \in K$, $x \in G$, then we have $\chi\omega_K \star f \star \chi\omega_K = f$. Suppose that the algebra $\overline{\chi}\omega_K \star M(G) \star \overline{\chi}\omega_K$ is commutative, then we get:

$$\begin{split} \int_{K} \int_{K} f(xkyk^{-1}hzh^{-1}) d\omega_{K}(k) d\omega_{K}(h) &= \int_{K} \int_{K} f(xkyhzh^{-1}k^{-1}) d\omega_{K}(k) d\omega_{K}(h) \\ &= \langle \delta_{z} \star \overline{\chi} \omega_{K} \star \delta_{y} \star \overline{\chi} \omega_{K} \star \delta_{x}, f \rangle \\ &= \langle \delta_{z} \star \overline{\chi} \omega_{K} \star \delta_{y} \star \overline{\chi} \omega_{K} \star \delta_{x}, \chi \omega_{K} \star f \star \chi \omega_{K} \rangle \\ &= \langle \overline{\chi} \omega_{K} \star \delta_{z} \star \overline{\chi} \omega_{K} \star \delta_{y} \star \overline{\chi} \omega_{K} \star \delta_{x} \star \overline{\chi} \omega_{K}, f \rangle \\ &= \langle \overline{\chi} \omega_{K} \star \delta_{z} \star \overline{\chi} \omega_{K} \star \delta_{x} \star \overline{\chi} \omega_{K} \star \delta_{y} \star \overline{\chi} \omega_{K}, f \rangle \\ &= \int_{K} \int_{K} f(ykxk^{-1}hzh^{-1}) d\omega_{K}(k) d\omega_{K}(h). \end{split}$$

Let f be bi-K-invariant (i.e $f(hxk) = f(x), h, k \in K, x \in G$), then we have:

Corollary 4.4. Let $\delta > 0$ and let $f \in \mathcal{C}(G)$ be bi-K-invariant such that for all $x, y, z \in G$,

(*)
$$\int_K \int_K f(zkxhy)d\omega_K(k)d\omega_K(h) = \int_K \int_K f(zkyhx)d\omega_K(k)d\omega_K(h),$$

and

(4.7)
$$\left| \sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)) d\omega_{K}(k) - |\Phi| f(x) f(y) \right| \leq \delta, \ x, y \in G.$$

Then either

(4.8)
$$|f(x)| \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}, \quad x \in G,$$

or

(4.9)
$$\sum_{\varphi \in \Phi} \int_{K} f(xk\varphi(y)) d\omega_{K}(k) = |\Phi| f(x) f(y), \quad x, y \in G.$$

Proposition 4.5. If the pair (G, K) is a Gelfand pair (i.e $\omega_K \star M(G) \star \omega_K$ is commutative), then the condition (*) holds.

Proof. We take
$$\chi = 1$$
 (unit character of K) in Proposition 4.3 (see [3] and [6]).

In the next corollary, we assume that G = K is a compact group.

Lemma 4.6. If f is central, then f satisfies the condition (*). Consequently, we have

(4.10)
$$\int_{G} f(xtyt^{-1})dt = \int_{G} f(ytxt^{-1})dt, \quad x, y \in G.$$

Corollary 4.7. Let $\delta > 0$ and let f be a complex measurable and essentially bounded function on G such that

(4.11)
$$\left| \sum_{\varphi \in \Phi} \int_{G} f(xt\varphi(y)t^{-1})dt - |\Phi|f(x)f(y) \right| \leq \delta, \ x, y \in G.$$

Then

(4.12)
$$|f(x)| \le \frac{|\Phi| + \sqrt{|\Phi|^2 + 4\delta|\Phi|}}{2|\Phi|}, \quad x \in G.$$

Proof. Let $f \in L_{\infty}(G)$ be a solution of the inequality (4.11), then f is bounded, if not, then f satisfies the second case of Theorem 3.2 which implies that f is central (i.e the condition (*) holds) and f is a solution of the following functional equation

(4.13)
$$\sum_{\varphi \in \Phi} \int_{G} f(xt\varphi(y)t^{-1})dt = |\Phi|f(x)f(y), \quad x, y \in G.$$

In view of the proposition in [5], we have that f is continuous. Since G is compact, then the proof is accomplished.

REFERENCES

- [1] R. BADORA, On Hyers-Ulam stability of Wilson's functional equation, *Aequations Math.*, **60** (2000), 211–218.
- [2] J.L. CLERC, Les représentations des groupes compacts, *Analyse Harmoniques*, les Cours du CIMPA, Université de Nancy I, 1980.
- [3] J. FARAUT, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, *les Cours du CIMPA*, Université de Nancy I, 1980.
- [4] W. FORG-ROB AND J. SCHWAIGER, The stability of some functional equations for generalized hyperbolic functions and for the generalized hyperbolic functions and for the generalized cosine equation, *Results in Math.*, **26** (1994), 247–280.
- [5] Z. GAJDA, On functional equations associated with characters of unitary representations of groups, *Aequationes Math.*, **44** (1992), 109–121.
- [6] S. HELGASON, Groups and Geometric Analysis, Academic Press, New York-London, 1984.
- [7] E. HEWITT AND K.A. ROSS, *Abstract Harmonic Analysis*, Vol. I and II., Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963.
- [8] J. BAKER, J. LAWRENCE AND F. ZORZITTO, The stability of the equation f(x+y) = f(x)f(y), *Proc. Amer. Math. Soc.*, **74** (1979), 242–246.
- [9] J. BAKER, The stability of the cosine equation, *Proc. Amer. Math. Soc.*, **80**(3) (1980), 411–416.
- [10] Pl. KANNAPPAN, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$, for groups, *Proc. Amer. Math. Soc.*, **19** (1968), 69–74.
- [11] R. TAKAHASHI, $SL(2,\mathbb{R})$, Analyse Harmoniques, les Cours du CIMPA, Université de Nancy I, 1980.