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Abstract

The paper briefly reviews the concept of the variogram and the estimation er-
ror variance in connection with certain estimation problems. This is done in
the context of their development in mineralogy. The results are then placed in
the context of the assessment of flowing product streams that are continuous
space, continuous time stochastic processes. The work in this area, to date, is
then briefly reviewed and extended. The paper addresses both practical and
theoretical issues, the latter being focused on bounding both the estimation er-
ror and the estimation error variance. For this, use is made of variations of
Ostrowski’s inequality and Holder-type variograms.

2000 Mathematics Subject Classification: 60E15, 93E03, 26D15.
Key words: Variograms, Estimation Error, Estimation Error Variance, Kriging,

Hölder-type Variograms, Ostrowski’s Inequality, Continuous Space, Con-
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1. The Concept of the Variogram
The variogram has a history that is associated with mining and mineralogy.
It is a concept that is also extensively used in meteorology and ecology. In
such applications it is largely concerned with spatial variability, for example, in
geological core samples.

As is common with many statistical methods, an important issue in practi-
cal applications involving variograms is the fitting of a theoretical model to a
set of collected data. In proceeding with this there are a few time honoured,
empirically useful models that are fitted, governed mainly by particular charac-
teristics of the collected data, through previous experience with handling data of
a similar nature and, of course, by a desire for simplicity in the chosen model.

Suppose a mineral core sample of a particular strata is taken that returnsn
sample values collected a distance,d, apart,d is generally a consequence of the
instrument being used to collect the core sample. The characteristic of focus
for these samples is assessed and denoted byx(xi) wherexi is the displace-
ment value of theith sample from a given reference point. A measure of the
variability of the characteristic across the data points is afforded by the sample
variogram,

V (kd) =
1

2(n− k)

n−k∑
i=1

[x(xi)− x(xi+k)]
2.

This is the average of the variances of the data,x(xi) taken in pairs, when value
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pairs arekd apart,k = 1, 2, 3, . . . , n− 1, i.e.

V (kd) =
1

n− k

((
x(x1)−

x(x1) + x(x1+k)

2

)2

+

(
x(x1+k)−

x(x1) + x(x1+k)

2

)2

+ · · ·

+

(
x(xn−k)−

x(xn−k) + x(xn)

2

)2

+

(
x(xn)− x(xn−k) + x(xn)

2

)2
)

.

The estimation problem that then remains, in order to obtain a more complete
picture of the mineral deposit, is to assess the value of the characteristic at
points for which there are no sample data. Often data are collected from dif-
ferent directions so as to better obtain an appreciation of the deposit over its
three dimensions. Once the data collection is complete one or more sample var-
iograms can be plotted for values ofk = 1, 2, . . . , n − 1 to assist in fitting a
suitable theoretical model, from which estimates of the characteristic at points
where data is unavailable may be obtained. Any particular variogram model
fitted to a single dimension is assumed to comprehensively describe the deposit
variability,

V (u) =
1

2
E [X(s + u)−X(s)]2 ,

whereE(·) denotes the usual statistical expectation.
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Writing it in this fashion implies a degree of stationarity in the model in that
the variogram value is assumed to depend only on the distance of points apart
and not on their specific locations. It is also possible to consider fitting different
models for different directions / dimensions.

Fitting a particular model to the data, of course, requires not only a suitable
choice of model but also estimation of any model parameters. Only when this
is complete can it be used for estimation ofx(·) at unobserved points.

The standard method of estimation ofx(·) is termed Kriging after the South
African mining engineer, D. G. Krige and it is a method that was developed fully
by Matheron [10] in the nineteen fifties. Kriging is essentially interpolation
and the most common, ordinary Kriging, uses a weighted linear combination
of the observed data of the characteristic of the sample to provide estimates.
These weights are determined using the model variogram that has been fitted
and so the appropriateness and fit of the model are critical. Ordinary Kriging,
and there are numerous refinements, produces best linear unbiased estimators.
Once estimation is made possible the quality of it is established by reference
to an entity called the estimation error variance – the long term average of the
squared deviation of the true value from its estimate.
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2. Common Variogram Models used in
Mineralogy

The common variogram models used in mineralogy, the linear, exponential,
spherical and the Gaussian models are defined as follows, (u is assumed posi-
tive):

The linear variogram (positive slope),V (u) = A + Bu.
The linear variogram (horizontal),V (u) = A.
The exponential variogram,V (u) = A + B

(
1− e−

u
C

)
.

The spherical variogram,

V (u) = A + B
(
1.5
(

u
C

)
− 0.5

(
u
C

)3)
, u < C

= A + B, u > C.

The Gaussian variogram,

V (u) = A + B
(
1− e−( u

C
)2
)

, u < C

= A + B, u > C.

A key characteristic feature of the latter three models is the expectation that
the variance will increase with distance apart of the values for a while and will
then level off at a certain distance beyond which values tend to behave indepen-
dently. In the geostatistical literature it is common to refer to the distance from
the reference point at which the variance starts to level off as the ‘range’ and
the level itself as the ‘sill’. Whilst the variance at distance zero apart is unob-
servable, if the back fitted model does not pass through(0, V (0)) the non-zero
value is referred to as the ‘nugget effect’.
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Besides applications in mineralogy, meteorology and ecology the variogram
as a concept has been used in connection with time series analysis where effec-
tively the spatial variableu in, V (u) = 1

2
E [X(s + u)−X(s)]2 is perceived,

instead, as a time variable and it is in this context that it is used here. It should
be noted that for applications of the type previously mentioned, we are essen-
tially assuming thatV (u) is a continuous function of the continuous spatial
variableu. We will also, in the context ofu being time, consider a process that
varies in a continuous manner over continuous time. (Use of the variogram is
not, of course, restricted to this case).

Gy [9] made extensive use of the variogram in dealing with problems asso-
ciated with the sampling of particulate materials. For his purposes he perceived
the variogram as consisting of a number of additive components each having
its own particular characteristics. In this context he discussed both periodic
and non-periodic features in the variograms of these components, noting also
the frequent usefulness of the parabolic variogram. Claiming a broad spectrum
of practical experience, he commented (which additionally provides us with
a defence for our pre-occupation with stationary variograms), “....For a given
material under routine conditions, the variability expressed by one or several
variograms may be regarded as a relatively time stable characteristic.”

In [6] Box and Jenkins introduced and analysed a number of discrete time
stochastic models including among these, the stationary autoregressive and the
non-stationary autoregressive integrated moving average models. Examination
of the variograms of these, albeit in discrete time, show them to resemble the
shape of one or other of the models commonly used in mineralogy and listed
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earlier. If we talk in terms of stationary and non-stationary processes it is ob-
served that a stationary process will typically be one that has a variogram with
a sill effect and a non-stationary process one with a continually increasing vari-
ogram.
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3. Kriging
As mentioned previously, Kriging is a method for estimation of the value of a
spatial variable at a particular location using observations of the spatial variable
at a number of other locations. The result depends on the ‘distance’ of the
points of observation from the point in question and on the variogram of the
spatial variable.

Rather than consider, for example, a variable space of two or more physical
dimensions we here adapt the method so that the ‘distance’ variable represents
time and use it for estimation and in the general study of the behaviour of a
single dimension continuous space stochastic variable in continuous time. We
can then contemplate estimation of the variable at points unobserved using ob-
served values at particular times. We can do this retrospectively in time or as a
method of forecasting.

The method of Kriging has numerous variations, we, however, consider the
simplest, sometimes referred to as, ‘ordinary Kriging’. In the following, results
are obtained for a univariate stochastic process.

Let X(t) be a continuous space stochastic process in continuous time for
which we have observations atn discrete instants,X(t1), X(t2), . . . , X(tn).
We wish to estimate the variable value at a time,t0which is unobserved, we
designate this estimate by,̂X(t0). The estimation is performed by using a linear
combination of the observed values,̂X(t0) =

∑n
i=1 λiX(ti) and stipulating

estimation criteria that determine eachλi uniquely. These are,

(i) that the estimation ofX(t0) by X̂(t0) is unbiased (i.e.E(X̂(t0)) = X(t0))
and
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(ii) that the estimation error variance,EEV, E[(X̂(t0)−X(t0))
2] is minimized.

(We subsequently focus attention on the estimation error variance in a
broader sense in relation to studying the behaviour of a continuous product
stream.)

Condition (i) is guaranteed provided that
∑n

i=1 λi = 1.
Now,

EEV = E[(X̂(t0)−X(t0))
2]

= E

( n∑
i=1

λiX(ti)−X(t0)

)2


= E[(λ1(X(t1)−X(t0)) + λ2(X(t2)−X(t0)) + · · ·
+ λn(X(tn)−X(t0)))

2]

= E

[
n∑

i=1

n∑
j=1

λiλj(X(ti)−X(t0))(X(tj)−X(t0))

]
.

This can further be expressed as,

1

2

n∑
i=1

n∑
j=1

E[λiλj{−(X(ti)−X(tj))
2 + (X(ti)−X(t0))

2

+ (X(t0)−X(tj))
2 − (X(t0)−X(t0))

2}]

which can be written in terms of the process variogram,V (h) = 1
2
E[(X(t) −

X(t + h))2] as,
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EEV = −V (t0 − t0)−
n∑

i=1

n∑
j=1

λiλjV (ti − tj) + 2
n∑

i=1

λiV (ti − t0)

on which we now need to perform a minimization. Expressing this in matrix
vector form and denoting the vector,(X(t1), X(t2), . . . , X(tn)) by XT and
(λ1, λ2, . . . , λn) by λT we haveX(t0) = λT X. The requirement for the sum
of the lambdas to be 1 is captured by the vector equationλT1 = 1, 1 being
a column vector ofn ones. It is now possible to express theEEV in matrix
vector form as,

EEV = −V (0)− λT V λ + 2λT V0

whereV is then by n matrix,

V =


V (t1 − t1) V (t1 − t2) · · · V (t1 − tn)

V (t2 − t1) V (t2 − t2) · · · V (t2 − tn)

...
...

...
...

V (tn − t1) V (tn − t2) · · · V (tn − tn)


and

V0 =


V (t1 − t0)

V (t2 − t0)

...

V (tn − t0)

 .
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We need then to find the vector,λT that minimizesEEV = −V (0) −
λT V λ+2λT V0 subject to the constraint,λT1 = 1. Using a Lagrange multiplier
this constrained minimization problem can be converted into the unconstrained
problem of minimizing,

E = −V (0)− λT V λ + 2λT V0 − 2l(λT1− 1)

Differentiating, setting the derivatives to 0 and solving the equations gives,

l =
1T V −1V0 − 1

1T V −11
and λ = V −1(V0 − l1).

As V (0) = 0 we have that theEEV = −λT V λ + 2λT V0 which returns a
minimum value ofλT (V0 + l1) since the equation,λ = V −1(V0 − l1) implies
V λ = V0 − l1.

We note the fact that both the values of the constants in the linear combina-
tion and the expression for the estimation error variance itself are functions of
the variogram.
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4. The Estimation Error and Industrial Processes
Efforts to monitor and control manufacturing processes, with the ultimate aim
of ensuring the quality of manufactured product, frequently focus on informa-
tion obtained from regular product samples. From this data, decisions need to be
made on whether or not process adjustments are warranted. For processes pro-
ducing discrete product items the notion of control frequently revolves around
the assumption that data from successive samples are uncorrelated and that pro-
cess stability is the norm from which control decisions can sensibly be made. In
such discrete manufacturing environments, individual items are of significance
and statistical tools to aid in control frequently appear in simple graphical form.
Various so-called capability indices are regularly used to connect process be-
haviour with product requirements and even to help assess the overall quality of
batches of final manufactured product.

There are, however, many industrial processes, manufacturing and other-
wise, that do not model so simply, particularly is this the case for products
that appear as continuous flows as for example in the chemical manufacture of
liquids, gases and granular materials. Data from successive samples are fre-
quently correlated and processes seldom meet the stable norm assumption of
discrete manufacturing. Furthermore, in such environments the quality of prod-
uct has no ‘individual’ meaning in the sense that it does for discrete manufac-
tured items. These and other differences are demanding of a different approach
to monitoring, control and product assessment. For these there is considerable
potential for use of the process variogram in the context of the industrial opera-
tion being a continuous space, continuous time stochastic process. The need for
continual product assessment over time in the form of quality estimation from
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sample data means that the estimation error variance (EEV) assumes consider-
able importance. As has been illustrated in a ‘micro’ sense in the technique of
Kriging, it is true also in a more ‘macro’ sense that the process variogram and
the estimation error variance are integrally linked. We will see this in connec-
tion with the estimation of the product flow mean using a single sample value
or, more commonly, using the mean of a number of sample values.

http://jipam.vu.edu.au/
mailto:neil@csm.vu.edu.au
http://jipam.vu.edu.au/


The Variogram and Estimation
Error in Connection with the
Assessment of Continuous

Streams

Neil S. Barnett

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 52

J. Ineq. Pure and Appl. Math. 6(5) Art. 143, 2005

http://jipam.vu.edu.au

5. Continuous Flow Streams
In [11], Saunders, Robinson et al introduced a method for assessing the quality
of a product that is delivered by means of a continuous, constant flow stream.
The technique involves estimating the flow variogram for ‘short’ time intervals
and then estimating the flow mean of a particular product characteristic over
a given time using the average of a number of collected sample values. They
obtained an expression for the estimation error variance of this procedure in
terms of the short lag process variogram, making special note of the case where
the short lag variogram is linear.

Barnett et al, in [4], considered calculation of the estimation error variance
under circumstances where the stream flow rate varies and where the variogram
is either linear or negative exponential in form. The objective of their paper was
to focus on the most appropriate location at which to sample within an interval
of pre-determined length, so as to minimize the estimation error variance. The
authors also placed the results of their paper in the context of a manufacturing
environment. Subsequent papers by Barnett and Dragomir et al [2], [1], [3], [5]
examined inequalities associated with the estimation error and the estimation
error variance. This current paper brings these and a number of other results
together.

The paper by Saunders, Robinson et al [11] was set in the context of assess-
ment, the authors did not deal with the issues of monitoring and control, which
are additional requirements in the manufacturing environment. Once their tech-
nique and variations of it are considered in the context of manufacturing, how-
ever, the issue of monitoring and control naturally arises.

There are many situations where a continuous stream is the mode of product
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delivery and where stream assessment alone is required. The example of ore
delivery, cited in [11], is a case in point. There are, however, other situations
of delivery where, in addition to assessment, there is also the opportunity to
exert a limited degree of control on the stream, for example, by varying the
flow rate or re-directing flows. In this respect the extension to consideration of
non-constant flows, introduced by Barnett et al in [4] is relevant. Further still,
there is the manufacturing environment where on-going assessment, monitoring
and control are all required and, at the same time, there are a number of control
opportunities available.

Continuous production streams are generally flows of product consisting of
liquids, gases or fine granular material. Such streams are found commonly in
the chemical processing industries where a range of chemicals and materials
undergo a chain of manufacturing stages before becoming important additives
in other manufactured products.

An essential characteristic of a continuous stream is that the ‘quality’ or
general status of the product being conveyed is determined, not in an individual
way, but in bulk sense.

In the chemical processing environment, typically, ultimate product status
(quality or key characteristic) is established in batch mode (e.g in a tanker,
truck or silo) dependent upon the manner in which the product is being stored
or transported. In the absence of continuous monitoring, this status is generally
estimated on the basis of periodic grab samples of product taken either during
the final stages of production and/or when it is decanted from large contain-
ers into smaller ones for the purpose of transportation and delivery. There are
many practical issues that surround the collection and analysis of this data and
these all impinge on the reliability of the declared status of the product to the

http://jipam.vu.edu.au/
mailto:neil@csm.vu.edu.au
http://jipam.vu.edu.au/


The Variogram and Estimation
Error in Connection with the
Assessment of Continuous

Streams

Neil S. Barnett

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 52

J. Ineq. Pure and Appl. Math. 6(5) Art. 143, 2005

http://jipam.vu.edu.au

customer.
Whilst it is sample characteristics that are used to assess the product status,

there is a distinction here that needs to be made between assessing production of
discrete items as opposed to assessing product that is processed, manufactured
or conveyed in a continuous stream. For the former, it is rarely appropriate that
the product be assessed in an average sense but rather assessment focuses on
individual manufactured items. For continuous streams, however, there is no
clearly identifiable ‘item’, so the norm is to evaluate and assess product on the
basis of an average of sample values.
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6. Assessment, Compensation and Control
There is a difference between sampling for the quality assessment of a produc-
tion batch and sampling for process control purposes.

In quality assessment, we use data in a historic context in order to summa-
rize a batch of final product. For monitoring and control purposes we use the
sampled data, as it becomes available, to make process adjustments, as neces-
sary, in an attempt to preserve the stipulated status level of the batch of which
the sample is a part. We can reason that this could also be done on the basis of
a forecast provided we can develop a reliable forecasting method.

If we talk in the context of a manufacturing environment, the issue of control
stems from individual characteristics of the process as well as from occasional
events that we aim to avoid in the future if possible. Many processes are par-
tially and some even completely, computer controlled (engineering control).
Under these circumstances a range of automatic controllers regulate various pa-
rameters of the process using well established algorithms that attempt to ‘force’
the product to be manufactured as required. Inherent in the operation of such
controllers is the notion of taking compensatory action as a consequence of the
critical characteristic variable not being precisely the intended value at its most
recent observation. To do this effectively we need to know the general pattern of
behaviour of the characteristic in question and to know the nature of any delays
in changes to it caused by changes to production parameters.

In an attempt to stabilize a process or make it stationary with respect to one
or more critical characteristics, deficiencies in the values of input variables are
frequently compensated for using automatic controllers. Some of these vari-
ables may be dependent on one another and so to provide a stationary process
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their interdependence needs to be understood.
Statistical process control, on the other hand, is geared to keep in harmony

with an existing stable state and to adjust only when this stability appears to have
been lost. Inherent in this approach is the assumption that stability is a viable
norm but, unfortunately, this is not always the case. Compensatory control, on
the other hand, is involved with constantly adjusting process inputs in order to
achieve its objective.

In the absence of a completely computer controlled environment, data has to
be deliberately and continually sought in order to facilitate manual judgments
on how to further adjust the process in order to achieve desired goals. This may
well be done on the basis of conformance to a particular statistical model, this
is only of merit, however, if such conformance is consistent with delivering the
specifications that have been imposed on the product.

Whilst it is now standard procedure to control many basic process variables
by computer controllers, it is not unusual to find that other process factors pre-
vent the achievement of stability, even with these computer controllers operable
and correctly tuned. Hence, even under computer control we are frequently
faced with a non-stationary process through which an ‘orderly’ product has to
be manufactured.

Whilst computer controllers can be easily used to regulate such things as
temperatures and flow rates, they can seldom, for example, deal with issues re-
lated directly to the ‘quality’ of raw materials unless the precise consequences
of a drop in raw material quality is known. Many industries use as their basic
raw materials, substances that are the by-products of other industries, which
are materials that other industries do not want and consequently do not con-
trol. In many instances, such by-products are lacking in consistency or uni-
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formity, which makes their further processing in a predictable manner, at best
difficult. It is, therefore, not uncommon for there to be computer control yet
non-stationarity in the ‘controlled’ process. Add to this the fact that many in-
dustrial processes are essentially chemical reactions and whilst there is gener-
ally a considerable body of knowledge about the reaction itself and what makes
it function, a full knowledge of ‘what makes the process tick’, is often lack-
ing. As one industrial chemist put it, there is an element of ‘witchcraft’ in most
processes. These are aspects of the process that are not fully understood and fre-
quently interfere with predictability. Under such circumstances the challenge is
to effectively further adjust the process in order to deliver an acceptable product.

It should also be noted that in certain non-manufacturing environments the
need for stream monitoring occurs in situations where there is absolutely no
way of controlling the input variables. It has become common for sewage treat-
ment facilities, for example, to exploit the treatment process to collect methane
gas and to use this to generate power to off-set the costs of treating the raw
sewage further. Controlling the production of methane gas requires knowledge
of incoming loadings and certain characteristics of the effluent. Few sewage
treatment facilities, however, can control the volumes or the nature of their in-
puts.

The reality is that there is the need for stream assessment in situations where
there is total computer control, partial computer control or where no computer
control exists or is even possible. There is also the need for ‘control’ of products
that are delivered by a process that is still non-stationary despite a certain degree
of compensatory action having been taken.
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7. The Basic Model
In what follows, both from the perspective of assessment and control, we as-
sume that the status of a continuous production stream at a time,t, after com-
mencement, is denoted byX(t). This status will generally refer to some critical
characteristic of the product that directly affects its utility and consequently
its quality. Grab samples of the product are required and are taken at times,
t1, t2, . . . , tn and, following testing or measurement, provide data values,X(t1),
X(t2), X(t3), . . . , X(tn). If we now suppose that the actual mean status of the
stream over a time interval[0, T ], assuming a constant flow rate, is our focus,
then it is denoted by,

X̄ =
1

T

∫ T

t=0

X(t)dt.

Further, if we seek to estimate this by using the sample values collected, then it
is logical to perform this estimation using the sample mean,

X̄n =
1

n

n∑
i=1

X(ti).

We here assume that there is no reason to give precedence to particular sam-
ple values and so they are assumed to be of equal ‘weight’. How good the
estimation is, is wrapped up in the estimation error,

∣∣X̄ − X̄n

∣∣. A reasonable
statistical measure of how well this estimation does the job, is the estimation
error variance (EEV), defined as,

EEV = E
(
(X̄ − X̄n)2

)
= E

( 1

T

∫ T

t=0

X(t)dt− 1

n

n∑
i=1

X(ti)

)2
 .
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If we now contemplate obtaining a numerical value for this, it is clear that its
value depends not only on the process values collected at,t1, t2, . . . , tn but on
the stochastic behaviour of the process,X(t), itself. Whilst the sampling times
may well be at our discretion or choosing, the nature ofX(t) is not, although its
nature is likely the result of what we have set up or the end result of our attempts
to regulate the process.X(t) is then frequently the manifested process after the
effects of certain control actions have occurred. TheEEV can be expressed in
terms of the process variogram as,

EEV = − 1

n2

n∑
i=1

n∑
j=1

V (ti − tj)−
1

T 2

∫ T

0

∫ T

0

V (u− v)dudv

+
2

nT

∫ T

0

n∑
i=1

V (u− ti)du.

As Saunders et al [11] point out, in principle this can be evaluated numerically
onceV (·) has been estimated but the expression is inherently unstable which
is likely to give accuracy problems. In any event, seeking a more analytical
approach is likely more interesting with the potential to tell us far more about
the general structure of the problem and its solution.

Having defined the stationary variogram of the processX(t) as,

V (u) =
1

2
E [(X(s + u)−X(s))2],

we further stipulate thatV (0) = 0 andV (−u) = V (u). This means that from
a purely mathematical perspective a model forV (u) is likely to have a jump
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discontinuity at the origin. If not a discontinuity then almost certainly the origin
will be a point of non-differentiability.

Focusing on the case where the variogram is indeed stationary we expect,
for the practical application area under consideration here that,V (u) will be
strictly increasing onu > 0. The actual variogram in any instance will gen-
erally be unknown and so will need to be estimated from sample data. Such
sample variograms may have non increasing features due to sample fluctuations
or, commonly, as a result of insufficient data values being available to provide
reliable estimates of the variogram for large time lags.

It is important to realize that assuming thatV (u) is stationary is not equiv-
alent to assuming that the process,X(t) itself is stationary. The former is a
less stringent condition and means that assuming merely that the variogram is
stationary enables us to include in our consideration some processes that are, in
fact, non-stationary. Of course, ifX(t) is stationary then so too isV (u).

In order to conceptualize further just what the variogram actually repre-
sents with regard to the process in continuous time, consider the situation when
X(t) is indeed stationary. In this case,E[X(t)] = E[X(t + u)], E[X2(t)] =
E[X2(t + u)] andCov[X(t), X(t + u)] is a function ofu only, designated by
γ(u). It follows then, by simplification, that,

V (u) = σ2 − γ(u),

whereσ2 is the stable process variance andγ(u) is the process autocovariance
of lag u.In this case, the variogram is the difference between the stationary
variance and the autocovariance function. A more general descriptor of the var-
iogram is given by Saunders et al in [11], as the average smoothness of the pro-
cess. For a manufacturing process that is stationary the expectation is thatγ(u)
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will diminish with increasingu. These features lead us to expect a functional
representation for the variogram,V (u), of a stationary process to eventually
level off. Non-stationary processes that have a stationary variogram are typified
by having the variance at points lagu apart steadily increasing asu increases
rather than tailing off as for the stationary case.

Generally speaking, the variogram can be conceptualized as representing, in
the case of a chemical reaction for example, the actual stochastic dynamics of
the reaction itself under basic control and this would not be expected to vary
appreciably over a reasonable range of process adjustments, if process adjust-
ments are indeed called for. If there is any doubt over this assumed robustness
of the variogram to process adjustments, as the process is sampled for process
monitoring purposes, and if necessarily adjusted, we can also plot the sample
variogram in order to glean possible evidence of any change.

We focus here, however, primarily on the issue of product assessment on
the basis of product samples. If we consider a single product sample taken at
time, ti, then for constant flow streams Barnett et al [4], have shown that on the
basis of minimizing theEEV, this sample best represents the product flow over
an interval withti as its mid-point, irrespective of the exact functional form of
the process variogram, other than it being stationary. IfX̄ denotes the mean
characteristic of the flow over the interval, assumed, without loss of generality,
to be(0, d), then the error variance of estimating the mean characteristic by the
single observationX(t) at timet is given by,

E[(X̄ −X(t))2]

= E

[(
1

d

∫ d

0

X(u)du−X(t)

)2
]
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=
1

d2
E

[∫ d

0

∫ d

0

(X(u)−X(t))(X(v)−X(t))dudv

]
= − 1

d2

∫ d

0

∫ d

0

V (v − u)dudv +
2

d

{∫ t

0

V (u)du +

∫ d−t

0

V (u)du

}
.

To confirm the assertion with respect to this being minimal when the sample
is taken at the mid-point of the interval(0, d),we have only to differentiate this
expression with respect tot and place it equal to zero in order to obtain,V (t) =
V (d − t). From the assumed monotonicity ofV (t) it follows that the optimal
sampling location is att = d

2
, irrespective of the specific form of the process

variogram.
The importance of theEEV is evident since it impacts on the reliability of

our estimation of product quality.
It should be noted at this juncture that the issue of estimating the mean flow

characteristic by a single sample value is essentially the mathematical problem
of estimation of the mean of a continuous function over a finite interval by a
single value lying in the interval. Attempts to put a bound on this difference
is the substance of Ostrowski’s inequality which has been the subject of much
generalization over recent years, see for example [8] and the many references
given there.

It can be seen from the foregoing that theEEV is a function of the variogram
alone which in practical terms means that knowledge of the variogram over
(0, d) is sufficient information about the process to determine theEEV.
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Whent = d
2

this gives,

E

[(
X̄ −X

(
d

2

))2
]

= − 1

d2

∫ d

0

∫ d

0

V (v − u)dudv +
4

d

∫ d
2

0

V (u)du,

and this, for the linear variogram,V (u) = A + Bu, simplifies to give:-

(7.1) EEV = A +
Bd

6
.

From practical considerations then, we need to be able to be confident of both
the functional form and the value of the parameters of the process variogram
and then we can find the error variance of estimating the flow mean over a given
period by using a single value taken centrally from it. Generally, we will be
estimating the mean characteristic of the flow over a given time period, not by
a single sample value, but by the average of a number of sample values. This is
dealt with in the next section.
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8. Stream Assessment on the Basis of the Sample
Mean-Some Exact Results

It is frequently the case that the mean characteristic of a continuous stream over
a period,[0, T ] is assessed by reference to the mean of a number of samples
taken from the stream over the same period. In other wordsX̄n = 1

n

∑n
i=1 X(ti)

is used to estimatēX = 1
T

∫ T

t=0
X(t)dt. The reliability of so doing is gauged by

the estimation error variance,

EEV = E((X̄ − X̄n)2) = E

( 1

T

∫ T

t=0

X(t)dt− 1

n

n∑
i=1

X(ti)

)2
 .

In order to develop a procedure for evaluating this we need to proceed in a
manner similar to that presented in [11]. We suppose that the interval,[0, T ]
is divided inton individual time intervals,[(i − 1)d, id], i = 1, 2, . . . , n. We
assume that by design, or for simplicity,T is exactly divisible byd and sod =
T
n

. If we now lett1, t2, t3, . . . , tn ben sampling times whereti ∈ ((i− 1)d, id)
then we can show [11] that:-

EEV = − 1

n2

n∑
i=1

n∑
j=1

V (ti − tj)

− 1

T 2

∫ T

u=0

∫ T

v=0

V (u− v)dudv +
2

nT

∫ T

u=0

n∑
i=1

V (u− ti)du.

The number of samples (collected at a constant interval apart) is taken to define
a sub-interval of length,d = T

n
and the ‘best’ sampling times are at,t1 = d

2
,
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t2 = 3d
2
, t3 = 5d

2
, . . . , tn = (2n−1)

2
d. Throughout, ‘best’ is used in the context of

providing the smallestEEV amongst all possible sampling point options once
the time between the start of taking successive samples has been decided.

Clearly,

X̄ =
1

n

n∑
i=1

1

d

∫ id

u=(i−1)d

X(u)du =
1

n

n∑
i=1

X̄(i),

and so theEEV can be written alternatively [11] as:-

EEV =
1

n2

n∑
i=1

n∑
j=1

(
− 1

d2

∫ id

u=(i−1)d

∫ jd

v=(j−1)d

V (u− v)dudv

+
1

d

∫ id

u=(i−1)d

V (u− tj)du +
1

d

∫ jd

v=(j−1)d

V (ti − v)dv − V (ti − tj)

)
with ti = (2i−1)

2
d andtj = (2j−1)

2
d. Now the terms of theEEV corresponding

to i 6= j, for the situation when the variogram is linear, can be shown to be
equal to 0. This can be done by specific direct evaluation, by a general Taylor
series expansion ofV (u) or by obtaining an upper bound for individual terms
of theEEV for i 6= j in terms of the second derivative of the variogram using
the following two-dimensional Ostrowski type inequality obtained by Barnett
and Dragomir in [2].

Let f : [a, b]× [c, d] → R so thatf(·, ·) is integrable on[a, b]× [c, d], f(x, ·)
is integrable on[c, d] for anyx ∈ [a, b] andf(·, y) is integrable on[a, b] for any
y ∈ [c, d], f ′′x,y = ∂2f

∂x∂y
exists on(a, b) × (c, d) and is bounded i.e.,

∥∥f ′′s,t∥∥∞ :=
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sup(x,y)∈(a,b)×(c,d)

∣∣∣∂2f(x,y)
∂x.∂y

∣∣∣ < ∞, then we have the inequality:-

∣∣∣∣∫ b

a

∫ d

c

f(s, t)dsdt− [(b− a)

∫ d

c

f(x, t)dt

+ (d− c)

∫ b

a

f(s, y)ds− (d− c)(b− a)f(x, y)]

∣∣∣∣
≤

[
1

4
(b− a)2 +

(
x− a + b

2

)2
][

1

4
(d− c)2 +

(
y − c + d

2

)2
]∥∥f ′′s,t∥∥∞ ,

for all (x, y) ∈ [a, b]× [c, d].

If we now apply this inequality forf(u, v) = V (v − u) and with ‘a’= (i −
1)d, ‘b’= id, ‘c’= (j − 1)d, ‘d’= jd we get, under the assumption thatV is
twice differentiable and with the second derivative bounded,∣∣∣∣∫ id

(i−1)d

∫ jd

(j−1)d

V (v − u)dudv

−
[
d

∫ jd

(j−1)d

V (v − x)dv + d

∫ id

(i−1)d

V (y − u)du− d2V (y − x)

]∣∣∣∣
≤

[
1

4
d2 +

(
x− d(2i− 1

2

)2
][

1

4
d2 +

(
y − d(2j − 1

2

)2
]
‖V ′′‖∞ ,

and forV (·) being linear the LHS must be 0.
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Hence,

EEV =
1

n2

n∑
i=1

n∑
i=1

(
− 1

d2

∫ id

u=(i−1)d

∫ id

u=(i−1)d

V (u− v)dudv

+
2

d

∫ id

u=(i−1)d

V

(
u− d

2
(2i− 1)

)
du

)
which further simplifies to:-

EEV =
1

n2

n∑
i=1

n∑
i=1

(
− 1

d2

∫ d

u=0

∫ d

u=0

V (u− v)dudv +
2

d

∫ d

u=0

V

(
u− d

2

)
du

)
,

where the argument of the summation can be shown to be [11]:-∫ d

0

w(u)V (u)du, where w(u) =


2
d2 (u + d), 0 ≤ u < d

2

2
d2 (u− d), d

2
≤ u < d

For V (u) = A + Bu in this interval, the result is easily seen to be:-EEV =
1
n

(
A + 1

6
Bd
)
, whereT = nd, giving EEV = 1

n

(
A + BT

6n

)
, and (7.1) as a

special case whenn = 1.
When a Taylor expansion ofV (u) is made for the case wherei 6= j (for

the general case where there is no assumption regarding the form ofV (u)) the
lowest order derivative ofV that appears in the terms of theEEV is 4 [11]. This
means that not only if the short lag process variogram is linear does,

EEV = E
(
X̄n − X̄

)2
=

1

n

n∑
i=1

E
(
X(ti)− X̄(i)

)2
,
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but also when the short lag process variogram is quadratic or cubic. When the
process variogram isV (u) = A + Bu + Cu2 it can be shown again, that,

EEV =
1

n

(
A +

1

6
Bd

)
.

When the process variogram isV (u) = A + Bu + Cu2 + Du3 it can be shown
that,

EEV =
1

n

(
A +

Bd

6
− 3Dd2

80

)
.
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9. Generally Bounding the Estimation Error
The estimation error itself of estimatinḡX by X̄n is given by

∣∣X̄ − X̄n

∣∣ and
theoretical bounds for this can be obtained by using another variation of Os-
trowski’s inequality. In [8] the authors obtain the following inequality for dif-
ferentiable functions,f(x),∣∣∣∣∣

∫ b

a

f(x)dx−
n−1∑
i=0

f(ξi)hi

∣∣∣∣∣ ≤ ‖f ′‖∞
n−1∑
i=0

[
h2

i

4
+

(
ξi −

xi + xi+1

2

)2
]

≤ ‖f ′‖∞
2

n−1∑
i=0

h2
i ,

where‖f ′‖∞ is supt∈(a,b) |f ′(t)| < ∞, a = x0 < x1 < · · · < xn−1 < xn =
b is an arbitrary partition of[a, b] and hi = xi+1 − xi, ξi ∈ [xi, xi+1], i =
0, 1, 2, . . . , n− 1.

If f(t) is chosen to be the stochastic process,X(t), (assumed differentiable)
then clearlyX̄ = 1

T

∫ T

0
X(t)dt andX̄n = 1

n

∑n
i=1 Xi. Taking b = T, a = 0,

ξi = xi+xi+1

2
andxi = iT

n
, T being the time duration over which the process is

being assessed, we have,

∣∣X̄ − X̄n

∣∣ =

∣∣∣∣∣ 1T
∫ T

0

X(t)dt− 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≤ ‖X ′(t)‖∞ T

2n
,

which provides an upper bound for the estimation error for a particular class of
process.
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Sampling is generally considered to be an instantaneous operation which in
practical terms means that the time to collect a process sample is negligible
compared with the time between commencing successive samplings. The au-
thor has, however, met situations where the sampling time is appreciable in this
sense.

When sampling is not instantaneous, the estimation error can be considered
to be|X̄(T )− X̄(p)| whereX̄(T ) is merelyX̄ andX̄(p) = 1

p

∫ s+p

s
X(t)dt, s

being the time at which sampling commences ands + p the time at which it is
completed. To obtain a bound for the estimation error, in this case, we can use
another variation of Ostrowski’s inequality given by Barnett and Dragomir [5],
that is,

If f : [a, b] → R is an absolutely continuous mapping on[a, b], [c, d] ⊆ [a, b]
and‖f ′‖∞ is supt∈(a,b) |f ′(T )| < ∞, then,∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− 1

d− c

∫ d

c

f(s)ds

∣∣∣∣
≤

(
1

4
(b− a) +

(d− c)

2
+

1

b− a

[∣∣∣∣c + d

2
− a + b

2

∣∣∣∣− d− c

2

]2
)
‖f ′‖∞ .

For application of this result to estimation of the mean flow quality we take
a = 0, b = T andc = s, d = s + p with s + p < T. With respect to the time,
s, at which sampling commences it is interesting to note that with reference to
the mid-point of the time period over which it is desired to estimateX̄, (0, T ),
if sampling commences at the mid-point then the bound is,

(
s+p
2

)
‖X ′(t)‖∞.

If sampling concludes at the mid-point, however, the bound for the estimation
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error variance is,
(

2s+3p
4

)
‖X ′(t)‖∞ a proportional change of p

2(s+p)
. The tightest

bound is provided when sampling is symmetrical about the mid-point of the
interval, i.e. whenT

2
= 2s+p

2
in which case the bound is:-

∣∣X̄(t)− X̄(p)
∣∣ ≤ (T + p

4

)
‖X ′(t)‖∞ .

Whilst this result points to the most appropriate sampling regime, it is, together
with the previous result for bounding the estimation error when sampling is
instantaneous, largely of theoretical interest since neitherX̄(t) nor X ′(t) will,
in general be known. The desire for more practical results leads us to consider
the estimation errorvariance, rather than the estimation error itself,.
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10. Bounding the Estimation Error Variance -
Single Value Estimation

Considering first the situation of a single value used to estimate the flow mean
characteristic, we have:-

E[(X̄ −X(t))2]

= E

[(
1

d

∫ d

0

X(u)du−X(t)

)2
]

=
1

d2
E

[∫ d

0

∫ d

0

(X(u)−X(t))(X(v)−X(t))dudv

]
= − 1

d2

∫ d

0

∫ d

0

V (v − u)dudv +
2

d

{∫ t

0

V (u)du +

∫ d−t

0

V (u)du

}
.

In order to obtain bounds for this expression when we make no specific as-
sumption about the form of the variogram, we can again appeal to the bivariate
generalization of Ostrowski’s inequality [2], used previously.

If we use it forf(u, v) = V (v−u) and witha = c = 0, b = d, we get, under
the assumption thatV is twice differentiable and with the second derivative
bounded on that interval,∣∣∣∣∫ d

0

∫ d

0

V (v − u)dudv

−
[
d

∫ d

0

V (v − x)dv + d

∫ d

0

V (y − u)du− d2V (y − x)

]∣∣∣∣
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≤

[
1

4
d2 +

(
x− d

2

)2
][

1

4
d2 +

(
y − d

2

)2
]
‖V ′′‖∞ ,

for all x, y ∈ [0, d].
If we now letx = y = t, we get,∣∣∣∣∫ d

0

∫ d

0

V (v − u)dudv − [d

∫ d

0

V (v − t)dv + d

∫ d

0

V (t− u)du]

∣∣∣∣
≤

[
1

4
d2+

(
t−d

2

)2
]2 ∥∥V ′′∥∥

∞ .

Further simplification gives,∣∣∣∣ 1

d2

∫ d

0

∫ d

0

V (v − u)dudv − 2

d

[∫ t

0

V (v)dv +

∫ d−t

0

V (v)dv

]∣∣∣∣
≤

[
1

4
+

(
t− d

2

)
d2

2
]2

d2
∥∥V ′′∥∥

∞ .

From this,

E
[
(X̄ −X(t))2

]
≤

[
1

4
+

(
t− d

2

)
d2

2
]2

d2
∥∥V ′′∥∥

∞ .

The best inequality that we can get is that for whicht = d
2
giving the bound,

E

[(
X̄ −X

(
d

2

))2
]
≤ d2

16

∥∥V ′′∥∥
∞ .
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It should be noted that this result requires double differentiability ofV in (−d, d)
and that this condition will frequently not hold, for example, for the case of a
linear variogram.

The following results, however, do not require this differentiability restric-
tion and they include commonly used variogram models as special cases.

A mappingf : [a, b] ⊂ R → R is said to be of ther-Hölder type withr ∈
(0, 1] if |f(x)− f(y)| ≤ H |x− y|r for all x, y ∈ [a, b] with a certainH > 0.
If r = 1 then the mapping is said to be Lipschitzian. Also, any differentiable
mappingf : [a, b] → R having its derivative bounded in(a, b) is Lipschitzian
on(a, b). Should the variogram be of ther−Hölder type then we are able to use
this property to obtain a bound for theEEV.

We have, in the foregoing, seen that,

0 ≤ E
[
(X̄ −X(t))2

]
=

1

d2

∫ d

0

∫ d

0

[V (v − t) + V (t− u)− V (v − u]dvdu.

If V (u) is of ther−Hölder type then,

|V (v − t)− V (v − u)| ≤ H |v − t− v + u| r = H |u− t|r , for all u, v, t ∈ [0, d].

Also,

|V (t− u)| = |V (t− u)− V (0)| ≤ H |t− u|r , for all t, x ∈ [0, d].
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We have, therefore,

E
[(

X̄ −X(t)
)2]

=

∣∣∣∣ 1

d2

∫ d

0

∫ d

0

[V (v − t) + V (t− u)− V (v − u)]dvdu

∣∣∣∣
≤ 1

d2

∫ d

0

∫ d

0

|V (v − t)− V (v − u) + V (t− u)|dvdu

≤ 1

d2

∫ d

0

∫ d

0

|V (v − t)− V (v − u)|+ |V (t− u)| dvdu

≤ 1

d2

∫ d

0

∫ d

0

[H |t− u|
r

+ H |t− u|r]dvdu

=
2H

d

∫ d

0

|t− u|r du

=
2H

d

[∫ t

0

(t− u)rdu +

∫ d

t

(u− t)rdu

]
=

2H

d

[
tr+1 + (d− t)r+1

r + 1

]
.

We have thus shown that for a variogram of ther−Hölder type on[−d, d]
with H > 0,

EEV = E
[
(X̄ −X(t))2

]
≤ 2H

d

[
tr+1 + (d− t)r+1

r + 1

]
≤ 2Hd

r + 1
.

If V is Lipschitzian withL > 0 then this becomes (withr = 1),

EEV = E
[
(X̄ −X(t))2

]
≤

[
1

4
+

(t− d
2
)2

d2

]
Ld.
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Representingtr+1 + (d − t)r+1 by g(t) it is easy to see that the mappingg :
[0, d] → R is such that,

inf
t∈[0,d]

g (t) = g

(
d

2

)
=

dr+1

2r
and sup t∈[0,d]g (t) = g(0) = g(d) = dr+1.

From these we can again deduce that the bound is at its smallest whent = d
2
,

we then have:-

E

[(
X̄ −X

(
d

2

))2
]
≤ 21−rHdr

r + 1
.

For the Lipschitzian case,

E

[(
X̄ −X

(
d

2

))2
]
≤ 1

2
Ld.

If the variogram is in fact of ther−Hölder type then theEEV itself can be
shown to also be of ther−Hölder type with constant2H rather than theH that
is the constant for the variogram [3].
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11. The Convexity of theEEV
If the variogram is monotonic non-decreasing on[0, d] then theEEVof estimat-
ing the mean flow in[0, d] by a single value in the interval,E[(X̄ −X(t))2], is
convex on[0, d].

Since the

EEV = Ev(t)

= − 1

d2

∫ d

0

∫ d

0

V (v − u)dudv +
2

d

{∫ t

0

V (u)du +

∫ d−t

0

V (u)du

}
,

thenE ′
v(t) = 2

d
[V (t)− V (d− t)].

If t1, t2 ∈ [0, d] andt2 > t1 then,

Ev(t2)− Ev(t1)− (t2 − t1)E
′
v(t1)

=
2

d

(∫ t2

t1

V (u)du−
∫ d−t1

d−t2

V (u)du + (t2 − t1)V (t1) + (t2 − t1)V (d− t1)

)
.

SinceV is non-decreasing on the interval[0, d] we have,∫ t2

t1

V (u)du ≥ (t2 − t1)V (t1) and
∫ d−t1

d−t2

V (u)du ≥ (t2 − t1)V (d− t1)

and these imply that

Ev(t2)− Ev(t1) ≥ (t2 − t1)E
′
v(t1) for all t2 > t1 ∈ [0, d],

showing thatEv(·) is convex on[0, d].
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12. Bounding theEEV when using a Sample Mean
We now consider the case where we have an average of sample values available
to us to estimate the flow mean characteristic in an interval[0, T ] where we have
a fixed sampling interval ofd with nd = T . The results follow similarly to the
previous simpler case wheren = 1.

We have previously seen that we can write,

E(X̄ − X̄n)2

=
1

n2d2

n∑
i=1

n∑
j=1

∫ jd

v=(j−1)d

∫ id

u=(i−1)d

{−V (u− v) + V (u− tj)

+ V (ti − v)− V (ti − tj)} dudv.

Applying the Hölder property to the integrand,

{V (u− tj)− V (u− v)}+ {V (ti − v)− V (ti − tj)}

we have,

|V (u− tj)− V (u− v)| ≤ H |v − tj|r and

|V (ti − v)− V (ti − tj)| ≤ H |tj − v|r

with v andtj ∈ [(j − 1)d, jd] ⊂ [0, T ].
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Therefore,∣∣E(X̄ − X̄n)2
∣∣

=
1

n2d2

∣∣∣∣∣
n∑

i=1

n∑
j=1

∫ jd

v=(j−1)d

∫ id

u=(i−1)d

{−V (u− v) + V (u− tj)

+V (ti − v)− V (ti − tj)}dudv

∣∣∣∣∣
≤ 1

n2d2

n∑
i=1

n∑
j=1

∫ jd

v=(j−1)d

∫ id

u=(i−1)d

{|V (u− tj)− V (u− v)|

+ |V (ti − v)− V (ti − tj)|}dudv

≤ 1

n2d2

n∑
i=1

n∑
j=1

∫ jd

v=(j−1)d

∫ id

u=(i−1)d

{H |v − tj|r + H |tj − v|r}dudv

=
2H

nd

n∑
j=1

[
+

∫ tj

v=(j−1)d

(tj − v)rdv +

∫ jd

tj

(v − tj)
rdv

]

=
Hdr

2r−1(r + 1)
=

2H

r + 1

(
T

2n

)r

which for the Lipschitzian case gives the bound asHT
2n

.
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13. Bounding theEEV when the Flow Rate Varies
We suppose that the stream flow rate at timet is given byY (t) and that the
stream is sampled at timest1, t2, t3, . . . , tn, distanced apart, at which the flow
rate is also recorded, affording two values at every sample,X(ti), the flow
characteristic atti andY (ti), the flow rate at timeti. The mean characteristic of
the flow over[0, T ] is then estimated by the mean of the sample characteristic
values weighted by their flow rate, giving theEEV as,

E

[∫ T

0
Y (t)X(t)dt∫ T

0
Y (t)dt

−
∑n

i=1 Y (ti)X(ti)∑n
i=1 Y (ti)

]2

.

It should be noted that for the following analysis to make sense the flow rate
function is assumed deterministic for allt ∈ [0, T ] meaning that it is not subject
to a probability distribution but is rather an entirely controlled and known func-
tion. There are, of course, many other practical circumstances that can arise,
these include the situation where the flow rate is kept constant for a period of
time and is then deliberately ramped up or down and maintained at this new
constant flow level for an assigned period of time when it is likely changed in
a similar manner again. Provided the appropriate practical set of circumstances
exist, then it may be possible, in this case, to view the total behaviour of the
flow over [0, T ] as simply a number of separate constant flow rate periods - for
all intents and purposes the flow rate change being assumed instantaneous.

A similar yet different situation can arise when the only known flow rates are
those observed at the time of sampling. Under these circumstances the individ-
ual flow rates can be used as assumed constant flow rates of the stream over the

http://jipam.vu.edu.au/
mailto:neil@csm.vu.edu.au
http://jipam.vu.edu.au/


The Variogram and Estimation
Error in Connection with the
Assessment of Continuous

Streams

Neil S. Barnett

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 45 of 52

J. Ineq. Pure and Appl. Math. 6(5) Art. 143, 2005

http://jipam.vu.edu.au

time period for which the individual sample values are being taken as estimates
of the stream.

Assuming, however, that we have the first situation of completely known, de-
terministic flow, the integral over[0, T ] can be broken down into its component
parts to give,

EEV =

(
1∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

× E

(
n∑

i=1

n∑
j=i

Y (ti)

∫ jd

(j−1)d

X(t)Y (t)dt

−
n∑

i=1

n∑
j=1

X(ti)Y (ti)

∫ jd

(j−1)d

Y (t)dt

)2

which gives further,

EEV =

(
1∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

× E

(
n∑

i=1

n∑
j=i

∫ jd

(j−1)d

(X(t)Y (t)Y (ti)−X(ti)Y (ti)Y (t)dt

)2

.

Expressing the squared component within the expectation as a double sum and
double integration and taking the expectation, noting thatY (t) is assumed de-
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terministic, we have,

EEV =

(
1∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

×

(
n∑

i=1

n∑
j=i

n∑
k=1

n∑
s=1

∫ jd

v=(j−1)d

∫ id

u=(i−1)d

Y (ts)Y (tk)Y (u)Y (v)

× {−V (u− v) + V (u− tj) + V (ti − v)− V (ti − tj)}dudv

If we now consider the case for a linear flow rate function,Y (t) = At, the
integrand / summand becomes,

A4titkuv{−V (u− v) + V (u− tj) + V (ti − v)− V (ti − tj)}.

We now assume that the variogram is of the Hölder type. Applying the Hölder
property to the integrand,

{V (u− tj)− V (u− v)}+ {V (ti − v)− V (ti − tj)}

we get,

|V (u− tj)− V (u− v)| ≤ H |v − tj|r and

|V (ti − v)− V (ti − tj)| ≤ H |tj − v|r

with v and tj ∈ [(j − 1)d, jd] ⊂ [0, T ].
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We have, therefore,

EEV ≤

(
A2∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

×

(
n∑

i=1

n∑
j=i

n∑
k=1

n∑
s=1

∫ jd

v=(j−1)d

∫ id

u=(i−1)d

tstkuv {|−V (u− v) + V (u− tj)|

+ |V (ti − v)− V (ti − tj)|} dudv

)
,

which gives further,

EEV ≤

(
A2∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

×

 n∑
i=1

n∑
j=i

n∑
k=1

n∑
s=1

tstk

jd∫
v=(j−1)d

id∫
u=(i−1)d

Huv{|v − tj|r + |tj − v|r}dudv


= d2H

(
A2∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

×

 n∑
i=1

n∑
j=i

n∑
k=1

n∑
s=1

tstk(2i− 1)

jd∫
v=(j−1)d

v |tj − v|rdv
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= d2H

(
A2∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2

×

 n∑
s=1

n∑
k=1

tstk

n∑
i=1

(2i−1)

 n∑
j=1

jd∫
v=tj

v(v − tj)
rdv +

tj∫
v=(j−1)d

v(tj − v)rdv


.

If we integrate by parts and once again assume that each sample represents an
interval of lengthd symmetric about the time of sampling (central sampling),
then we have:-

= d2H

(
A2∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2( n∑
s=1

n∑
k=1

tstk

n∑
i=1

(2i− 1)

×

(
n∑

j=1

(
dr+2

2r+1(r + 1)

(
j − 1

2(r + 2)

)
+

dr+2

2r+1(r + 1)

(
j − 1 +

1

2(r + 2)

))))
,

which reduces to,

d2H

(
A2∫ T

0
Y (t)dt ·

∑n
i=1 Y (ti)

)2( n∑
s=1

n∑
k=1

tstk

n∑
i=1

(2i− 1)
n2dr+2

(r + 1)2r+1

)
,

giving, finally, Hdr

(r+1)2r−1 .
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If we once more take the case wherer = 1 we again obtain the bound,HT
2n

.
It should be noted, however, that when the flow rate varies, central sampling
is not the ‘best’ from the point of view of minimizing theEEV,whether this is
sufficiently significant to warrant taking into account would need further inves-
tigation.
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14. Controlling a Continuous Flow Process
– Concluding Remarks

In this paper we have directed attention to the estimation error and estimation er-
ror variance in connection with the assessment of continuous flows. In passing,
mention has been made of the necessity, where such flows occur in the manu-
facturing environment, of also controlling such streams and this will invariably
mean adjusting the generating process as the need arises, over and above routine
control. One approach to such control is to proceed on the basis of a running
mean of sample values. Whether this is a suitable approach or not will depend
on the specific practical context and, in particular, on how the product is stored
immediately following manufacture. Granted that these running means of the
flow characteristic under focus are merely a surrogate for the actual continuous
flow mean characteristic, we again face the issue of estimation error.

In all that has been presented the variogram has been assumed stationary.
In particular, the final assessment of the product stream is dependent on this
stability so we need to be confident that any additional process adjustments do
not appreciably impact this. Saunders et al [11] discuss stream assessment when
the variogram is non-stationary.

In proceeding on the basis of control that is focused on the value of the
running mean, we can contemplate forecasting a next process value and use this
to construct a forecast of the running mean. In so doing, we can consider using
a technique that is similar to the method of Kriging. A detailed discussion of
such control, however, is reserved for a subsequent paper.
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